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Abstract— This paper studies the coordinated motion of a
group of agents evolving on a Lie group. Left- or right-
invariance with respect to the absolute position on the group
lead to two different characterizations of relative positions
and two associated definitions of coordination (fixed relative
positions). Conditions for each type of coordination are derived
in the associated Lie algebra. This allows to formulate the coor-
dination problem on Lie groups as consensus in a vector space.
Total coordination occurs when both types of coordination hold
simultaneously. The discussion in this paper provides a common
geometric framework for previously published coordination
control laws on SO(3), SE(2) and SE(3). The theory is
illustrated on the group of planar rigid motion SE(2).

I. INTRODUCTION
Recently, many efforts have been devoted to the design and

analysis of control laws that coordinate swarms of identical
autonomous agents — see e.g. oscillator synchronization
[31], [30], flocking mechanisms [7], [2], vehicle formations
[5], [4], [22], [9], [10], [11], spacecraft formations [17],
[34], [13], [12], [16], [25], mechanical system networks [29],
[6], [20] and mobile sensor networks [26], [27], [28], [14],
[32] to name a few. Despite the success of researchers in
studying specific cases, a general systematic method is still
missing for the design of coordinating control laws. One
frequent difficulty is nonlinearity arising from the fact that
the configuration space of the agents is not (isomorphic
to) a vector space. Examples include coordination of phase
variables (S1), planar vehicles (SE(2)), or rigid bodies in
space (satellites or underwater vehicles, SE(3)). In all these
examples, however, the configuration space is a Lie group.

The main contribution of this paper is to give geomet-
ric definitions of coordination on a finite dimensional Lie
group, and to characterize the coordinated trajectories. This
geometric background can help or even replace arguments
based on physical intuition in complex situations. Coor-
dination on SE(3) (3-dimensional rigid body motion) for
instance is already quite difficult to solve based on physical
intuition [26]. In contrast, the present geometric framework
readily applies to general Lie groups. The characterization
of coordinated trajectories is an important step towards the
design of stabilizing control laws, that will be addressed in
a forthcoming paper.

Coordination is defined as follows: let gk and gj be
the positions of agents k and j. Left-invariant (resp. right-
invariant) coordination is achieved when g−1

k gj (resp. gjg
−1
k )
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are constant over time (for any k, j). Total coordination is
when both left and right-invariant coordination are achieved.

The conditions for left- or right-invariant coordination can
be expressed in the associated Lie algebra and coordination
on Lie groups boils down to consensus (equal values) in
a vector space. Total coordination corresponds to two con-
sensus conditions. Then the relative positions of the totally
coordinated agents are restricted to a subgroup.

The paper is organized as follows. Sections II and III
provide the theoretical framework for left-/right-invariant
coordination and for total coordination respectively. Section
IV applies these theoretical concepts to SE(2), providing a
clear geometric interpretation to results of [27], [10].

II. LEFT- AND RIGHT-INVARIANT
COORDINATION

This paper uses the notations of Arnold [1]. Let G be a
Lie group, and g its Lie algebra. Let Lh : g 7→ hg denote
left multipication, and Rh : g 7→ gh right multiplication on
G. Let Lh∗ : TGg → TGhg and Rh∗ : TGg → TGgh

for all g ∈ G be the induced maps on tangent spaces. Let
Adg : g → g, Adg = Rg−1∗Lg∗. Consider a set of N
“agents” evolving on G, with gk ∈ G denoting the position
of agent k. Let g 3 ξl

k(τ) = Lg−1(τ)∗( d
dtgk(t)|t=τ ) resp.

g 3 ξr
k(τ) = Rg−1(τ)∗( d

dtgk(t)|t=τ ) be its left- and right-
invariant velocities. An important equality is

ξr
k = Adgk

ξl
k .

Definition 1: The left-invariant relative position of agent j
with respect to agent k is λjk = g−1

k gj . The right-invariant
relative position of agent j with respect to agent k is ρjk =
gj g−1

k .

Indeed, λjk (resp. ρjk) is invariant under left (resp. right)
multiplication since (hgk)−1(hgj) = g−1

k gj ∀h ∈ G.

Note that the left-/right-invariant relative positions are the
joint invariants associated to the left-/right-invariant action
of G on G × G... × G (N copies). In [3], two copies of
the state space (true and estimated space) are used to build
symmetry-preserving observers.

In this paper, coordination of a set of agents is achieved
when the relative positions among all agents remain con-
stant. This corresponds to the intuition of a “formation”,
in which the swarm of points moves as if it was a single
extended body. Some authors refer to coordination as the
situation where all agents are located at the same point on G;
the present paper prefers the denomination synchronization
or consensus for this situation.



The two different definitions of relative position lead to
two different types of coordination.

Definition 2: Left-invariant (resp. right-invariant) coordina-
tion is achieved when the λjk (resp. ρjk) are constant in
time for all pairs of agents j, k in the swarm.

Proposition 1: Left-invariant coordination corresponds to
equal right-invariant velocities ξr

j = ξr
k ∀j, k. Right-

invariant coordination corresponds to equal left-invariant
velocities ξl

j = ξl
k ∀j, k.

Proof: For λjk, d
dt (g

−1
k gj) = Lg−1

k ∗
d
dtgj + Rgj∗

d
dtg

−1
k . But

if d
dtgk = Lgk∗ξ

l
k, then d

dtg
−1
k = −Lg−1

k ∗Adgk
ξl
k. Thus

d
dt (g

−1
k gj) = Lg−1

k gj∗ξ
l
j − Lg−1

k ∗Rgj∗Adgk
ξl
k

= Lg−1
k gj∗Ad−1

gj
(Adgj ξ

l
j −Adgk

ξl
k) .

Since Lg−1
k gj∗ and Adg−1

j
are invertible operators, left-

invariant coordination d
dt (λjk) = 0 is equivalent to

Adgj ξl
j = Adgk

ξl
k or equivalently ξr

j = ξr
k. The proof for

right-invariant coordination is strictly analogous. M

Proposition 1 shows that coordination on the Lie group
G is equivalent to consensus on the vector space g. This
formulation is of interest since consensus in vector spaces
is a well-studied subject [19], [18], [33], [24], [2], [23], [21].

III. TOTAL COORDINATION

Definition 3: Total coordination is achieved when left-
invariant and right-invariant coordination are achieved si-
multaneously: ξl

j = ξl
k and ξr

j = ξr
k ∀j, k.

Proposition 2: Total coordination is equivalent to

∀k = 1...N, ξl
k = ξl ∈

⋂

i,j

ker(Adλij − Id) .

Proof: Right-invariant coordination requires ξl
k = ξl

j ∀j, k;
denote the common value of the ξl

k by ξl. Left-invariant
coordination requires Adgk

ξl
k = Adgj ξl

j ⇔ ξl
k = Adλjk

ξl
j

∀j, k, which with ξl
k = ξl ∀k yields ξl = Adλjk

ξl. M

Proposition 2 shows that total coordination puts no con-
straints on the relative positions when the group is abelian,
since Adλij = Id in this case. In contrast, on a general Lie
group, the admissible relative positions belong to a subgroup
characterized as follows.

Proposition 3: Let CMξ := {g ∈ G : Adg ξ = ξ}.
a) For every ξ ∈ g, CMξ is a subgroup of G.
b) The Lie algebra of CMξ is the kernel of adξ = [ξ, ],
i.e. cmξ = {η ∈ g : [ξ, η] = 0}. In particular, CMξ has
dimension at least 1 since ξ ∈ cmξ.

Proof: a) Ade ξ = ξ ∀ξ since Ade is the identity operator.
Adg ξ = ξ implies Adg−1 ξ = ξ by simple inversion of the
relation. Moreover, if Adg1 ξ = ξ and Adg2 ξ = ξ, then
Adg1g2 ξ = Adg1 Adg2 ξ = Adg1 ξ = ξ. Thus CMξ satisfies
all group axioms and must be a subgroup of G.

b) The Lie algebra cmξ of CMξ is its tangent space at e.
Consider g(t) ∈ CM(ξ) with g(τ) = e and d

dtg(t)|τ = η.
Thus cmξ is characterized by all such η. For constant ξ,
Adg(t)ξ = ξ implies d

dt (Adg(t))ξ = 0. But a basic Lie
group property is d

dt (Adg(t))|τ = adη . Therefore [η, ξ] = 0
is necessary. It is also sufficient since, for any η such that
[η, ξ] = 0, the curve g(t) = exp(ηt) generated as the group
exponential of η belongs to CMξ. M

CMξ and cmξ are called the isotropy subgroup and
isotropy Lie algebra of ξ; these are classical mathematical
objects in group theory [15]. From Propositions 2 and 3, one
method to obtain a totally coordinated motion on a Lie group
is to

1) choose ξl in the vector space g and
2) position the agents such that λjk ∈ CMξl ∀j, k.

Then indeed, ξl
k = ξl ∀k ensures right-invariant coordination,

and λjk ∈ CMξl implies Adλjk
ξl
k = ξl

k = ξl
j such that

ξr
k = Adgk

ξl
k = Adgj

ξl
j = ξr

j and left-invariant coordination
is achieved as well.
Remark: It may be interesting to examine coordinated
trajectories with varying velocity ξl.

a) When ξl is varying during a totally coordinated motion,
Propositions 2 and 3 must be satisfied at each time
instant; since the λjk are fixed, this implies λjk ∈⋂

t CMξl(t).
b) When the λjk are varying, the swarm is not totally

coordinated (by definition). However, it is still possible
to maintain right-invariant coordination. Then the
λjk(t) can evolve in the conjugation class of the initial
λjk, i.e. λjk(t) = h(t)λjk(0)h−1(t) ∀j, k, for some
h ∈ G.

Similar observations can be made with right-invariant
velocities and relative positions.

IV. COORDINATED MOTION ON SE(2)

As an illustration of the theory, coordinated trajectories
on the group SE(2) are characterized. Left-invariant coor-
dination for the particular example of SE(2) was already
formulated in Lie group notation in [10]. The properties of
SE(2) are well-known and can be found even in control
textbooks like [8]. The special Euclidean group in the
plane G = SE(2) describes all planar rigid body motions
(translations and rotations). An element of SE(2) can be
written g = (r, θ) ∈ R2 × S1 where r denotes position and
θ orientation. Then
• g1g2 = (r1 + Qθ1r2, θ1 + θ2) where Qθ is the rotation

of angle θ ;
• e = (0, 0) and g−1 = (−Q−θr,−θ) ;
• ξ = (v, ω) ∈ se(2) = R2 × R ;
• Lg∗(v, ω) = (Qθv, ω) and

Rg∗(v, ω) = (v + ωQπ/2r, ω) ;
• Adg (v, ω) = (Qθv − ωQπ/2r, ω) ;
• [(v1, ω1), (v2, ω2)] = (ω1Qπ/2v2 − ω2Qπ/2v1, 0) ;



• vl is the body’s linear velocity expressed in body frame,
ωl = ωr is its rotation rate.

A. Coordination on SE(2)

The theory is applied step by step.
• Relative positions: g−1

k gj = (Q−θk
(rj − rk), θj − θk)

(left-invariant) and gjg
−1
k = (rj − Qθj−θk

rk, θj − θk)
(right-invariant).

• Left-invariant coordination: ξl
k = Adg−1

k gj
ξl
j writes

(vl
k, ωl

k) = (Qθj−θk
vl

j − ωl
jQπ/2Q−θk

(rj − rk), ωl
j) or

equivalently ξr
k = ξr

j ⇔ (vr
k, ωr

k) = (vr
j , ωr

j ).
The agents move like a single rigid body: relative
orientations and relative positions on the plane do not
change (Figures 1.a and 2.a).

• Right-invariant coordination: ξr
k = Adgkg−1

j
ξr
j writes

(vr
k, ωr

k) = (Qθk−θj
vr

j − ωr
j Qπ/2(rk − Qθk−θj rj), ωr

j )
or equivalently ξl

k = ξl
j ⇔ (vl

k, ωl
k) = (vl

j , ω
l
j).

The agents move with the same velocity expressed in
body frame (Figure 3).

• Total coordination: the swarm moves like a single rigid
body and each agent has the same velocity expressed in
body frame. Propositions 2 and 3 lead to the following
characterization of totally coordinated motions.
[ξl, η] = 0 (Proposition 3.b) ⇔ ωlvη = ωηvl and
Adg ξl = ξl (Proposition 3) ⇔ (Qθ−Id)vl = ωlQπ/2r.
This implies three different cases:
(o) ωl = vl = 0 ⇒ cmξl = se(2) and CMξl = SE(2);
(i) ωl = 0, vl 6= 0 ⇒ cmξl = {(v, 0) : v ∈ R2} and

CMξl = {(r, 0) : r ∈ R2};
(ii) ωl 6= 0, any vl ⇒ cmξl = {( ω

ωl v
l, ω) : ω ∈ R}.

Define C, the circle of radius ‖vl‖2
|ωl| containing the

origin, tangent to vl at the origin and such that
vl and ωl imply rotation in the same direction.
Then solving Adgξ = ξ for g and making a few
calculations shows that CMξl = {(r, θ) : r ∈ C
and Qθv

l tangent to C at r}. This is consistent with
an intuitive analysis of possibilities for circular mo-
tion with unitary linear velocity and fixed relative
positions and orientations in the plane.

The dimension of cmξl (⇔ of CMξl) is (o) 3, (i) 2 or
(ii) 1. In case (o), the configuration is arbitrary but at
rest. In case (i), the agents have the same orientation
and move on parallel straight lines (Figure 1.b). In case
(ii), they move on the same circle and have the same
orientation with respect to their local radius (Figure 2.b).

B. Link with previous work on SE(2)

Left-invariant coordination is studied in [10], [27], [28]
under the constraint of steering control: vl

k = e1 ∀k
(e1 ∈ R2 denoting any fixed vector) and only ωl

k can
be controlled. Since ωl

k = ωr
k, left-invariant coordination

on SE(2) with steering control is equivalent to total
coordination. Steering control imposes ξl = (e1, ω),
allowing relative positions in CMξl as for (i) or (ii) above.
The authors of [10] show indeed that these parallel and

a b

Fig. 1. Coordinated swarms with constant velocity, ωk = 0. a: left-invariant
coordination. b: total coordination. (light color: intermediate positions and
orientations in time).

a b

Fig. 2. Coordinated swarms with constant velocity, ωk 6= 0. a: left-invariant
coordination. b: total coordination. (light color: intermediate positions and
orientations in time).

Fig. 3. Right-invariant coordinated swarm with varying velocity. (light
color: intermediate positions and orientations in time).

circular motions are the only possible trajectories for left-
invariant coordination with steering control (this illustrates
that left-invariant coordination under velocity constraints can
impose restrictions on achievable relative positions). Note
that right-invariant coordination in this setting would simply
require the agents to agree on a common rotation rate ω;
this can be solved with a classical linear consensus algorithm.

The authors in [27] propose the following control laws in
order to asymptotically stabilize coordinated motions under
steering control on SE(2); in order to focus on collective
issues, the individual dynamics are reduced to first order
integrators, instead of considering the full mechanical rigid
body dynamics (Newton and Euler equations).



(i) Parallel linear motion: being in CMξl with ωl = 0
requires equal orientations. Building on the literature
about Kuramoto oscillators, [27] take a Lyapunov func-
tion V = 1

4N

∑
j,k ‖eiθk − eiθj‖2. The gradient control

law

ωl
k =

∑
j sin(θj − θk) , k = 1...N. (1)

drives all θk towards a common value on S1. Then ωl
k =

ωl = 0 and coordination is achieved.
The proposed Lyapunov function can be seen as mea-
suring the disagreement between vectors Qθk

e1; this
corresponds to the disagreement between right-invariant
velocities ξr

k assuming that ωl
k = ωl = 0 and vl

k = vl =
e1.

(ii) Circular motion: Denote by sk = Qθk
Q−π/2 e1 − ωlrk

the center of curvature of k’s trajectory multiplied by
ωl. Then synchronizing the sk ensures that all agents are
on the same circle, as required for being in CMξl with
ωl 6= 0. In [27], this motivates the Lyapunov function
V = 1

4N

∑
j,k ‖sk − sj‖2. This leads to control law

ωk = ω +
∑

j (sj − sk) · (Qθk
e1) (2)

where · denotes the scalar product in R2. For all initial
conditions, (2) drives the agents to the same circle of
diameter 2/ω, with θk such that velocity is tangent to
the circle; moreover ωk is asymptotically equal to ω so
coordination is achieved.
The present framework shows that sk = Q−π/2v

r
k

if ωl
k = ωl: the proposed Lyapunov function again

measures the disagreement between right-invariant ve-
locities ξr

k assuming that ξl
k = ξl.

Further variants of these controls have been developed; an
adaptation when each agent only uses information from a
restricted set of other agents is proposed in [28]. A future
paper will discuss the design of control laws like (1),(2) on
general Lie groups.

V. CONCLUSION

The present paper studies coordination on Lie groups: a
set of agents has to move such that their relative positions
remain constant. A geometric framework is presented and its
implications are analyzed. In particular, a direct link between
coordination and conditions on velocities is highlighted be-
fore examining how this influences achievable situations of
coordination. This is further illustrated on SE(2).

This paper formalizes general geometric principles behind
the work of [10], [27], [28] on SE(2) and [11], [26]
on SE(3); on SO(3), left- and right-invariant velocities
correspond to angular velocity expressed in body frame
and in inertial frame respectively. Design methods for
coordination control laws on general Lie groups will be
addressed in a future paper.
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