International Symposium on Olfaction and Electronic Nose New York, May 2-5 2011

Gas sensors Array Applied to the monitoring of Biogas Process

<u>Gilles ADAM</u>* Anne-Claude ROMAIN Jacques NICOLAS

Sébastien LEMAIGRE Philippe DELFOSSE

*Gilles.Adam@ulg.ac.be

campus

Université de Liège

Biological process which results in the production of biogas

Archea methanogens are strict anaerobic

 \rightarrow do not survive in presence of oxygen

Introduction

Université

de Liège

campus

On-farm methanation produces biogas as a renewable energy

Problem: Biogas reactors are sensitive to high organic loadings that lead to the accumulation of acids and process disturbances/collapse

High reactor loading versus Process stability

Why to focus on e-nose technology?

Anaerobic digestion process monitoring:

- Online monitoring: [CH4], [CO2], biogas production, pH
- Offline analysis: alkalinity, Volatile Fatty Acids (individuals/total), etc.
- No online tool for early warning of anaerobic digestion process disorders

E-nose advantages:

- Online monitoring
- Gas phase sampling (easier than liquid-phase sampling in anaerobic reactors)
- Rapid turn-over of gas phase of the reactor (hours)

Actual situation

Research Purposes

ISOEN 2011 Gas Sensors Array Applied to the Monitoring of Biogas Process

Université de Liège

Small-scale test on 12 semi-continuous anaerobic digesters

1.5 kg anaerobic sludge per mini-digester, 38±2°C60 days of monitoring

Methodology

Mini-digesters - Variables

Daily feeding Biogas collected every day in gas bags Daily measurements:

- Home-made e-nose
 - \rightarrow 6 MOX gas sensors array
- pH of the sludge
- CH₄ and CO₂ concentration (IR cells)
- H₂S and CO concentration (EC cells)

Feeding system

Home-made e-nose

CH₄ &CO₂ measurements

Methodology

E-nose instrumentation

6 commercial metal oxide gas sensors Home-made array of sensors Dilution (25x) is needed

- to avoid sensors saturation (60% CH₄)
- to supply oxygen for optimum functioning of the sensors

ISOEN 2011 Gas Sensors Array Applied to the Monitoring of Biogas Process

Increasing feeding strategy scores are moved away from the scores of the cautious feeding strategy

ISOEN 2011 Gas Sensors Array Applied to the Monitoring of Biogas Process

Results

Université

de Liège

campus

Cautious loading observations form a general pattern in which 3 overlapped clusters are highlighted : the feeding regimes. Although, it does not interfere with disturbances detection.

Results

Euclidean versus Mahalanobis distances

Mahalanobis distance could be used as an indirect early warning indicator of anaerobic digestion process overload

- 1. Disturbances due to high loading rates of the reactors are detected by the e-nose apparatus.
- 2. E-nose response is slightly influenced by substrate composition but it does not interfere with disturbances detection.
- 3. CH₄ content is largely influenced by substrate composition and does not interfere on e-nose response
- 4. PCA analysis: 2 main factors are related to the feeding rate of the reactors
- 5. Mahalanobis distance from a "cautious feeding group" should be confirmed as an early warning indicator for organic overload in anaerobic reactors

Online monitoring of 4 anaerobic reactors of 100 L

- Development of a biogas sampling and dilution device
- Comparison with state variables of the anaerobic reactors
- Analysis of signal evolution in time (H₂S poisoning, drift)

Acknowledgements

Europen Project Interreg IVa

Projet cofinancé par l'Union Européenne via le FEDER dans le cadre du programme INTERREG IV-A Dieses Projekt wird von der EU über den EFRE-Fonds im Rahmen des Programms INTERREG IV-A kofinanziert