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Abstract
We present the results of an experimental investigation of the acoustics and fluid
dynamics of Tibetan singing bowls. Their acoustic behaviour is rationalized in
terms of the related dynamics of standing bells and wine glasses. Striking or
rubbing a fluid-filled bowl excites wall vibrations, and concomitant waves at the
fluid surface. Acoustic excitation of the bowl’s natural vibrational modes allows
for a controlled study in which the evolution of the surface waves with increasing
forcing amplitude is detailed. Particular attention is given to rationalizing the
observed criteria for the onset of edge-induced Faraday waves and droplet
generation via surface fracture. Our study indicates that drops may be levitated
on the fluid surface, induced to bounce on or skip across the vibrating fluid
surface.

Mathematics Subject Classification: 74-05, 76-05

S Online supplementary data available from stacks.iop.org/Non/24/R51/mmedia

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Tibetan singing bowls are thought to have originated from Himalayan fire cults of the 5th
century BC and have since been used in various religious ceremonies, including shamanic
journeying and meditation. The Tibetan singing bowl (see figure 1 and the supplementary data
(movie 1) available at stacks.iop.org/Non/24/R51/mmedia) is a type of standing bell played
by striking or rubbing its rim with a wooden or leather-wrapped mallet. This excitation causes
the sides and rim of the bowl to vibrate and produces a rich sound. Tibetan bowls are hand
made and their precise composition is unknown, but generally they are made of a bronze alloy
that can include copper, tin, zinc, iron, silver, gold and nickel. When the bowl is filled with
water, excitation can cause ripples on the water surface. More vigorous forcing generates
progressively more complex surface wave patterns and ultimately the creation of droplets via
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Figure 1. Our Tibetan singing bowls: (a) Tibet 1, (b) Tibet 2, (c) Tibet 3 and (d) Tibet 4.

wave breaking. We here quantify this evolution, and demonstrate the means by which the
Tibetan singing bowl can levitate droplets.

Related phenomena are known to appear in other vessels, including the Chinese singing
bowl, on which vibrations are generated by rubbing the vessel’s handles with moistened hands.
The more familiar vibration of a wine glass is produced by rubbing its rim with a moist finger.
The dependence of the glass’s vibration frequency on its material properties, geometry and
characteristics of the contained fluid was elucidated by French [1] and subsequent investigators
[2–5]. The coupling between two singing wine glasses has been investigated by Arane et al [6].
Apfel [7] demonstrated experimentally that wine glass vibration generates capillary waves near
the walls of a fluid-filled glass. Moreover, he made the connection between these waves and the
acoustic whispering gallery modes elucidated by Rayleigh [8]. By studying the deformation
and the sound spectrum produced by a single wine glass, Rossing [9] elucidated the mechanism
of the glass harmonica [10], an instrument designed by Benjamin Franklin. Joubert et al [11]
provided a theoretical rationale for observations of standing waves in a singing wine glass.
The Tibetan singing bowl has to date received relatively little attention. Inacio et al examined
experimentally the acoustic response of bowls excited by impact and rubbing [12], and proposed
a dynamical formulation of the bowl and presented some numerical simulations [13]. The
hydrodynamics of a fluid-filled Tibetan bowl will be the focus of our investigation.

In 1831, Faraday [14] demonstrated that when a horizontal fluid layer is vibrated vertically,
its interface remains flat until a critical acceleration is exceeded. Above this threshold, a field
of waves appears at the interface, parametric standing waves oscillating with half the forcing
frequency [15–20]. The form of such Faraday waves depends on the container geometry;
however, boundary effects can be minimized by using a large container. The Faraday waves
have a wavelength prescribed by the relative importance of surface tension and gravity, being
capillary and gravity waves in the short and long wavelength limits, respectively. As the
forcing acceleration is increased, progressively more complex wave patterns arise, and the
interfacial dynamics become chaotic [19–21]. Ultimately, large amplitude forcing leads to
surface fracture and the ejection of droplets from the fluid bath. A recent study on the breaking
of Faraday waves in a vertically shaken bath has been performed in both the capillary and
gravity wave limits by Puthenveettil and Hopfinger [22]. Goodridge et al [23] studied the drop
ejection threshold of capillary waves in a glycerine–water solution for frequencies up to 100 Hz.

Faraday [14] reported that such parametric waves can also be emitted by a vertical
plate plunged into a liquid bath and shaken horizontally: along both sides of the plate,
waves aligned perpendicular to the plate oscillate at half the forcing frequency. These
so-called cross waves, or edge-induced Faraday waves, are typically produced by a wave
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maker, and have received considerable attention [24–28]. Hsieh [29] examined theoretically
wave generation in a vibrating circular elastic vessel, specifically the axisymmetric capillary
waves and circumferential crispations that appear in an inviscid fluid subject to radial wall
displacement. These studies have demonstrated that the excitation of the cross waves is due
to a parametric resonance. The complexity of this problem lies in the nonlinear interactions
between the motion of the oscillating rim and the resulting wave field.

Droplets ejected on the liquid surface by breaking Faraday waves may bounce, skid and
roll before coalescing. A number of recent studies have examined droplets bouncing on a
vertically vibrating liquid bath below the Faraday threshold [30–32]. The air film between
the drop and the liquid surface is squeezed and regenerated at each successive bounce, its
sustenance precluding coalescence and enabling droplet levitation. A similar effect arises on
a soap film, a system more readily characterized theoretically [35]. The bouncing periodicity
depends on the size of the drop and the vertical forcing acceleration of the bath [33, 34]. Couder
et al [30] have shown that, through the waves emitted at previous bounces, some droplets can
walk horizontally across the liquid surface. Several factors are needed to sustain a so-called
‘walker’ [36]. First, the drop must bounce at half the forcing frequency, so that it resonates
with the resulting Faraday wave field. Second, the bath must be close to the Faraday instability
threshold so that Faraday waves of large amplitude and spatial extent can be excited by the
drop impacts. The droplet bounces on the slope of the wave emitted at the previous bounce
and so receives an impulsive force in a specific direction, along which it walks with a constant
speed. Such walkers have both wave and particle components, and have been shown to exhibit
quantum-like dynamical behaviour previously thought to be peculiar to the microscopic realm
[37–40]. Might such modern physics arise in our ancient bowls?

The paper is divided into two main parts. In section 2, we examine the acoustics of
the Tibetan singing bowls. We begin in section 2.1 by reviewing the related dynamics and
theoretical description of the wine glass [1]. In section 2.2, our bowls are presented and their
deformation spectra analysed. Then, by adapting the theoretical description of the vibrating
wine glass, we infer the Young’s modulus of the alloy comprising our bowls. In section 3,
we examine the dynamics of flows generated within liquid-filled vibrating bowls. A review
of Faraday waves and droplet ejection on a vertically shaken bath is presented in section 3.1.
In section 3.2, our experimental technique is detailed. In section 3.3, we analyse the surface
waves generated on the liquid bath, and their relation to Faraday waves. In section 3.4, we
examine the limit of large amplitude forcing, in which droplets are ejected by breaking Faraday
waves. Comparisons are made with experiments performed on a vertically shaken liquid bath.
Droplet levitation is considered in section 3.5, where particular attention is given to developing
criteria for droplet bouncing and exploring the possibility of walking droplets. A summary of
our results is presented in section 4.

2. Acoustics

2.1. Background

Both the wine glass and the Tibetan bowl can be excited by either tapping or rubbing its
rim. We denote by (n, m) the vibrational mode with n complete nodal meridians and
m nodal parallels. Tapping excites a number of vibrational modes [10], while rubbing excites
primarily the (2,0) fundamental mode (see figure 2(b)). Entirely flexural motion implies radial
and tangential displacements proportional to n sin nθ and cos nθ , respectively, θ being the
azimuthal coordinate [41]. For the (2,0) mode the maximum tangential motion is necessarily
half the maximum normal motion.
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Figure 2. (a) Schematic illustration of a vibrating vessel filled with liquid. Relevant parameters
are the height H0 and the radius R of the vessel, the thickness of the rim a, the liquid level H , the
frequency f and the amplitude � of the oscillating rim. (b) Top view of a vibrating vessel in its
fundamental mode (2,0), characterized by its 4 nodes and 4 antinodes.

A leather mallet can excite bowl vibrations via a stick-slip process, as does a finger moving
on a wine glass. The moving mallet forces the rim to follow the mallet during the stick phase;
during the slip phase, the bowl rim relaxes to its equilibrium position. This rubbing results in a
sound composed of a fundamental frequency plus a number of harmonics. While the mallet is
in contact with the bowl, one of the nodes follows the point of contact [11], imparting angular
momentum to the bound liquid.

To simplify the acoustic analysis, one can approximate the glass or bowl by a cylindrical
shell with a rigid base and an open top (figure 2(a)). The system can then be described in
terms of 7 physical variables, the radius R, height H0, thickness a, Young’s modulus Y and
density ρs of the cylindrical shell, and the frequency f and amplitude � of its oscillating rim.
The system can thus be described in terms of 4 independent dimensionless groups, which we
take to be R/H , �/a, �/R and a Cauchy number Ca = ρsf

2�2/Y that indicates the relative
magnitudes of the inertial and the elastic forces experienced by the vibrating rim.

The sound is emitted by bending waves that deform the rim transversely as they propagate.
The speed Vb of bending waves on a two-dimensional plate of thickness a is given by [42]

Vb =
(

πVLf a√
3

)1/2

, (1)

where VL is the longitudinal wave speed in the solid (approximately 5200 m s−1 in glass). In
order for the bending wave to traverse the perimeter in an integer multiple of the period, we
require

1

f
∝ 2πR

Vb
. (2)

Thus, since Vb ∼ √
f a, we have f ∝ a/R2: the frequency increases with rim thickness, but

decreases with radius.
A more complete theoretical analysis of the wine glass acoustics [1] can be applied to

our Tibetan bowls. An ideal cylinder fixed at the bottom is considered (figure 2(a)), its wall
vibrating with largest amplitude at its free edge or rim. The rim’s kinetic energy and elastic
energy of bending in the mode (2,0) are calculated by assuming that the radial position is
proportional to cos 2θ , with θ being the azimuthal coordinate. By considering conservation
of total energy (kinetic plus elastic bending energy), an expression for the frequency of this
mode can be deduced:

f0 = 1

2π

(
3Y

5ρs

)1/2
a

R2

[
1 +

4

3

(
R

H0

)4
]1/2

. (3)
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Table 1. Physical properties of the four Tibetan bowls used in our study.

Bowl name Tibet 1 Tibet 2 Tibet 3 Tibet 4

Symbol • ◦ � ♦
f(2,0) (empty) (Hz) 236 187 347 428
Radius R (cm) 7.5 8.9 6 5.9
Thickness a (cm) 0.34 0.38 0.31 0.37
Mass (kg) 0.690 0.814 0.306 0.312
Volume (cm3) 76 97 35 33
Density (kg m−3) 9079 8366 8754 9372

When the bowl is partially filled with liquid to a depth H (figure 2(a)), the frequency decreases.
French [1] captured this effect by considering the kinetic energy of the liquid near the rim, and
so deduced the frequency of the fundamental mode:(

f0

fH

)2

∼ 1 +
α

5

ρlR

ρsa

(
H

H0

)4

, (4)

where ρl is the liquid density and α ∼ 1.25 is a constant indicating the coupling efficiency
between the rim and fluid displacements. Similarly, frequencies of higher modes can be
calculated by considering a radial position proportional to cos nθ and with m nodal parallels [1]:

f(n,m) = 1

12π

(
3Y

ρs

)1/2
a

R2

[
(n2 − 1)2 + (mR/H0)

4

1 + 1/n2

]1/2

. (5)

2.2. Tibetan bowls

Four different antique bowls of different sizes have been studied (figure 1). They are referred
to as Tibet 1, 2, 3 and 4 and their physical characteristics are reported in table 1.

When a bowl is struck or rubbed, the sound emitted by the resulting bowl vibrations is
recorded with a microphone and a fast Fourier transform performed on the signal. Different
peaks clearly appear in the frequency spectrum, corresponding to the bowl’s different
vibrational modes. Figure 3(a) indicates the frequency spectrum generated by striking the
empty bowl Tibet 4. When the bowl is rubbed with a leather-wrapped mallet, the lowest mode
is excited along with its harmonics, an effect known as a mode ‘lock in’ [43]. The frequency
spectrum of Tibet 4 when rubbed by a leather mallet is presented in figure 3(b). Due to the
bowl asymmetry, two peaks separated by several Hz arise and a beating mode is heard. This
split is highlighted in a magnification of the first peak f(2,0) in the inset of the figure. The
deformation shapes are the same with both frequencies but there is horizontal angular shift
observed to be π/4 between them for the fundamental modes (2, 0) and π/2n for other (n, 0)

modes. Finally, we note that, owing to the relative squatness of the bowls and the associated
high energetic penalty of modes with m �= 0, only modes (n, 0) were excited; henceforth, such
modes are denoted simply by n.

We can also find a relation between the different mode frequencies. Since the speed of the
bending wave is proportional to the square root of the frequency, v ∝ √

f and since λ = v/f ,
we expect λ ∝ 1/

√
f a. For the mode n, we thus have 2πR = nλn. The frequency of this

mode n should thus be proportional to

f ∝ n2a

R2
. (6)

In figure 4(a), resonant frequencies of the 4 bowls are plotted as a function of their
corresponding mode n and a power 2 curve is fit onto each curve. In figure 4(b), we collapse



R56 Invited Article

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1000 2000 3000 4000 5000 6000

re
la

tiv
e 

m
ag

ni
tu

de

f(Hz)

(2,0)

(3,0)

(4,0)

(5,0)

(6,0)

(a)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 1000 2000 3000 4000 5000 6000

re
la

tiv
e 

m
ag

ni
tu

de

f(Hz)

(2,0)(b)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

410 420 430 440 450 460

(2,0)

Figure 3. (a) Frequencies excited in the bowl Tibet 4 when struck with a wooden mallet. The
different peaks correspond to the natural resonant frequencies of the bowl, and the associated
deformation modes (n, m) are indicated. (b) Excited frequencies of the bowl Tibet 4 when rubbed
with a leather mallet. The first peak corresponds to the deformation mode (2,0) and subsequent
peaks to the harmonics induced by mode lock-in. In the inset, a magnification of the first peak
provides evidence of its splitting due to the asymmetry of the bowl.
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Figure 4. (a) Measurements of the resonant frequencies of the different deformation modes n for
the 4 different Tibetan bowls. (b) Characteristic speed f R2/a as a function of deformation mode
n for the 4 different bowls. Data are fit by a power 2 curve indicating that fn ∝ n2a/R2, consistent
with equation (6).

all these curves onto a line by plotting the characteristic speed f R2/a as a function of the
mode n, thus validating the proposed scaling (6).

It is readily observed that the resonant frequencies decrease when liquid is poured into a
vessel. In the inset in figure 5(a), we report the measurements of the fundamental frequency
of the bowl Tibet 1 as a function of the dimensionless liquid height H/H0. In figure 5(a), we
report (f0/fH )2 as a function of (H/H0)

4. According to (4), the slope of this curve gives the
ratio α

5
ρlR

ρsa
. In figure 5(b), we present the dependence of (1 + 1/n2)(R2/a)2f 2 on (n2 − 1)2

for the deformation modes n = 2 through 6 of the bowls Tibet 1, 2, 3 and 4. According to (5),
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Figure 5. (a) The fundamental frequency of Tibet 1’s mode (2,0) as a function of the water
height H/H0. According to equation (4), the slope is equal to α

5
ρlR
ρsa

. (b) The dependence of
the resonant frequencies f of all the bowls on the deformation mode n may be used to infer
the ratio Y/ρs. According to (5), the slope of the line shown is 1

48π2
Y
ρs

, from which we infer

Y/ρs = 8.65 × 106 Pa m3 kg−1.

the slope should be equal to 1
48π2

Y
ρs

. For each value of the abscissa there are 4 measurements
corresponding to the 4 Tibetan bowls. Data points from the different Tibetan bowls overlie
each other, especially at low n, indicating that all bowls have the same value of ratio Y/ρs, and
so are likely made of the same material. A linear fit gives Y/ρs = 8.65 × 106 Pa m3 kg−1.

We can simply estimate the density for each Tibetan bowl by measuring its mass and
volume. Masses are measured by a weight scale with an error of 2 g while bowl volumes are
deduced by fluid displacement during submersion. The error made on the volume with this
method is estimated to be no more than 5%. All such density measurements are reported in
table 1. Taking the mean value of the densities, equal to 8893 kg m−3, we calculate a Young
modulus Y = 77 ± 6% GPa. This value is in the Young’s modulus range of glasses and lower
than typical brass, copper or bronze alloys for which Y > 100 GPa.

3. Fluid dynamics

3.1. Faraday waves

Consider an inviscid fluid of density ρ and surface tension σ in a horizontal layer of uniform
depth h in the presence of a gravitational acceleration g. The layer is oscillated vertically
in a sinusoidal fashion at a forcing frequency f0 = ω0/2π , amplitude � and acceleration
	g = �ω2. Above a critical forcing acceleration, standing Faraday waves appear on the
surface. The associated surface deformation a(x, y, t) can be expressed in terms of the
container’s eigenmodes Sm(x, y) as

a(x, y, t) =
∑
m

am(t)Sm(x, y), (7)

with am(t) being the oscillating amplitude of the eigenmode m. Benjamin and Ursell [16]
demonstrate that the coefficients am(t) satisfy

äm + ω2
m(1 − 2γ cos ω0t)am = 0, (8)
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where

ω2
m =

(
gkm +

σ

ρ
k3
m

)
tanh (kmh) (9)

represents the classic gravity-capillary wave dispersion relation,

γ = 	

2(1 + Bo−1)
(10)

is the dimensionless forcing acceleration, and Bo = ρg

σk2 is the Bond number. km = 2π/λm is
the wave number of the mode m, and λm is the corresponding wavelength.

In the absence of forcing, 	 = 0, (8) describes a simple harmonic oscillation with
frequency prescribed by (9) corresponding to the free surface vibrations of the liquid. When
	 > 0, (8) describes a parametric oscillator as the forcing term depends on time. The
resulting Faraday waves can be either capillary or gravity waves according to the magnitude
of Bo; specifically, the former and latter arise in the respective limits Bo � 1 and Bo � 1.
Equation (8) is known as the Mathieu equation and cannot be solved analytically since one of
the terms is time dependent. However, as the forcing is periodic, Floquet theory can be applied
to show that an inviscid fluid layer is always unstable to Faraday waves with a frequency ωF

that is half the forcing frequency ω0 = 2ωF [16]. In the deep water (kh � 1), capillary wave
(Bo � 1) limit, we can infer from (9) a Faraday wavelength:

λF = (2π)1/3(σ/ρ)1/3(f0/2)−2/3. (11)

To incorporate the influence of the fluid viscosity, one can add to (8) a phenomenological
dissipation term proportional to the velocity [18]:

äm + 2βȧm + ω2
m(1 − 2γ cos ω0t)am = 0, (12)

where β is the dissipation rate. This dissipation term leads to an acceleration threshold for the
Faraday instability. Assuming capillary waves in an unbounded and infinite depth liquid, the
critical acceleration needed to induce parametric instability is given by

	F ∝ 1

g
(ρ/σ)1/3νω

5/3
0 , (13)

where ν is the kinematic viscosity of the fluid [19, 44].
As the forcing amplitude is further increased, the Faraday wave amplitude increases

progressively until the waves become chaotic. Ultimately, the waves break and droplets are
ejected from the surface. Since drops will be ejected by the breaking of Faraday waves, we
expect their diameter to scale as

dm ∼ λF ∼ (σ/ρ)1/3f
−2/3
0 (14)

in the capillary wave limit. Droplet ejection arises when the destabilizing inertial driving force
m	g (with m ∼ ρλ3

F) exceeds the stabilizing surface tension force πλFσ . This implies, via
(14), a threshold acceleration that scales as

	d ∼ 1/g(σ/ρ)1/3f
4/3
0 . (15)

The range of validity of these scalings will be investigated in our experimental study.

3.2. Experimental technique

The experimental setup used for studying the surface waves generated within the Tibetan bowls
is presented in figure 6. A loudspeaker is set in front of the bowl, its signal received from
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Figure 6. Experimental setup. The bowl deformation is excited by a loudspeaker emitting sound
at a frequency corresponding to a particular vibrational mode of the bowl. The deformation of the
bowl is measured by an accelerometer glued to the bowl’s outer wall at the height of the liquid
surface.

a signal function generator then amplified. When the applied signal frequency is close to
one of the bowl’s resonant frequencies, it oscillates in the corresponding deformation mode.
Conveniently, with this method, we can select a single deformation mode. Recall that by
striking or rubbing the bowls, we excited several modes (figure 3): moreover, rubbing induced
a rotational motion that followed the mallet. We can now examine the vibration-induced flows
in a controlled fashion.

In order to extend the range of natural frequencies, we consider Tibetan bowls, wine
glasses and soda cans (with their tops removed), whose resonant frequencies span a broad
range from 50 to 750 Hz. For each, we can vary the resonant frequency by filling it with
liquid. The sound emitted by the loudspeaker was not powerful enough to induce significant
oscillations of the soda can rim, a problem we eliminated by directly connecting the vibrating
membrane of the loudspeaker to the rim of the soda can with a rigid rod.

We measure the acceleration of the rim at an antinode by gluing a lightweight accelerometer
(PCB-Piezotronics, 352C65) on the bowl’s rim at the level of the liquid surface. In the
following, we characterize the sinusoidal rim oscillation by the dimensionless acceleration
	 defined as the maximal acceleration of the rim normalized by the gravitational acceleration
	 = �ω2/g. For wine glasses, the accelerometer cannot be used since it dramatically alters
the resonant frequency. We thus used a light weight strain gauge, whose effect on the resonance
frequency is negligible.

The strain gauge system provides a measurement of the local extension length of the rim
at an antinode. The length variation of the strain gauge is deduced by measuring its electrical
resistance with a Wheatstone bridge. To deduce the acceleration of the radial rim movement,
we deduce a relation between the longitudinal extension ε and the radial amplitude of the rim
�. Then, the acceleration 	 can be readily deduced. The validity of this indirect method was
tested on Tibet 1. An accelerometer was glued next to a strain gauge at an antinode of the bowl
Tibet 1. From the strain gauge measurement, we deduced an acceleration that we compared
with the direct measurement from the accelerometer. These two independent measurements
match well for a wide range of accelerations.

French [1] gives a relation for the convex change of length δl of a curved segment of
thickness a as a function of the initial mean radius of curvature R and the deformed radius of
curvature rc: δl = l0

a
2 ( 1

rc
− 1

R
) where l0 is the initial segment length. Since the deformation is

small, we can approximate: 1
rc

∼ 1
R

+ 3x
R2 where x is the radial displacement of the wall [1].

The strain gauge gives the measurement of the convex longitudinal extension of the rim
ε = δl/ l0. We can thus deduce the maximal radial amplitude of the rim deformation [1]:
xm = 2

3
R2

a
ε.
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Figure 7. Evolution of the surface waves in Tibet 1 bowl filled with water and excited with a
frequency f = 188 Hz corresponding to its fundamental mode (2,0). The amplitude of deformation
is increasing from left to right: (a) 	 = 1.8, (b) 	 = 2.8, (c) 	 = 6.2, (d) 	 = 16.2.

3.3. Surface waves

Two different liquids were used in our experiment, pure water with density ρw = 1000 kg m−3,
viscosity ν = 1 cSt and surface tension σ = 72 mN m−1, and Dow Corning silicone oil with
ρo = 820 kg m−3, ν = 1 cSt and σ = 17.4 mN m−1. The fluid depth and resulting natural
deformation frequencies of the bowl were varied. Specific deformation modes of the bowls
were excited acoustically. We proceed by reporting the form of the flow induced, specifically,
the evolution of the free surface with increasing rim forcing.

In figure 7 (and supplementary data movie 2 available at stacks.iop.org/Non/24/R51/
mmedia), we present snapshots of the bowl Tibet 1 resonating in its fundamental deformation
mode with different 	 when it is completely filled with water. The loudspeaker produces a
sinusoidal sound at a frequency f0 = 188 Hz that corresponds to the mode (2,0) with four
associated nodes and antinodes. The vibration of the water surface is forced by the horizontal
oscillation of the rim. When the amplitude of the rim oscillation is small, axisymmetric
progressive capillary waves with frequency commensurate with the excitation frequency appear
on the liquid surface. Although almost invisible to the naked eye, they can be readily detected
by appropriate lighting of the liquid surface (figure 7(a)). When 	 is further increased,
relatively large amplitude circumferential standing waves appear at the water’s edge (figure 7(b)
and supplementary data movie 3 available at stacks.iop.org/Non/24/R51/mmedia). These
standing ripples, aligned perpendicular to the bowl’s edge, are spaced by approximately a
Faraday wavelength λF, as defined in (11). Moreover, their frequency is half that of the
axial waves, indicating that these waves correspond to classic cross waves or, equivalently,
edge-induced Faraday waves [14]. More complicated wave modes appear at higher excitation
amplitude (figure 7(c)). At sufficiently high 	, the Faraday waves break, and water droplets
are ejected from the edge of the vessel (figure 7(d) and supplementary data movie 4 available
at stacks.iop.org/Non/24/R51/mmedia), specifically from the antinodes of the oscillating wall.
The ejected droplets may bounce, slide, and roll on the water surface before eventually
coalescing.

One of our bowls (Tibet 2) resonates readily in both modes (2,0) and (3,0). When
completely filled with water, the resonant frequencies of its (2,0) and (3,0) modes are
f = 144 Hz and f = 524 Hz, respectively. In figure 8, we observe the progression of
the surface waves with increasing amplitude for each of these modes. Note that for the mode
(3,0), since the frequency is higher, the wavelengths are shorter. Moreover, the sound amplitude
needed to produce surface waves is necessarily higher for mode (3,0) than (2,0).

The transition from axisymmetric capillary waves to Faraday waves arises at a critical
acceleration 	F readily measured by the accelerometer. This threshold was measured as a
function of the forcing frequency, the latter having been tuned to excite the fundamental

http://stacks.iop.org/Non/24/R51/mmedia
http://stacks.iop.org/Non/24/R51/mmedia
http://stacks.iop.org/no/24/R51/mmedia
http://stacks.iop.org/no/24/R51/mmedia
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Figure 8. Evolution of the surface waves in Tibet 2 bowl filled with water. (a)–(d) Mode (2,0)
is excited with a frequency f = 144 Hz. (e)–(h) Mode (3,0) is excited with f = 524 Hz. The
amplitude of deformation is increasing from left to right. For the deformation mode n = 2,
(a) 	 = 1.0, (b) 	 = 1.7, (c) 	 = 5.0, (d) 	 = 12.7. For the deformation mode n = 3, (e)
	 = 5.7, (f ) 	 = 7.7, (g) 	 = 15.1, (h) 	 = 33.8.

deformation modes of the bowls with different liquid levels. We also measured this acceleration
threshold for the deformation mode (3,0) of the bowl Tibet 2. Higher frequencies were explored
with three different wine glasses filled to different levels using the strain gauge system. All
the measurements with silicone oil of viscosity 1 cSt are presented in figure 9 (lower curve).
Consistent with (13), the data suggest a dependence 	F ∝ f 5/3. In figure 10(a), we report our
measurements of 	F as a function of frequency for both silicone oil and distilled water. Each
data set is fit by a 5/3 power law. Prefactors of 3.5 × 10−4 for water and 1.7 × 10−4 for 1 cSt
silicone oil were inferred.

3.4. Surface fracture

When the Faraday waves become sufficiently large, they break, leading to droplet ejection.
A second critical acceleration can thus be measured, 	d, above which droplets are ejected
from the surface. The droplet ejection starts with very few droplets ejected, then the ejection
rate increases with forcing amplitude. Our criterion for onset is that at least two droplets are
ejected in a 15 s time interval. The dependence of 	d on f is presented in figure 9 (upper
curve) for bowls and wine glasses filled with different levels of 1 cSt silicone oil. The drop
ejection threshold scales as 	d ∝ f 4/3, which is consistent with the scaling presented in (15).

In figure 10(b), our measurements of the dependence of 	d on f are reported for bowls
filled with different levels of either 1 cSt silicone oil or water. The two 	d curves collapse
when we use the scaling law (15) expected to apply for vertical forcing. Specifically, we find

	d ∼ 0.23(σ/ρ)1/3f 4/3. (16)

The droplet ejection acceleration threshold is thus in accord with measurements of Goodridge
et al [23] and Puthenveettil and Hopfinger [22], even though our forcing is horizontal rather
than vertical. Moreover, our prefactor is consistent with the results of both, who reported
values between 0.2 and 0.3.

The diameter of the ejected droplets was measured for several forcing frequencies. The
Tibetan bowls were fully filled with liquid, either 1 cSt silicone oil or pure water. Resonant
deformation modes were then excited by the loudspeaker emitting sinusoidal signals at the
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Figure 9. Phase diagram indicating the critical acceleration 	F = �ω2/g above which axial
capillary waves give way to Faraday waves, and 	d above which the Faraday waves break. The •,◦, � and � symbols correspond, respectively, to the measurements made with the bowls Tibet 1, 2,
3 4 and the � to wine glasses filled with different levels of 1 cSt silicone oil. The first acceleration
threshold (lower curve) scales as 	F ∝ f 5/3 and the second (upper curve) as 	d ∝ f 4/3.
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Figure 10. Dependence of acceleration thresholds on the frequency f for our vessels filled with
different levels of pure water (blue symbols) and silicone oil of viscosity ν = 1 cSt (red symbols).
The •, ◦, � and � symbols correspond, respectively, to the measurements made with the bowls
Tibet 1, 2, 3 4 and the � to wine glasses. (a) Each data set of Faraday threshold measurements, 	F,
is fit by a 5/3 power law consistent with (13). (b) The droplet ejection threshold, 	d, is consistent
with the scaling (15).

appropriate resonant frequency. The level of sound was adjusted so that the acceleration of the
rim at the antinodes of the bowl were just above the threshold for droplet ejection, 	d. A high
speed video camera (Phantom) was used to record the ejected droplets, from which drop size
measurements were taken. We used a liquid-filled glass in order to extend the frequency range
to 720 Hz. Soda cans have very thin walls, and very low resonant frequencies. We were thus
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Figure 11. (a) Three cumulative distribution functions of ejected droplet sizes for the bowls Tibet
1, 3 and 4, fully filled with pure water and resonating in their fundamental deformation modes (2,0).
The lines are the curves fit by an equation of a cumulative distribution function for the Gaussian
distribution. (b) Mean size of the ejected droplets as a function of the frequency of the oscillating
vessel, either a Tibetan bowl, wine glass or soda can. The two leftmost data points are from the
measurements made with the soda cans, the two rightmost from the wine glass. Error bars are
the size of our symbols. The black curve indicates a power law dependence with slope −2/3 and
prefactor 0.87. The dotted line has the same slope, but a prefactor of 1. Inset: the corresponding
Gaussian functions inferred from the cumulative distribution functions.

able to measure droplet sizes for the two liquids at a frequency of 98 Hz. Three cumulative
distributions of ejected droplet sizes are presented in figure 11(a) for the bowls Tibet 1, 3 and
4 resonating in their fundamental deformation modes (2,0). Assuming that these distributions
are Gaussian, appropriate fits to the cumulative distribution functions yield the parameters of
the Gaussian distribution functions plotted in the inset of figure 11(b). The dependencies of
the mean droplet size on the forcing frequency for the two liquids are presented in figure 11(b).
Equation (14) adequately collapses our data, provided we choose a prefactor of 0.87. By
way of comparison, Puthenveettil found 0.92 for their experiments with water, and 1.01 with
Perfluoro-compound FC-72 liquid. Donnelly et al [45] found a prefactor of 0.98 from his
measurements of aerosol water droplets.

3.5. Bouncing droplets

With a more viscous fluid (e.g. 10 cSt silicone oil), the waves are less pronounced, and the fluid
is more strongly coupled to the vibrating sidewalls; specifically, more of the surface oscillates
up and down near the wall’s antinode. When a droplet of the same liquid is deposited on the
surface, it may bounce, levitated by the underlying wave field. Such sustained levitation was
not observed in the Tibetan singing bowl with liquid viscosities lower than 10 cSt.

In figure 12(a), we present a still image of a drop of diameter 0.5 mm bouncing on the liquid
surface inside the bowl (Tibet 1) resonating at a frequency of f0 = 188 Hz. The drop has been
made by dipping then extracting a syringe needle, on the tip of which a capillary bridge forms
and breaks, leaving a drop that bounces near the oscillating rim. A movie of the bouncing was
recorded (see supplementary data movie 5 available at stacks.iop.org/Non/24/R51/mmedia),
then vertical slices of each image through the droplet centreline juxtaposed. We can thus
construct an image illustrating the dynamics of the droplet (figure 12(b)). In this case, the
drop experiences two bounces of slightly different amplitude while the liquid surface (and
the rim) oscillates twice. When a smaller droplet (of diameter 0.35 mm) is placed on the

http://stacks.iop.org/no/24/R51/mmedia
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Figure 12. (a) Still image of a droplet of 0.5 mm diameter bouncing on a surface oscillating at
188 Hz, the frequency of the rim. Both droplet and bath are 10 cSt silicon oil. Spatio-temporal
diagrams indicate the vertical trajectory of droplets of diameter (b) 0.5 mm and (c) 0.35 mm. Time
elapses from left to right and the drop’s reflection are apparent. (d) A single bounce of a droplet
of diameter 0.35 mm is illustrated by an image sequence. Images are spaced by 1 ms.

oscillating surface, the bouncing motion can be more complex. In figure 12(c), we see that
the droplet bounces only once during three oscillations of the surface. Figure 12(d) illustrates
the corresponding trajectory. We note that the bouncing motion of sufficiently small drops can
become chaotic.

We sought to sustain walking droplets in our system. Once the horizontal forcing amplitude
	 is just above the Faraday wave threshold 	F, circumferential Faraday waves are sustained
at the edge of the vessel. Then, when 	 is increased, Faraday waves propagate progressively
towards the centre of the vessel, their amplitude damped by viscosity. Beyond these waves,
the liquid surface was quiescent unless perturbed by a bouncing droplet, in which case it could
sustain a field of Faraday waves. This phenomenon was observed in the bowl Tibet 2 almost
fully filled with 10 cSt silicone oil (f0 = 140 Hz). Just beyond the Faraday waves, a bouncing
droplet of diameter 500 µm was made such that its bouncing frequency corresponded to the
Faraday wave frequency, that is, half the frequency of the vibrating rim. Such droplets were
unable to excite sufficiently large Faraday waves to enable them to walk. We note that the
usual range of walker diameters is between 650 and 850 µm [33, 34]: their mass is thus 4 times
larger than that of our drops.

4. Conclusion

We have presented the results of an experimental investigation of the Tibetan singing bowl,
its acoustics and hydrodynamics. Its acoustical properties are similar to those of a wine glass,
but its relatively low vibration frequency makes it a more efficient generator of edge-induced
Faraday waves and droplet generation via surface fracture.

Our observations of the bowl acoustics have been rationalized by adapting French’s [1]
theory of the singing wine glass. This model allowed us to characterize the bowl acoustics
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and infer the Young modulus of the alloy constituting our antique bowls. The value we found,
Y = 77 ± 6% GPa, is in the range of glass, somewhat smaller than typical brass, copper
or bronze alloys. This low value of Y and associated low resonant frequency is a critical
component in the hydrodynamic behaviour of singing bowls: bowls with high fundamental
frequencies are, like the wine glass, relatively inefficient generators of droplets.

Particular attention has been given to the Faraday waves produced when a critical
acceleration of the horizontal rim oscillation is exceeded. These have been shown to be
due to a destabilization of the axial capillary waves similar to those observed and studied
theoretically [29, 24]. The acceleration threshold for droplet ejection has also been investigated
and rationalized by simple scaling arguments. Droplet size was shown to be proportional to the
Faraday wavelength, and our measurements were consistent with those on a vertically shaken
liquid surface [22, 23, 45].

We have demonstrated that, following their creation via surface fracture, droplets may
skip across or roll along the surface of fluid contained within a singing bowl. Moreover,
careful choice of fluid properties and droplet position introduces the possibility of stable
bouncing states reminiscent of those on a vertically driven free surface [30]. However, stable
walking droplets and their concomitant quantum behaviour were not observed. Nevertheless,
in developing hydrodynamic analogues of quantum systems, the edge-forcing examined here
may be valuable in presenting a lateral gradient in proximity to Faraday threshold.
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