The effect of EGR on HCCI combustion – impact of diluting, thermal and chemical aspects: experimental and numerical approaches TINDACESULC

H. Machrafi, P. Guibert, S. Cavadias

Institut Jean Le Rond d'Alembert – CNRS UMR 7190 Université Pierre et Marie Curie (Paris 6) 2, place de la Gare de Ceinture 78210 Saint-Cyr-l'Ecole, France

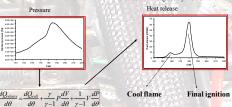
machrafi@ccr.jussieu.fr



Investigate the influence of EGR on the HCCI combustion: hereby the impact of several aspects of EGR on the auto-ignition process is examined experimentally:

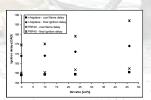
- •Impact of dilution by N2 and CO2
- •Impact of the EGR temperature
- •Impact of chemical actives species such as CO, NO, CH₂O and CH₃CHO
- A previously reduced and validated PRF mechanism is used for further interpretation

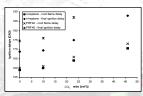
Experimental set-up


CFR engine Engine speed: 600 rpm Displacement: 611 cm³ Compression ratio: 10 Inlet temperature: 70 °C

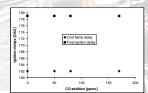
Auto-ignition in internal combustion engines by HCCI mode:

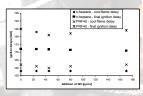
- √ The HCCI (Homogeneous Charge Combustion Ignition) mode presents much advantages:
 - ✓ Reduction of emissions of NO_x, particulate matters
 - ✓ Increase of combustion efficiency
 - ✓ Reduction of CO2 emissions
- ✓ However, when conditions are not optimal, the emissions of hydrocarbons and CO could be too elevated
- ✓PRINCIPAL PROBLEM: CONTROLLING THE AUTO-IGNITION PROCESS
 - PROMISING SOLUTION: CONTROLLING BY EXHAUST GAS RECIRCULATION

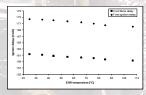

AUTO-IGNITION PROCESS is investigated by AUTO-IGNITION DELAYS

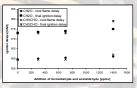

•Generally, the auto-ignition process occurs in two stages, interceded by an NTC

DE LA RECHERCHE SCIENTIFICIUE

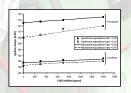

- •The auto-ignition delays are a summary of the whole process
- •Studying the influence of the EGR on the auto-ignition delays allows an overall study of the influence of EGR on the autoignition process


 ϕ = 0,32 with n-heptane and PRF40 as the fuels

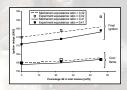

φ = 0,32 with n-heptane and PRF40 as the fuels


φ = 0,32 with PRF40 as the fuel

φ = 0,32 with n-heptane and PRF40 as the fuels



φ = 0,41 with PRF40 as the fuel and 23 vol% EGR



 $\phi = 0.32$ with PRF40 as the fuel

- ·Dilution makes the ignition delays increase, meaning a decrease in the overall reactivity - CO2 has a greater effect than N₂
- •The EGR temperature increases the overall kinetics
- •No significant influence for CO
- •The species NO has two effects:
 - •NO + HO₂ = OH + NO₂ increasing reactivity
 - •NO + OH + M = HONO + M decreasing reactivity
- •Formaldehyde seems to increase the ignition delays apparently by:
 - •CH₂O + OH => H₂O + HO₂ + CO
- Acetaldehyde seems to have a similar influence. However, the effect is not clear and should be investigated furthermore
- •The fuel PRF40 is more sensitive to changes in the EGR composition than n-heptane

Comparison model/experiments $\phi = 0.32/0.41$ with PRF40 as the fuel in 23 vol% EGR

Comparison model/experiments: $\phi = 0.32/0.41$ with PRF40 as the fuel

Perspectives:

- √Numerical interpretation of the autoignition phenomena, using the PRF mechanism, incorporating more EGR chemical species
- ✓Wider experimental validation
- ✓ Proposition for the control of the autoignition process, using EGR

Conclusions:

- ✓Influence of simulated EGR on auto-ignition delays in an internal combusiton engine in HCCI mode has
 - ✓ Dilution: reduces the overall reactivity and increases the ignition delays, CO₂ having a stronger effect due to its higher heat capacity. A fuel having a lower burn rate is more sensitive to dilution
 - ✓EGR temperature: the effect is clear, increasing the overall kinetics and decreasing the ignition delays
- ✓ Chemically active species:
 - ✓ CO: no significant effect has been observed in the investigated range.
 - ✓ NO: has the ability to decrease and increase the ignition delay following its reactivity. The effect is more clear for the fuel having a lower burn rate, PRF40.
- ✓CH2O and CH3CHO: decreases the overall reactivity by sharing OH radicals with the fuel, increasing thereby the ignition delays
- ✓ A reduced PRF mechanism has been validated experimentally for some EGR parameters
 - √The validation is quite satisfactory with respect to the ignition delays
 - ✓The PRF mechanism can be used to interpret the behaviour of the auto-ignition process influenced by EGR parameters.

ignition delay as function of \(\phi \) and CH2O addition 23 vol% EGR, $T_{inlet} = 70$ °C, $\epsilon = 10.2$ and PRF40 as the fuel