Peptide Cross-Links in Bacterial Cell Wall Peptidoglycans
Studied with Specific Endopeptidases from *Streptomyces albus G*

Jean-Francois Petit, † Emilio Muñoz, ‡ and Jean-Marie Ghysen

ABSTRACT: Evidence is given for the existence of at least four types of peptide cross-linkages in lysine-containing peptidoglycans of cell walls from Gram-positive bacteria. Three kinds of such cross-linkages, by which the e-amino group of the lysine residue of one peptide subunit is joined to the carboxyl group of the terminal d-alanine of a second, have been demonstrated, namely: bridging by tri-l-alanine (*Micrococcus roseus* Thr)\(^1\), by tri-l-alanine-l-threonine (*M. roseus* R 27), and by pentaglycine (*Staphylococcus aureus* Copenhagen) residues. The lytic *Streptomyces* SA endopeptidase hydrolyzes d-alanylglucosyl linkages in *S. aureus* and d-alanyl-l-alanine linkages in *M. roseus*, i.e., at the amino terminus of the peptide bridges and at the carboxyl terminus of the peptide subunits. The lytic *Streptomyces* MR endopeptidase hydrolyzes l-alanyl-l-threonine linkages within the peptide bridges in *M. roseus* R 27 and, with a much smaller rate, l-alanyl-l-alanine linkages within the peptide bridges in *M. roseus* Thr. A fourth kind of cross-linkage, in which no additional amino acid is involved, can also occur in the form of a direct bonding between the C-terminal alanine residue of one peptide subunit and the e-amino group of the lysine residue of a second (*Micrococcus lysodeikticus*). This latter alanyl-l-lysine bond is sensitive to a third lytic *Streptomyces* enzyme, the ML endopeptidase. A structure for the peptide moiety of the peptidoglycan of *M. roseus* is proposed and compared to the peptidoglycan structure in *S. aureus*. The present studies lend support to recent proposals dealing with the mechanism of action of penicillin.

The rigid matrix of bacterial cell walls is a peptidoglycan. The glycocalyx portion is made of alternating units of N-acetylmuramic acid and N-acetylglucosamine arranged in linear chains. Some, or all, of the carboxyl groups of the N-acetylmuramic acid units are involved in amide linkages to terminal l-alanine residues of the peptide moiety. A reasonable working hypothesis for the composition and structure of the peptide portion visualizes subunits of l-alanyl-γ-glutamyl-l-lysyl-(or -diaminopimelyl)-l-alanine, cross-linked by the glycocalyx and by peptide bonds in which additional amino acids may participate.

The peptidoglycan retains its shape and insolubility as long as both the glycocalyx chains and the peptide cross-links remain intact. Thus it is well known that enzymatic hydrolysis of glycosidic bonds brings about lysis of whole cells or solubilization of cell walls. The existence of cross-links between the peptide chains was first suggested by the paucity of terminal groups (Salton, 1961; Mandlestam and Strominger, 1961) and the isolation of dimers of peptide subunits (Ghysen, 1961; Primosigh et al., 1961). It was substantiated with the help of specific peptidases discovered in the last decade (Salton and Ghysen, 1957; Mori et al., 1960; Kato et al., 1962; Pelzer, 1963; Ghysen et al., 1964; Browder et al., 1965; Ghysen et al., 1965a,b; Ensign and Wolfe, 1966). The role of peptide cross-links in cell wall stability is well illustrated by the case of *Staphylococcus aureus* walls, where enzymic disruption of polysaccharide bridges causes dissolution of the walls (Ghysen et al., 1964, 1965a,b) without cleavage of any glycosidic linkages.

According to recent reports (Martin, 1964a,b; Wise and Park, 1965; Tipper and Strominger, 1965; Tipper, 1966; Izaki et al., 1966), the penicillin-induced defect in the cell wall peptidoglycan of *S. aureus* consists in failure to form the bond at the amino terminus of the polysaccharide bridges, thereby leading to fragile nonviable cells. Similarly, it has been suggested that an alanyl-l-lysine peptide bond would be involved in the action of penicillin upon cells of *Micrococcus lysodeikticus* (Wise and Park, 1966). The present report describes several types of cross-linkages in various bacteria as elucidated by means of specific peptidases, and provides further evidence for the dependency of cell wall integrity on intact peptide cross-linkages. Preliminary accounts of this research have appeared (Petit et al., 1965; Ghysen et al., 1966b).

Material and Methods

Analytical Methods. Identification and measurement

* From the Service de Bactériologie, Université de Liège, Liège, Belgium. Received April 11, 1966. This research has been supported in part by a grant (US-ES-10-2) made by the U. S. Department of Agriculture under P. L. 480.

† Chargé de Recherches au Centre National de la Recherche Scientifique (France). Supported in part by "Les Accords Culturaux Franco-Belges." Permanent address: Instituto de Bioquimica, Facultad de Ciencias, Orsay (France).

‡ Permanent address: Instituto de Biología Celular, Centro de Investigaciones Biológicas, Madrid, Spain.
of N-terminal, C-terminal, and free amino acids and the enzymatic determination of D- and L-alanine are described elsewhere (Ghuyen et al., 1965b, 1966a). Threonine was distinguished from allotreonine by paper chromatography in 1-butanol-methyl ethyl ketone-water-NH₂OH (Wheat et al., 1962). It was measured in the form of the dinitorphenyl derivative after thin layer chromatography on silica gel, using the previously described solvents 1 and 2 (Ghuyen et al., 1963b). The L-threonine was characterized and measured with the help of L-threonine dehydrase and then, of lactic dehydrogenase in presence of DPNH.

The same fluorometric method as for D- and L-Ala determination was applied (Ghuyen et al., 1966a).

Amino acid analyses of the bacterial cell walls and of the disaccharide peptide fractions (after hydrolysis in 6 N HCl, 15 hr, 100⁰C) were carried out in a Technicon automanalyzer, resin chromobeads, type B (17 μ).

Cell Walls. Bacterial cell walls were prepared by differential centrifugation after disruption of the cells with glass beads for 1 hr at 4° using an Omnimixer Servall. A 25% (w/v) suspension of cells (wet weight) in water was used to which its weight of glass beads (0.12 mm) was added. The cell walls were purified by treatment at 37°, for 3 hr, with trypsin (0.1%; Difco 1:250; control 474214) in 0.05 M phosphate buffer, pH 7.5, washed, and freeze-dried. Cell walls from the following bacteria were prepared: S. aureus strain Copenhagen, M. lysodeikticus strain NCTC 2665, Micrococcus roseus strain R 27 (Pasteur Institute, Paris), Micrococcus cistus strain R 266 (Pasteur Institute), Saccharomyces lutea strain R 262 (Pasteur Institute), Bacillus megaterium strain KM. Other bacterial cell walls were also used: cell walls of Micrococcus roseus, a strain which has no threonine in the walls and which will be designated as M. roseus Thr⁻, were provided by Dr. M. R. J. Salton, New York University; cell walls of Corynebacterium amycolatum strains Prevot 3103 and 3471, of Corynebacterium fermentans strain 3211 (Pasteur Institute), of Propionibacterium technicum strain NCIB 5965, and of Clostridium histolyticum strain G 54 (Pasteur Institute) were provided by Dr. R. Tinelli (Pasteur Institute, Paris); cell walls of Propionibacterium peterssoni NCTC 5962 and of Propionibacterium rubrum NCIB 8901 were provided by Dr. E. Work, Twyford Laboratory, London; cell walls of Streptococcus pyogenes group type 12 were provided by Dr. S. S. Barkulis and H. Heymann, Ciba Pharmaceutical Co., Summit, N. J., and those of Micrococcus radiodurans by Dr. Chr. Dean, Chester Beatty Institute, London.

For the four following strains, intact cells were used: Bacillus subtilis strain A33 (Pasteur Institute), Micrococcus flavus strain 53160 (Pasteur Institute), Staphylococcus albus strain 531246 (Pasteur Institute), and Gaffkyya tetracena strain R 258 (Pasteur Institute).

Preparation of the Soluble Peptido glycans GP₃ and GP₄ from Cell Walls of S. aureus. The procedure has been previously described (Ghuyen et al., 1965a). The cell walls were digested with an endo-N-acetylmuramidase and the solubil peptide glycan GP₃ was separated from the teichoic acid-peptidoglycan complex by chromatography on Ecteola-cellulose. Some of the polypeptide bridges in GP₃ were then opened by treatment with the lytic peptidase 1, yielding the peptidoglycan GPs.

Masking of the Free Amino Groups and Free Carboxyl Groups in Bacterial Cell Walls. Cell walls of M. lysodeikticus have a high intrinsic content of terminal amino groups (400 μmoles/mg of ε-amino groups of lysine) and of terminal carboxyl groups (450 μmoles/mg of glycine and 100 μmoles/mg of alanine). These groups could mask the liberation of a smaller amount of new amino and carboxyl groups liberated by digestion of the cell walls with an appropriate peptidase. The number of native amino groups was reduced to 20–25% of its initial value by hydroxylation of the cell walls with ethylene oxide (Ghuyen et al., 1966a). The number of native carboxyl groups was greatly decreased by esterification and transformation into hydroxamates (Herman-Boussier et al., 1963); cell walls were washed three times with methanol and then suspended in methanol (10 mg/ml); 8.5 μl of 12 N HCl was added for each milliliter of the suspension; the suspension was gently stirred for 24 hr at room temperature and then centrifuged; the pellet was resuspended in a solution of 2 N hydroxylamine HCl neutralized with 3 N KOH-0.3 M NaHCO₃, 2:1 (v/v); the suspension was gently stirred for 24 hr at room temperature and then centrifuged. The modified cell walls were washed three times with water. Hydrazinanalysis showed that the terminal carboxyl groups of glycine had been reduced to 65 μmoles/mg. No terminal carboxyl group of alanine was detected. The product was still sensitive to the ML endopeptidase.

Enzymes. Most of the enzymes used in the present studies were obtained from culture filtrates of S. albus G: (a) the F₁ endo-N-acetylmuramidase (Salton and Ghuyen, 1969; Dierickx and Ghuyen, 1962); (b) the N-acetylmuranyl-l-alanine amidase (Ghuyen et al., 1962); (c) three bacteriolytic endopeptidases: the SA endopeptidase active on cell walls of S. aureus and M. roseus, the ML endopeptidase active on cell walls of M. lysodeikticus, and the MR endopeptidase active on cell walls of M. roseus; (d) nonlytic aminopeptidase(s) capable of degrading synthetic peptides or peptide chains having terminal amino groups in cell wall peptidoglycans. The endopeptidases and aminopeptidase(s) have been previously described (Ghuyen et al., 1965a, b) except the MR endopeptidase. The exo-β-N-acetylglucosaminidase was prepared from pig epididymis according to Sanderson et al. (1962).

Isolation of the Crude Streptomycetes Enzymes. The selected strain of Streptomycetes was grown in tanks of 500 l. in conditions previously described (Ghuyen et al., 1965a). When the maximal lytic activity was reached, the culture was centrifuged.
Figure 1: Isolation of the crude Streptomyces enzymes. The crude extract corresponding to 16.5 l of Streptomyces culture filtrate was adsorbed on a CM-cellulose column, 250-ml volume, in 0.01 M Tris-HCl buffer, pH 8.0. Elution was carried out with 0.15 M Tris-HCl buffer, pH 8.0, and then with 0.2 M K₂HPO₄ buffer, pH 8.0. The volume of the fractions was 8 ml. Bacteriolytic activities: aliquots of 25 μl of each fraction were incubated at 37°C for 2 hr with 475 μl of an aqueous suspension of bacterial cell walls (1% w/v). SA: S. aureus Copenhagen; ML: M. lysodeikticus; MR: M. roseus R 27; KM: B. megaterium KM. Turbidity was determined measuring the optical density at 550 nm.

Caseinolytic activity: 25 μl of each fraction was incubated at 37°C for 20 min with 500 μl of a casein solution (0.2% in 0.05 M phosphate, pH 8). The incubation was stopped by addition of 4.5 ml of 1% trichloroacetic acid solution. The turbidity was measured with a Pulfrich nephelometer.

Amberlite IRC 50 (XE64) H⁺ (2.5 kg) form was added to the supernatant and the mixture was adjusted to pH 5.0. The resin with the enzymes adsorbed on it was collected by decantation, washed with distilled water, freeze-dried, and kept at -20°C until used.

For the preparation of the enzymes, 100 g of resin, to which the enzymes from 16.5 l of culture filtrate had been adsorbed, was suspended in a minimum volume of cold 10% K₂HPO₄ buffer, pH 8.0; to the suspension was added slowly cold 15 N NH₄OH until a pH of 8-8.5 was reached. The resin was filtered off. All subsequent operations were performed at 4°C. The filtrate was dialyzed for 20 hr against an 0.01 M Tris-HCl buffer, pH 8.0. The slightly turbid solution was centrifuged and the supernatant (800 ml having a total absorbancy of 8700 at 278 mμ) was applied to a 250-ml column of carboxymethylcellulose (CMC) equilibrated with 0.01 M Tris-HCl buffer, pH 8.0. After adsorption, the column was washed with the same buffer until the effluent was virtually free of protein. The 32 endo-N-acetylmuramidase (Ghysen et al., 1962; Ghysen and Strominger, 1963a), the N-acetylglucosaminyl-t-aminase amide (Ghysen et al., 1962; Ghysen and Strominger, 1963a), and the exo-β-N-acetylhexosaminidase (Dierickx and Ghysen, 1962) came through the column in the Tris buffer. The F₁ endo-N-acetylmuramidase and the peptidases were retained on the resin. Elution of the CMC column

Jean-François Petit, Emilio Muñoz, and Jean-Marie Ghysen
with cold 0.15 M Tris buffer, pH 8.4, yielded two fractions (Figure 1). Fraction I contained the aminopeptidase activities (not shown in Figure 1); it was lytic on cell walls of S. aureus, M. lyoedelicticus, and M. roseus; it had no action on cell walls of B. megaterium and was weakly caseinolytic. Fraction II lysed cell walls of M. roseus only and was powerfully caseinolytic. This protease has been designated in previous publications as Caseinase C and has been shown to destroy parts of the envelope of certain animal viruses (Regünster, 1965, 1966; Osterrieth, 1965). Subsequent elution of the CMC column with 0.2 M phosphate buffer, pH 8.0 (Figure 1), yielded a third fraction capable of digesting all of the bacterial cell walls which had been prepared. This fraction III was nearly pure Fi, endo-N-acetyluramidase. Fractions I-III contained respectively 1.5, 2, and 0.75% of the materials absorbing at 278 mu which were present in the dialyzed preparation of crude enzymes. Each fraction was concentrated by dialysis on solid Carbowax 4000 BDH and then purified as described below.

Purification of the Streptomyces Fi, endo-N-Acetyluramidase. The purification of the Fi enzyme from fraction III (Figure 1) will be described elsewhere. The preparation finally obtained was three times more active than egg-white lysozyme in terms of milligrams of cell walls of M. lyoedelicticus digested per milligram of protein (specific activity of the Fi enzyme = 700 mg of cell walls/mg hr). The Fi enzyme has a lytic spectrum broader than that of lysozyme.

Preparation of the Lytic MR Endopeptidase. Fraction II (Figure 1) was dialyzed against 0.01 M Tris-HCl buffer, pH 8.4, and readsorbed on a 175-ml column of CMC which had previously been equilibrated with the same buffer. Elution was then carried out with a gradient of increasing concentration of Tris-HCl buffer, pH 8.4, obtained by adding 0.20 M buffer to a flask containing 2000 ml of 0.01 M buffer. The volume of the solution in the mixing flask was kept constant. Both MR endopeptidase and Caseinase C activities were eluted in the range of 0.07-0.08 M. The active fractions were concentrated on solid Carbowax, dialyzed against water, and centrifuged to remove a slight turbidity appearing during concentration.

Preparation of the Lytic SA Endopeptidase and of the Lytic ML Endopeptidase. Fraction I (Figure 1) was subjected to gradient chromatography on CMC under the same conditions as those used for preparing the MR endopeptidase. Aliquots of the fractions which were collected were analyzed for lytic activity on cell walls of S. aureus, M. roseus, and M. lyoedelicticus, and for hydrolytic activity upon tetraglycine, L-Ala-L-Ala-Gly, and the soluble S. aureus peptidoglycan GP2 (Figure 2). Fractions E and G were lytic on cell walls of both S. aureus and M. roseus. Fraction D and F were lytic on cell walls of M. lyoedelicticus. The four fractions were concentrated separately by dialysis on Carbowax and the lytic actions of the preparations were investigated on the relevant sensitive cell walls. Fractions E and G were found to be indistinguishable with regard to the nature and to the number of peptide bonds hydrolyzed in cell walls of S. aureus and M. roseus; they are two different forms of the same peptide: the SA endopeptidase. A similar observation was made with the ML endopeptidase of fraction D and the ML endopeptidase of fraction F, with regard to their lytic activities on cell walls of M. lyoedelicticus. Similarly, fraction C, which is capable of digesting casein and cell walls of M. roseus, was identified as a second form of the MR endopeptidase of fraction II (Figure 1). Rechromatography on CMC of fraction

![Figure 2](image-url)
F, i.e., the main form of the ML endopeptidase, and fraction E, i.e., the main form of the SA endopeptidase, did not induce any further dissociation into two active forms, but yielded the ML endopeptidase and the SA endopeptidase.

The recrystallized ML endopeptidase and SA endopeptidase were the enzymes used in subsequent studies, otherwise stated. The study of the minor form of the endopeptidases has not been carried further.

Preparation of Peptidase 2. Fraction A (Figure 2) was capable of degrading the tetrapeptide Gly-Gly-Gly-Gly and the tripeptide L-Ala-Lys-Gly into free amino acids. The kinetics of the degradation of this latter tripeptide implicated an aminopeptidase. When the soluble peptidoglycan GP$_2$ was used as substrate, the opened pentaglycine chains having free terminal amino groups were also degraded into free glycine residues (Figure 2) and now e-amino groups of lysine appeared (not shown in Figure 2). However with GP$_3$ as substrate, the spectrum of activity was slightly shifted, the activity being now represented by curve B. This shift was repeatedly obtained and seems to be significant. It might be due to the presence of the non-lytic endopeptidase, the existence of which has been postulated in earlier work (Ghuyse et al., 1964, 1965b) and which would be able to open glycine bridges left intact by the SA endopeptidase. The non-lytic endopeptidase would be eluted at slightly higher concentrations than the aminopeptidase so that the maximum release of glycine residues from GP$_2$ would then be observed with the fraction (maximum of curve B) which contains the most adequate proportion of aminopeptidase and of non-lytic endopeptidase. Fractions A and B were pooled and concentrated by dialysis on Carbobox.

The enzymes were readsoild on a column of CMC equilibrated with 0.01 M Tris-HCl buffer, pH 8.8, and the elution was carried out with a gradient of increasing concentration of Tris- HCl buffer, pH 8.8. At this pH, the aminopeptidase(s) active on tetraglycine and on Staphylococcus peptidoglycan GP$_2$, were still eluted at a low concentration (about 0.025 M) but they were well separated from the contaminating MR endopeptidase (fraction C of Figure 2) which was now eluted at 0.07 M. The fractions active on tetraglycine and on the Staphylococcus peptidoglycan were pooled, concentrated by dialysis on Carbobox, dialyzed against water, and centrifuged. The clear supernatant yielded a preparation, designated peptidase 2.

Preparation of Highly Purified MR Endopeptidase, ML Endopeptidase, and SA Endopeptidase. With the use of the procedure which has just been described, the three lytic endopeptidases retained minor amounts of aminopeptidase activity. This contamination was hardly detectable when tetraglycine or Staphylococcus peptidoglycan GP$_2$ were used as substrates and therefore in many cases these enzyme preparations could be used as such. However, poly-L-lysine chains having free terminal amino groups, such as are produced in cell walls of *M. roseus* by treatment with SA endopeptidase (see further), are extremely sensitive to contaminating amino peptidase. For this reason, these compounds were also used as substrates in the fractionation assay represented in Figure 2. The maximum release of free alanine was still found associated with fractions A–B, but aminopeptidase activity could be detected throughout, up to fraction 200.

Highly purified MR endopeptidase, ML endopeptidase, and SA endopeptidase have been obtained, although in a very poor yield. The crude *Streptomyces* enzyme complex was adsorbed on a CMC column as described above. Elution was carried out with 0.2 M Tris-HCl buffer, pH 8.0, instead of 0.15 M buffer. Now, all the peptidases, including the MR endopeptidase, were eluted together. The F, *endo-N-acetylglucosaminidase* was still retained on the resin and was eluted with the 0.2 M phosphate buffer, pH 8.0. The crude peptidase preparation in Tris-HCl buffer was precipi-

TABLE I: Lytic Spectrum of the *Streptomyces* Endopeptidases.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>ML Endopeptidase</th>
<th>SA Endopeptidase</th>
<th>MR Endopeptidase</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. lysodeikticus, walls</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>M. citreus, walls</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>M. flavus, cells</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>S. lutea, walls</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>S. aureus, walls</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>S. albus, cells</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>G. tetragena, cells</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>S. pyogenes A, walls</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>M. radiotolerance, walls</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>M. roseus R 27, walls</td>
<td>b</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>M. roseus Thr$^{	ext{a}}$, walls</td>
<td>b</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

* A complete clarification of a suspension of the substrate occurs in 0.01 M Tris or Veronal buffer, pH 8.8, when the incubation is carried out with the appropriate enzyme. * No clarification occurs. The cell walls from the bacteria reported in the table contain L-lysine or, in the case of *M. radiotolerance*, L-ornithine. Cell walls from the following bacteria, all of which contain DAP rather than lysine, were not lysed by any of these enzymes: *M. varians*, *B. nigereutum*, *B. subtilis* (for this species, intact cells were used), *C. histolyticum*, *P. technicum*, *C. fermentans*, *C. auroebium*, *P. rubrum* and *P. Petersonii*. It should be noted that the DAP in *C. auroebium* (R. Tinelli, personal communication) and in *P. rubrum* and *P. Petersonii* (Allisop and Work, 1963) is in the L form.
TABLE II: Nature of the Bonds Attacked by the Lytic Endopeptidases.

<table>
<thead>
<tr>
<th>Endopeptidase</th>
<th>Bacterial Cell Wall</th>
<th>Sensitive L ntake</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA Endopeptidase</td>
<td>S. aureus Copenhagen</td>
<td>d-Alanyl-glycyl</td>
</tr>
<tr>
<td></td>
<td>M. roseus R 27 or Thr(−)</td>
<td>d-Alanyl-l-alanyl</td>
</tr>
<tr>
<td>MR Endopeptidase</td>
<td>M. roseus R 27</td>
<td>l-Alanyl-l-threonyl</td>
</tr>
<tr>
<td>ML Endopeptidase</td>
<td>M. lysodeikticus</td>
<td>l-Alanyl-l-alanyl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alanyl-l-lysyl</td>
</tr>
</tbody>
</table>

...tated at 0° by the addition of solid ammonium sulfate to 0.8 saturation. Most of the exopeptidase activities remained in the supernatant (from which they could not be recovered). The three endopeptidases present in the pellet were rechromatographed several times on CMC at pH 8.8 using gradients of increasing Tris–HCl buffer concentration, as already indicated, until each of them was virtually free from each other and of the last detectable trace of aminopeptidase.

Results

Enzymatic Specificity of the Lytic Endopeptidases. Each of the three lytic endopeptidases is active within a narrow range, as seen on incubation with whole Gram-positive cells or their walls in 0.01 M Tris–HCl or Veronal–HCl buffer at pH 8.8. None of them acts on cell walls containing DAP, and the lysine-containing cell walls which do serve as substrates fall into three groups (Table I), respectively typified by *M. lysodeikticus*, *S. aureus*, and *M. roseus*. L-Ornithine-containing cell walls of *M. radiodurans* (Work, 1964) behave as cell walls of the *S. aureus* group.

Peptide bonds undergo hydrolysis when cell walls of *S. aureus*, *M. roseus*, and *M. lysodeikticus* are digested by the appropriate endopeptidases. No glycosidase is involved in the phenomenon since the lysis is not accompanied by the appearance of reducing groups or of N-acetylamino sugars. By comparing the C- and N-terminal residues present in lysates of cell walls obtained with an endo-N-acetylmuramidase with those obtained using highly purified endopeptidases, the sensitive linkages have been identified (see Table II). The stereochemical configuration of the C-terminal alanine was enzymatically determined after isolation of the free alanine residues from the products of hydrazinolysis by Dowex 50 chromatography (Ghuyzen et al., 1966a). The stereochemical configuration of the N-terminal alanine and threonine were also determined enzymatically after they had been released by the aminopeptidase of peptidase 2. The determination was made either directly on the digest or after isolation of the free alanine or free threonine by Sephadex G-25 chromatography. As noted earlier, native cell walls of *M. lysodeikticus* have a high content of free N- and C-terminal residues which was greatly reduced by the masking procedures described earlier. Thus, the e-amino groups of lysine which appeared as a consequence of the treatment with the ML endopeptidase were measured in hydroxymethylated cell walls and the carboxyl groups of alanine which had also appeared, were measured in cell walls previously treated with methanethiol followed by hydroxylation (see Methods).

The Peptidoglycan of Cell Walls of *S. aureus* Strain Copenhagen. Part of the cell wall of *S. aureus* is a teichoic acid polymer having ester-linked α-alanine residues. Since difficulties in interpreting the mechanism of action of the peptidases in the presence of these labile groups were anticipated, they were first removed by treatment of the cell walls with a 9 N NH₄OH solution (20 min at room temperature). This treatment also removed the O-acetyl groups which substitute some of the N-acetylmuramic acid residues of the peptidoglycan (Ghuyzen and Strominger, 1963b; Tipper et al., 1965). The amino acid composition of the NH₄OH-treated cell walls is, in millimicromoles per milligram: Ala 1000 (L-Ala 470; D-Ala 525); when measured by the enzymatic procedure described under methods); Glu 470; Lys 470; Gly 2170.

Earlier work (Ghuyzen et al., 1964, 1965a,b) have shown that 1 mg of cell walls contains 470 mmol of disaccharide peptide units cross-linked by pentaglycine bridges (Figure 3), and that the pentaglycine bridges are linked to the e-amino group of lysine residues. In this series of experiments, cell walls of *S. aureus* had been first digested by an endo-N-acetylmuramidase, then further degraded with a crude preparation of SA endopeptidase (formerly, peptidase I) and finally with peptidase 2. When the enzymes were used in this order, only about 60% of the polycyline bridges were opened and eventually degraded. It was found afterwards that the action of SA endopeptidase is much depressed when the cell walls have been first digested with an endo-N-acetylmuramidase. Consequently, in the present series of experiments enzymes were used in a different order: first the SA endopeptidase, then peptidase 2, and finally the F, endo-N-acetylmuramidase, with as a result, the disruption of virtually all of the pentaglycine bridges.

A. The Peptide Bridges in *S. aureus* Cell Wall. When SA endopeptidase directly lyases cell walls of *S. aureus*, it liberates N-terminal glycine and C-terminal α-alanine, therefore defining the point of attachment of the N-terminal end of the bridges (Figure 3). This
finding is in agreement with the fact that in cell walls of S. aureus, the α-carboxyl groups of glutamic acid exists in the form of a carboxamide (Tipper and Strominger, 1965). Also a similar conclusion has been reached from studies of the staphyloclastic enzyme from Flavobacterium (K. Kato and J. L. Strominger, in preparation).

Cell walls (500 mg) of S. aureus (deprived of the ester-linked d-Ala residues) were digested with 3.3 mg, estimated as protein, of SA endopeptidase in 50 ml of 0.01 M Veronal-HCl buffer, pH 8.8. After 6 hr of incubation at 37°, complete solubilization had occurred; 250 μmole of N-terminal glycine and an equivalent number of C-terminal d-alanine had appeared per milligram of cell walls. This number was not modified during a prolonged incubation. After 20 hr, the soluble digest was heated at 100° for 10 min and adjusted to pH 8.0 with HCl, and 0.3 ml of 1 M K3PO4 solution was added. Aliquots containing 500 μg of digested cell walls were then treated with 27 μg, estimated as protein, of peptidase 2 and were analyzed after increasing times of incubation. As shown in Figure 4, addition of peptidase 2 induced the appearance of new terminal amino groups of glycine, liberated increasing amounts of free glycine residues up to about 2000 μmole/μg, which is at least 90% of the total glycine content of the cell walls, and eventually exposed 470 μmole/μg of ε-amino group of lysine, equivalent to the total lysine content of the cell walls. At the end of the process, terminal amino groups of glycine had virtually disappeared.

B. ISOLATION OF DISACCHARIDE PEPTIDE SRUNITS FROM S. AUREUS CELL WALLS. After exhaustive digestion of 500 mg of cell walls with SA endopeptidase and peptidase 2, the presumed tetrapeptide chains (Glu-Lys-Ala) had been disconnected from each other but were still attached to an intact glycocalyx polymer. The latter was now completely degraded into disaccharide units by means of the F1 endo-N-acetylmuramidase. The final digest was fractionated by filtration in water, on a column of Sephadex G 25, bead form (4 × 70 cm), yielding a teichoic acid polymer, a disaccharide peptide fraction, and finally free glycine. In terms of lysine residues (246 μmole of lysine from 1 mg of cell walls), the actual yield of the disaccharide peptide was 52% of the theoretical value. This figure does not take into account the glycopeptide fragments which occur in the teichoic acid fraction (about 20% in terms of total ε-amino groups of lysine present in the enzymatic digest before Sephadex filtration).

The analytical data for the disaccharide peptide fraction, together with its degradation by the pig epidermism exo-β-N-acetylgucosaminidase and by the N-acetylmuramyl-l-alanine amidase, indicate that one 4-β-N-acetylgucosaminyl-N-acetylmuramic acid unit is connected by an amide linkage to an alanoyl peptide of the composition: Glu 1; Lys 1; Ala 2.16 (d-Ala 1; d-Ala 1.16; employing the enzymatic procedure); Gly 0.13. All of the ε-amino groups of lysine are free. The C-terminal residues are those of alanine and glycine. Furthermore, treatment of the peptide moiety with peptidase 2, after the disaccharide had been freed through the action of the N-acetylmuramyl-l-alanine amidase, liberated, per lysine, one L-Ala residue and unmasked one N-terminal Glu. A more complete study of this disaccharide peptide fraction is in progress and a detailed report will be forthcoming. However, the results briefly reported here support the structure GlcNAC-(β-1-4)-MurNAC-l-Ala-Glu-Lys-d-Ala for at
least 70% of the disaccharide peptide fragments which have been isolated. Small amounts of disaccharide-Ala-Glu-Lys-Ala-Gly and disaccharide-Ala-Glu-Lys-Ala-Ala are also likely to be present. The disaccharide-Ala-Glu-Lys-Ala-Ala fragments must belong to a nascent uncross-linked peptidoglycan (Tipper and Strominger, 1965). The persistence of such pentapeptide residues indicates that the preparations, SA endopeptidase and peptidase 2, are devoid of the d-alanine carboxypeptidase activity which had been detected in earlier preparations (Ghysen et al., 1964, 1965a,b).

The Peptidoglycan of Cell Walls of M. roeseus Strain R 27. The amino acid composition of the cell walls is, in millimicromoles per milligram: Ala 1730 (L-Ala 1180; d-Ala 460; employing the enzymatic procedure); Glu 400; Lys 290; L-Thr 300; Gly 80; Ser 44; Asp 40; Val, Leu: traces. The results obtained by analysis of the products of several sequences of enzymatic degradation described below led us to propose the structure shown in Figure 5 for the peptidoglycan of the cell walls of M. roeseus. About 75 mmol/mg of this statistical unit (or 300 mmol of the peptide subunits) are present in 1 mg of cell walls. This unit consists of three disaccharide tetrapeptides and of one disaccharide tripeptide, bridged by three L-alanyl-L-alanyl-L-threonyl chains which link the C-terminal d-Ala of one disaccharide peptide to the e-amino group of lysine of a second disaccharide peptide. In each unit exists also a (L-Ala)_2-L-Thr chain in which the N-terminal end is free.

A. The Glycan Portion of M. roeseus Cell Walls. The cell walls were digested with the F1, endo-N-acetyl-

muramidase. At completion of the reaction, 300 mmol/mg of disaccharide 4β-N-acetylglucosaminyl-

N-acetylmuramic acid had appeared. Treatment with the N-acetylmuramyl-L-alanine amidase then led to about 280 mmol of new terminal amino groups being exposed. A more detailed description of this degradation will be forthcoming.

B. The Native Uncross-linked Peptide Chains in M. roeseus Cell Walls. An F1, endo-N-acetyl-
muramidase digest of the cell walls contains 50-70 μmol/mg of native N-terminal alanine residues. Acting on such a digest, the aminopeptidase 2 degrades only the native uncross-linked chains (L-Ala)_2-L-Thr. Cell walls (10 mg) were solubilized in 30 min at 37°, with 50 μg of F1, endo-N-acetyl-
muramidase in 1 ml of 0.015 m citrate buffer, pH 5.5. To aliquots containing 500 μg of digested cell walls, 11 μl of 0.1 m K_2HPO_4 buffer, pH 8.0, and 15 μg, measured as protein, of peptidase 2 were added. As shown in Figure 6, lower part and solid lines of upper part, the amino peptidase in peptidase 2 removed serine, 210 μmol/mg of free alanine and 70 μmol/mg of free threonine residues which were identified as L-alanine and L-threonine by the enzymatic procedure described under Methods. Eventually, a number of e-amino groups of lysine, equivalent to the number of L-threonine residues which had been liberated, were unmasked (70 μmol/mg). In another experiment the velocity of the enzymatic degradation was reduced by adding only 3 μg of peptidase 2 to aliquots containing 500 μg of F1-digested cell walls. As shown in Figure 6, upper part, dashed lines, free threonine residues began to appear only when 80% of that number of alanine residues which are eventually produced were already liberated. This supports the proposed sequence L-Ala-L-Ala-L-Ala-L-Thr which, attached by its C terminus to the e-amino group of lysine, constitutes the native uncross-linked peptide chains.

C. The Peptide Bridges in M. roeseus Cell Walls. Cell walls (500 mg) of M. roeseus were digested with 6.6 mg, measured as protein, of SA endopeptidase in 50 ml of 0.005 m Veronal-HCl buffer, pH 8.8. After 8 hr of incubation, complete solubilization had occurred but the incubation was prolonged for 18 hr. Analysis of the digest showed that SA endopeptidase had hydrolyzed d-alanyl-L-alanyl linkages. About 180-200

PEPTIDE CROSS-LINKS IN BACTERIAL CELL WALL PEPTIDOGLYCNAS
FIGURE 5: Structural schemes of the peptidoglycan of cell walls of *M. roseus* (R. 27) and sites of action of the enzymes used throughout their degradation. Alanine and threonine residues in peptide bridges are in the L form, X, Y, I, 2, 3, 4, 5; see Figure 3; 6, opening of tri-L-Ala-L-Thr bridges with MR endopeptidase. Experiments suggest that two kinds of bridges could occur in almost equivalent amounts. They would be respectively sensitive to SA endopeptidase (in 3) or to MR endopeptidase (in 6). It is also suggested that those bridges untouched by the SA endopeptidase would then be sensitive to the postulated nonlytic endopeptidase of peptidase 2, acting on linkage 4.

![Graph showing degradation of cell wall amino acids](image)

FIGURE 6: Degradation of the native uncross-linked tri-L-Ala-L-Thr chains in cell walls of *M. roseus* R 27. Changes in free L-Ala and L-Thr, amino-terminal Ala and Thr, and free, ε-amino group of lysine during the degradation, by peptidase 2, of an F1 endo-N-acetylμuramidase digest of the cell walls. For conditions: see text. The curves drawn in solid lines represent the kinetics of the degradation when 15 μg of peptidase 2 were added to 500 μg of digested cell walls. The curves in dashed lines refer to the case where only 3 μg of peptidase 2 were added.

μmoles of terminal amino groups of alanine was now present in the digest. The digest was heated at 100° for 10 min and adjusted to pH 8.0, and 0.5 ml of a 1 M K₂HPO₄ solution was added. Subsequent treatment with 9 mg, measured as protein, of peptidase 2 liberated first about 900 μmoles/mg of alanine, enzymatically identified as L-alanine (which represents all the L-alanine residues available for cross bridging), and then 300 μmoles/mg of threonine (which represents the total threonine content of the cell walls). Parallel to the appearance of free threonine, ε-amino groups of lysine were exposed and, at the end of the process, they were equivalent to the total lysine content of the cell walls.

Employing adequate amounts of peptidase 2, it has been possible to liberate from an SA endopeptidase digest of the cell walls all of the removable L-alanine residues without liberating appreciable amounts of threonine. In one experiment, the incubation was stopped after the alanine residues had been liberated. The lyophilized digest was subjected to gel filtration in water, on a column of Sephadex G-25, bead form, and a high molecular weight compound was recovered free of L-alanine. This material was treated once more with a larger amount of peptidase 2 which now induced the liberation of the threonine residues. These residues were isolated by a further Sephadex filtration and found to possess the L configuration by the procedure described under Methods.

D. ISOLATION OF TRISACCHARIDE PEPTIDE SUBUNITS FROM *M. roseus* CELL WALLS. After exhaustive digestion of 500 mg of cell walls of *M. roseus* with SA endopeptidase and peptidase 2, the glycan polymer was completely

Jean-François Petit, Emilio Muñoz, and Jean-Marie Ghysen
degraded into disaccharide units by the action of the F1, endo-N-acetylglucosaminidase. Filtration of this latter digest in water, on a column of Sephadex G-25 bead form (4 x 70 cm), yielded three fractions: an as yet unidentified polymer still containing peptidoglycan debris (about 25% in terms of total e-amino groups of lysine), a disaccharide peptide fraction, and a mixture of free L-alanine, free L-threonine, and, as has occurred with some enzyme preparations, free D-alanine. In terms of lysine residues (174 mmol of lysine residues from 1 mg of walls), the actual yield of the disaccharide peptide was 58% of the theoretical value. Analytical data of the disaccharide peptide fraction show that the alanyl peptide is composed of Glu 1; Lys 1; Ala 1.60 (L-Ala 1; D-Ala 0.57; by the enzymatic procedure). All of the lysine residues have free e-amino groups, D-Alanine and, to a lesser extent, lysine are both C-terminal. Acting on the peptide chains obtained after digestion of the disaccharide peptide fraction with the N-acetylmuramyl-L-alanine amidase, peptide 2 liberated, per lysine, one L-Ala residue and unmasked one N-terminal Glu. Here also, a more complete study of the disaccharide peptide fraction is in progress. However, the present results suggest that disaccharide-L-Glu-Lys-D-Ala and disaccharide-D-Ala-Glu-Lys must both occur in the fraction. The disaccharide tripeptide must be a genuine constituent of the cell walls of M. roseus as they are prepared, and not an artifact resulting from the enzymic digestion since no such defective peptide is found when the cell walls of S. aureus are digested with the aid of the same enzyme preparations.

The Possible Occurrence of Two Kinds of Peptide Bridges in Cell Walls of S. aureus Copenhagen and M. roseus R 27. After successive treatments with SA endopeptidase and peptide 2, all of the peptide bridges in cell walls of S. aureus and of M. roseus are completely digested into free amino acids; indeed, the number of e-amino groups of lysine finally unmasked is equal to the total lysine content of the cell walls. However, this number always exceeds the number of N-terminal glycine residues, in the case of S. aureus, or the number of N-terminal L-alanine residues, in the case of M. roseus, resulting from the action of SA endopeptidase, i.e., from the original bridge-opening at the N-terminal point of attachment. NH2-glycine (250 mmol) and 200 mmol of NH2-L-alanine were found in the SA endopeptidase digests of the relevant cell walls, whereas at the end of the degradations, with peptide 2, 470 and 300 mmol of e-NH2-lysine, respectively, were present. The C-terminal D-alanine which appeared as a consequence of the SA endopeptidase treatment and which was measured after hydrazinolysis of the cell walls digests also indicates that about 60% of the peptide bridges have been opened. Considerable caution, however, must be used in the interpretation of these data and it is possible that all of the peptide bridges in the cell walls are opened at their amino terminus by the SA endopeptidase but that only part of the newly formed C- and N-terminal groups are actually measured. However, if, as the experimental data show, the SA endopeptidase is, in fact, only capable of opening about 60% of the peptide bridges in cell walls of S. aureus and of M. roseus, then peptide 2 must contain a nonlytic endopeptidase capable of opening those bridges left untouched by SA endopeptidase. The affinities of SA endopeptidase and of the postulated nonlytic endopeptidase contained in peptide 2 might be respectively directed toward highly and little polymerized peptide substrates. In such a case, the nonlytic endopeptidase would begin to act when SA endopeptidase had degraded the substrate to such an extent that it would no longer act itself. Also, the affinities of SA endopeptidase and of the presumed nonlytic endopeptidase might be directed toward two kinds of peptide bridges, as it has been previously suggested for cell walls of S. aureus (Ghuyzen et al., 1965a).

The presence of two kinds of peptide bridges in cell walls of M. roseus is suggested by the mechanism of action of the MR endopeptidase. The lytic MR endopeptidase hydrolyses about 150 mmol of L-alanyl-L-threonyl linkages in 1 mg of M. roseus cell walls. Acting on such a digest, peptide 2 then degrades those chains which were uncross-linked in the native cell walls (as it does when acting upon an F1 endo-N-acetylglucosaminidase digest of the walls) and those bridges that have been opened by the MR endopeptidase. Indeed, peptide 2 liberates 200 mmol of L-alanine and 200 mmol of L-threonine (i.e., 50-70 from the native uncross-linked chains and 150 from the N-terminal threonine produced by the MR endopeptidase treatment). Concomitant with the release of L-threonine, 200 mmol of e-amino group of lysine appears. Therefore, it can be concluded with certainty that MR endopeptidase acts only on about 50% of the peptide bridges and that peptide 2 is now unable to open those bridges left intact. Another experiment strongly suggests that the bridges untouched by the MR endopeptidase are sensitive to the SA endopeptidase. Indeed, the digestion of the cell walls of M. roseus with a mixture of SA endopeptidase and of MR endopeptidase results in the appearance of about 100 mmol/mg of each of N-terminal Ala and N-terminal Thr, which, together, represents the opening of about 90% of the bridges. Further treatment with peptide 2 (Figure 7) now liberates 300 mmol of free L-threonine but only about 630 mmol of free L-alanine instead of 900 mmol as was observed when, prior to the action of peptide 2, the digestion was...
of the cell walls was carried out with SA endopeptidase alone. From the foregoing, it may be postulated that some bridges in cell walls of *M. roseus* are preferentially sensitive to the lytic SA endopeptidase and that others are preferentially sensitive to the lytic MR endopeptidase or, after previous treatment with SA endopeptidase, to the postulated nonlytic endopeptidase of peptidase 2. There are no data, however, indicating how these two kinds of bridges might be different.

Peptide Bridges in Cell Walls of *M. roseus Strain Ther*. Another kind of peptide cross-linkage, in the form of tri-α-Ala bridges, occurs in a different strain of *M. roseus* (Salton and Pavlik, 1960). In this case, the amino acid ratio in the cell walls is Lys 1; Glu 1; Ala 5; Thr 0. The action of peptidase 2 on an F, endo-α-N-acetylmuramidase digest of the cell walls showed that the native un-cross-linked chain (α-Ala)₆ must occur for cross-linked tetrapeptide subunits. The successive treatments of the cell walls with SA endopeptidase and peptidase 2 liberated three α-alanine residues per lysine residue. At this stage, all the lysine residues had free ε-amino groups. Cell walls of *M. roseus Ther*** are also digested by the MR endopeptidase which in this case hydrolyses α-Ala-ε-Lys linkages. The rate of hydrolysis is about 10 times smaller than that observed with cell walls of *M. roseus R 27* where ε-Ala-ε-Thr linkages are hydrolyzed.

Peptide Bridges in Walls of *M. lysodeicticus Strain NCCT 2655*. The amino acid composition of the walls, in millimicromoles per milligram, is Glu 500; Lys 500; Ala 1000; and Gly 475. This cell wall contains 500 μmole/mg of glucosamine and muramic acid, as measured by the Morgan-Elsdon reaction (Ghysen *et al.*, 1966b). ML endopeptidase hydrolyses 60-100 μmole of alanine-β-lysyl linkages in 1 mg of cell walls. The composition of the cell walls excludes the possibility of polyalanine bridges and the 475 μmole/mg of glycine are adequately accounted for as substituents on the glutamic acid residues (W. Katz, D. J. Tipper, and J. L. Strominger, personal communication). Thus, peptide units appear to be linked directly to one another without any intervening bridges. The ML endopeptidase hydrolyses a limited number of peptide bonds, indicating a low order of cross-linking and, in agreement with this, 75% of the lysine has free ε-amino groups in the native cell wall. However, only a few C-terminal Ala are detectable. Moreover, one-half of the muramic acid carboxyl groups are free (Leyh-Bouille, 1965). Since the ratio between muramic acid and Glu is one, one would expect to find about 250 μmole of N-terminal Ala. In fact, there is a pronounced deficit in these amino groups. An explanation of this deficit and also of the paucity of C-terminal Ala, requires further investigations.

Discussion

The nature of the diaminooacid in bacterial cell wall peptidoglycan, *i.e.*, α-l-lysine or one or more of the isomers of diaminopimelic acid, is a characteristic of taxonomic importance. It is not surprising that the
specificity of lytic peptidases should depend on the nature of the diamino acid in the substrates. Thus none of the peptidases from Streptomyces cultures acts upon any of the DAP-containing cell walls examined, including those in which DAP has been shown to be in L form, as in Propionibacterium petersoni and rubrum (Allsop and Work, 1963) and in Corynebacterium anserinobum (R. Tinelli, personal communication). An unexpected result, however, was the observation that the various peptidases differ in their affinities for L-lysine-containing cell walls depending on the nature of the cross-linkages. Three kinds of such cross-linkages, by which the ε-amino group of the lysine residue of one peptide chain is joined to the carboxyl group of the terminal D-alanine of a second, have been demonstrated, namely: bridging by tri-L-alanine, by tri-L-α-amyl-L-threonine, and by pentaglycine residues. Although peptide bridges of different kinds have not been demonstrated to occur in the same cell wall, the mechanisms of action of the endopeptidases suggest the existence in the cell wall peptidoglycans of both S. aureus and M. roseus of two types of peptide bridges. A fourth kind of cross-linkage in which no additional amino acid is involved can also occur in the form of a direct bonding between the C-terminal alanine residue of one peptide chain and the ε-amino group of the lysine residue of a second (M. lysodeikticus). In all cases, the integrity of the cross-linkages is essential for the rigidity of the bacterial cell walls. In light of the foregoing, the antimicrobial effect of penicillins is, at least in part, explained by the formation of noncross-linked peptidoglycan, since it has been shown (Wise and Park, 1965; Tipper and Strominger, 1965) that penicillin inhibits the bonding of the N terminal of polyglycine units in S. aureus and that, as a consequence, a nascent uncross-linked peptidoglycan accumulates in the inhibited cells (Tipper and Strominger, 1965). It is striking that the same linkage, i.e., D-alanyl-glycine peptide bond, is involved in both the action of penicillin upon growing cells of S. aureus and in the action of SA endopeptidase upon resting (or possibly even growing) cells of the same organism; in the first case, the synthesis of that linkage is inhibited and in the second it undergoes hydrolysis. Similarly, α-mannyl-lysine linkages are hydrolyzed when cell walls of M. lysodeikticus are subjected to endopeptidase and a same peptide bond would be involved in the action of penicillin upon cells of this organism (Wise and Park, 1966).

Among the DAP-containing cell walls, direct linkages from D-α-alanine to DAP have been postulated to exist in the peptidoglycan from Escherichia coli (Weidel and Pelzer, 1964) and have been demonstrated for cell walls of Corynebacterium (K. Kato and J. L. Strominger, in preparation). No cross-linking peptide bridges have yet been observed in the DAP group of bacterial cell walls.

In a few bacterial cell walls, there is no lysine or DAP. The dibasic amino acid used by these cells to build up the peptidoglycan is L-2,4-diaminobutyric acid (Perkins and Cummins, 1964) or L- or possibly D-ornithine (Work, 1964; Perkins and Cummins, 1964; Cummins, 1965) or 2,6-diamino-3-hydroxypimelic acid (Perkins, 1965). The L-ornithine-containing cell walls of M. radiodurans have been found to be digested by the SA endopeptidase, and in this respect they behave like the L-lysine-containing cell walls of the S. aureus group.

A priori, glutamic acid residues could also be involved in cross-linking by serving as anchor point for the Nterminal end of the bridges. However, no experimental demonstration of this type of cross-linking has been forthcoming.

Acknowledgment

We wish to thank Drs. J. L. Strominger, D. J. Tipper, and K. Kato, University of Wisconsin, for the D- and L-alanine and D- and L-threonine assays that they kindly performed for us. The Mycobacterium enzyme was provided by Dr. Ensign, University of Wisconsin.

References

PEPTIDE CROSS-LINKS IN BACTERIAL CELL WALL PEPTIDOGLYCANs

Tipper, D. J. (1966), Federation Proc. 25, 344.

CORRECTION

In the paper entitled “The Behavior of Horseradish Peroxidase at High Hydrogen Peroxide Concentrations,” by Ira Weinryb, in Volume 5, June 1966, on p 2006, second column, bottom line, “catalytic” should read “catalytic.”