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s u m m a r y

Field and laboratory investigations have been conducted at a former coke plant, in order to assess pollu-
tant attenuation in a contaminated alluvial aquifer, discharging to an adjacent river. Various organic
(BTEX, PAHs, mineral oils) and inorganic (As, Zn, Cd) compounds were found in the aquifer in concentra-
tions exceeding regulatory values. Due to redox conditions of the aquifer, heavy metals were almost
immobile, thus not posing a major risk of dispersion off-site the brownfield. Field and laboratory inves-
tigations demonstrated that benzene, among organic pollutants, presented the major worry for off-site
dispersion, mainly due to its mobility and high concentration, i.e. up to 750 mg L�1 in the source zone.
However, benzene could never be detected near the river which is about 160 m downgradient the main
source. Redox conditions together with benzene concentrations determined in the aquifer have suggested
that degradation mainly occurred within 100 m distance from the contaminant source under anoxic con-
ditions, and most probably with sulphate as main oxidant. A numerical groundwater flow and transport
model, calibrated under transient conditions, was used to simulate benzene attenuation in the alluvial
aquifer towards the Meuse River. The mean benzene degradation rate used in the model was quantified
in situ along the groundwater flow path using compound-specific carbon isotope analysis (CSIA). The
results of the solute transport simulations confirmed that benzene concentrations decreased almost five
orders of magnitude 70 m downgradient the source. Simulated concentrations have been found to be
below the detection limit in the zone adjacent to the river and consistent with the absence of benzene
in downgradient piezometers located close to the river reported in groundwater sampling campaigns.
In a transient model scenario including groundwater–surface water dynamics, benzene concentrations
were observed to be inversely correlated to the river water levels, leading to the hypothesis that benzene
dispersion is mainly controlled by natural attenuation.

� 2009 Elsevier B.V. All rights reserved.

Introduction

Sites of former industrial activities are often located near navi-
gable rivers to facilitate the transport operations of industrial raw
materials. This has resulted nowadays in the existence of numer-

ous contaminated sites located in clusters close to rivers, in rela-
tively urbanised areas. These sites often pose a major risk of
dispersion in the environment and the exposure of human beings
and ecosystems to contaminants, mainly by possible migration to
surface water through groundwater discharge. This is particularly
critical because of the possible cumulative effect of the different
active pollution sources when several contaminated sites are lo-
cated within the same water system(s). These sites, most of which
could be defined as brownfield, are typically polluted by aromatic
hydrocarbons such as benzene, toluene, ethylbenzene, xylene
(BTEX), polycyclic aromatic hydrocarbons (PAHs) and heavy metals
such as Zn, As or Cd, which belong to the major contaminants in
groundwater (Lovley, 2000; Khan et al., 2005; Lee et al., 2006;
Fischer et al., 2007). These compounds are of a particular environ-
mental concern, since they represent a significant health risk be-
cause of their high recalcitrance and toxicity; several of these are
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even known as human carcinogens (Burland and Edwards, 1999;
Fischer et al., 2007). The concept of ‘‘natural attenuation” covers
all physical, chemical and biological processes that help to reduce
the mass of dissolved contaminants in a groundwater plume, such
as dispersion, sorption, volatilisation, biological and chemical
degradations (Wiedemeier et al., 1999).

Risks associated with dispersion of contaminants are
intimately related to two main factors: the occurrence of water
transfers between the various components of the soil–groundwa-
ter–surface water compartments as well as the mobility and
persistence of identified contaminants through such compart-
ments. At a single contaminated site scale, the first step is to
characterise and quantify, as accurately as possible, water and
contaminant fluxes.

Important insights have been gained in the study of biogeo-
chemical and physical processes affecting the mobility and attenu-
ation of contaminants in aquifers. Little attention, however, has
been paid to the fate of contaminants and processes affecting the
spatial distribution before they reach the river–aquifer interface
of a polluted site with strong groundwater–surface water interac-
tions. The determining factors for future evolution of these con-
taminants must still be defined. For example and at the aquifer
level, heterogeneity is rarely addressed in studies on groundwa-
ter–surface water interactions and pollutant discharge (Wroblicky
et al., 1998; Conant et al., 2004; Fleckenstein et al., 2006). Kao and
Wang (2000) observed in a sandy–silty–loamy aquifer not subject
to river interactions, an important drop in BTEX concentration
100 m downstream of the source area, which was related to iron
and nitrate reduction; Lee et al. (2001) observed that hydrostratig-
raphy, seasonal recharge and biodegradation were the most impor-
tant factors controlling the distribution of hydrocarbon
contaminants within a sandy aquifer; and Fritz and Arntzen
(2007) demonstrated a relation between hydraulic gradient
changes due to river fluctuations and uranium fluxes discharging
to the river.

This study focuses on the characterisation and quantification of
water and contaminant fluxes in the groundwater–surface water
system corresponding to the alluvial aquifer of the Meuse River, lo-
cated in the brownfield of a former coke and gas factory in the
Liège area, in Belgium. At first, a brief description of the study site
as well as the investigations performed to assess groundwater
hydrodynamic and hydrodispersive properties and groundwater–
surface water interactions are presented. In a second step, we pres-
ent the hydrogeochemical conditions together with the organic
and inorganic pollutants fate in groundwater, which are analysed
to identify which contaminants are of stronger concern with re-
spect to off-site dispersion risks. Afterwards, a numerical ground-
water flow and contaminant transport is presented, which is
used to evaluate different scenarios of benzene dispersion in
groundwater. Finally, results are discussed including all informa-
tion gathered by means of laboratory, field studies and modelling
approaches. Our objectives are reached by combining laboratory
and field investigations as well as advanced numerical modelling
of groundwater flow and contaminant transport in the alluvial
aquifer.

General description of the study site

The study site is a brownfield of 400 m length and 250 m width,
corresponding to the location of a former coke and gas factory. It is
located at 25 m distance to the North bank of the Meuse River
(Fig. 1), upstream the city of Liège (Belgium), in an industrial envi-
ronment where urban cores developed during the last century. The
facility was active from 1922 until 1984 when it was dismantled
and abandoned.

The top–bottom geology of the site consists of 4 m backfill
deposits, 2 m silt–sand–clay deposits and approximately 8 m allu-
vial gravels (mean thickness) deposited over a carboniferous shale
bedrock, which is the impervious lower boundary for the alluvial
aquifer. The main aquifer is located in the alluvial gravels, with a
groundwater table fluctuating around 7 m typical mean depth.
The topography is very flat with a general groundwater flow direc-
tion towards the Meuse River direction, with a low hydraulic gra-
dient of 0.3% (Batlle-Aguilar and Brouyère, 2005, 2006).

In order to allow navigation and to prevent flooding of the allu-
vial plain, the river water level is controlled by dams (located
1.5 km upstream and 14 km downstream the brownfield, respec-
tively), that keep the river water level at a 59.4 m a.s.l. (above
sea level) baseline in that section of the river corresponding to
the brownfield. River water levels fluctuate continuously with
amplitudes varying from a few centimeters under its baseline
and up to 2 m locally during winter–spring seasons.

Past characterisation campaigns evidenced important soil and
groundwater contamination by organic compounds, mainly BTEX,
PAHs and also by heavy metals. Benzene concentrations in ground-
water were reported to be up to 750 mg L�1 in the source zone at
the monitoring campaign in 2005 and up to 18 mg L�1 in 2006. Tol-
uene and xylene were found at 77 and 15 mg L�1 (3 and 0.6 mg L�1

in 2006), respectively (SPAQUE, Sociétée Publique d’Aide à la Qua-
lité de l’Environnement, internal report). Polycyclic aromatic
hydrocarbons, like naphthalene, acenaphthene and fluoranthene,
were present in the groundwater, at concentrations up to 3 mg L�1

(25 mg L�1 in 2006). Heavy metals were also found in groundwater
at maximum concentrations of 5 lg L�1 for Cd, 10 lg L�1 for As and
Pb, and 200 lg L�1 for Zn. In the source area, groundwater was an-
oxic with negative Eh values down to �300 mV and nitrate was
found to be near-total depletion (ranging from 0 to 3 mg L�1).
Background nitrate concentrations of 190 mg L�1, outside of the
brownfield, were recorded upgradient. Downstream, towards the
Meuse River, Eh values of +100 mV were observed and nitrate con-
centrations up to 15 mg L�1 were reported. Sulphate, that is also a
by-product of coke manufacturing, was heterogeneously distrib-
uted over the totality of the aquifer, with concentrations typically
ranging from 500 to 2100 mg L�1. It is worth noting that all piez-
ometers and monitoring wells were single screened, thus providing
depth-integrated measurements.

Characterisation of groundwater flow and transport conditions
in the alluvial aquifer interacting with the river

To improve the current knowledge on the hydrodynamic and
hydrodispersive properties of the alluvial aquifer and the possible
interactions with the Meuse River, groundwater level fluctuations
were monitored and, pumping tests and tracer experiments were
performed (Batlle-Aguilar and Brouyère, 2005, 2006).

Monitoring and analysis of interactions between rainfall, groundwater
and surface water

Groundwater level fluctuations were monitored hourly using
pressiometric–temperature LevelTroll� probes (time resolution:
1 h). Two of these probes were placed in observation wells located
along an orthogonal section near and far from the river (wells U5
and U3) on an almost permanent basis over a 2 year period. Two
more pressiometric probes were used by pairs in observation wells
(near and far from the river) for shorter periods of time (1 month).
Altogether, 16 observation wells were distributed all over the field
and monitored during 2 years (Fig. 1). During that same period, the
Meuse surface water level, temperature and discharge were
continuously monitored at a hydroelectric plant located on the
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opposite river bank, in front of the brownfield. Daily rainfall data
were available for the Ivoz–Ramet dam, located 1.5 km upstream
the brownfield site.

Monitored groundwater heads, river levels and rainfall data
(Fig. 2) were analysed for time cross-correlations using the BRGM
TEMPO� software (Pinault, 2001) with hourly data, except for

Fig. 1. Location of the studied brownfield. The main pollutant source is indicated with a dark ellipse, and the 16 wells monitored with pressiometric probes TrollLevel� are
shown. Symbols of these wells agree to corresponding field works performed. Piezometric lines correspond to the monthly groundwater head survey in June 2005.

Fig. 2. Surface water level fluctuations of the Meuse River and groundwater heads at selected wells for different periods. Rainfall recorded 1.5 km upstream of the site is also
depicted. Distance of the wells to the aquifer–river interface is indicated in brackets.
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precipitation. For the latter, only daily data was available. Cross-
correlation coefficients between river water levels and groundwa-
ter levels ranged from 0.8 to 0.98 for wells located close to the riv-
er. As expected, the correlation decreases as the distance to the
river increases, while the time lag response increases. This can be
conceptualised in the form of a wave propagation into the aquifer,
which amplitude is progressively attenuated and the time lag is in-
creased (Sophocleous, 1991; Jha et al., 2004; Ha et al., 2007). The
same cross-correlation analyses showed that rainfall plays a sec-
ondary role in groundwater level fluctuations, with maximum
cross-correlation coefficients of 0.3. Details on these correlation
analyses can be found in Batlle-Aguilar (2008).

Hydrodynamic and hydrodispersive properties of the alluvial aquifer

Six pumping tests and five slug tests were performed in selected
wells of the site (results not shown). Estimated saturated hydraulic
conductivity (Ks) values resulting from both, pumping and slug
tests, range from 1 � 10�5 to 1 � 10�3 m s�1. These values are
lower than expected for an alluvial aquifer and their spatial vari-
ability reveals the heterogeneity of the alluvial deposits.

Radially convergent tracer experiments were performed in or-
der to assess the hydrodispersive properties (mostly the effective
porosity – hm and the longitudinal dispersivity – aL), and to identify
possible retardation, such as dual-porosity effects related to small-
scale heterogeneities of the alluvial deposits that can be assimi-
lated to immobile water (Herr et al., 1989; Li et al., 1994; Brouyère,
2001). Within the context of alluvial deposits, mobile water corre-
sponds to that in the effective porosity, while immobile water (or
less mobile) rather corresponds to water located in less pervious
zones, mostly clay and silty sand with low saturated hydraulic con-
ductivity than that of the gravels. Groundwater was pumped in
well P5 until steady state radially convergent flow conditions were
achieved. The tracers used for this experiment (eosin yellowish,
uranin, naphtionate, sulforhodamine B, iodide and lithium) were
instantaneously injected in well U15 (Fig. 1). The resulting break-
through curves differed strongly from each other, mainly because
of two factors: (1) the specific physico-chemical properties of each

tracer and (2) changes of pumping rate at the recovery well to
avoid dewatering the pumping well during lowering of groundwa-
ter levels. Measured breakthrough curves served subsequently to
calibrate the groundwater transport model.

Redox conditions and contaminant distribution

From 1992, five groundwater monitoring campaigns have been
performed by SPAQuE at the studied brownfield. Concentrations of
various redox sensitive species in groundwater were determined in
2006 during a sampling campaign devoted to measurements of
benzene concentrations and isotopic ratios (see ‘‘Assessment of
benzene biodegradation using stable carbon isotope analysis” and
‘‘Natural attenuation of benzene” sections). Dissolved oxygen con-
centrations, temperature, electrical conductivity, and pH were re-
corded directly in the field, using specific field probes (WTW,
Weilheim, Germany). Samples for the analysis of Fe2+ and Mn2+

were filtered (0.45 lm) and acidified with concentrated HNO�3 di-
rectly in the field to prevent their oxidation. For colorimetric anal-
ysis, phenanthroline and 1-(2-pyridylazo)-2-naphthol were used
(Goto et al., 1977; Stucki and Anderson, 1981). Samples for HS�

quantification were preserved in a Zn-acetate solution (2%) directly
in the field and analysed by colorimetry following the procedure of
Cline (1969). For CH4 analyses, 40 mL VOC vials with Teflon–rubber
septa were filled with 39 mL of a water sample and tightly sealed
in the field. Back to the laboratory, head space samples were taken
using a syringe through the septum and then analysed for CH4

using a gas chromatograph equipped with flame ionisation detec-
tion (Platen and Schink, 1987).

Redox conditions in the aquifer were determined on the analy-
ses of O2, NO�3 , Fe2+, Mn2+, SO2�

4 , HS�, and CH4 in groundwater sam-
pled from 25 piezometers (Table 1). The results presented here
focus on the most recent data from the campaign performed in
2006 (whenever helpful or complementary, data from 2005 cam-
paign were used). The sampling points were located in the zone
of major contamination with organic compounds and downgradi-
ent from this zone. Two reference wells (E6p and F4) were also
sampled; these were located 92 and 74 m upgradient the major

Table 1
Benzene concentrations and corresponding stable isotope signatures in groundwater sampled from 25 different piezometers in 2006. Electron acceptors and products related to
the degradation of organic compounds are also presented. Piezometer D2bis, located in the main source zone, was defined as contaminant source. E6p and F4 are reference wells
upgradient from this contamination (n.a.: not analysed).

Well Distance from source (m) d13C Benzene (lg L�1) CH4 (lg L�1) SO2�
4 ðmg L�1Þ HS� (mg L�1) NO�3 ðmg L�1Þ Fe2+ (mg L�1) Mn2+ (mg L�1)

E6p �92 n.a. <0.02 n.a. 737 0.1 16.3 <0.1 n.a.
F4 �74 �24.0 0.09 1.3 925 1.2 66 12.3 3.4
D2bis 0 �24.8 206 267.7 311 18.1 <0.1 0.3 1.4
C3bis 11 �21 20 0.6 863 0.4 0.3 11 6.8
D1p 22 �23.5 17,546 313 1112 2.9 <0.1 23.3 5
D3p 22 �24.5 4949 68 1329 1.9 0.4 2 0.7
U9 25 �21.8 0.47 8.1 1147 0.2 0.4 1.7 8
A3 26 n.a. <0.02 0.9 930 <0.1 0.2 0.1 1.2
U5 34 n.a. <0.02 12.1 1127 0.1 1.8 10.2 6.7
U4 39 �23.9 9763 156.2 21 13.9 <0.1 1.6 2.4
11 51 �20.9 1.2 22.2 570 0.8 <0.1 6.4 7.1
U6 54 �23.0 1319 0.9 1352 7.7 0.2 0.1 2.4
U10 68 �22.2 0.39 3.9 971 0.1 7.3 0.2 5
14 79 n.a. 29 31.6 540 1.1 0.3 0.2 1.4
U13 88 �21.0 0.38 1.1 728 0.2 19.7 0.1 3.8
12 89 �20.9 1 93.7 1103 0.2 <0.1 7.4 7.4
1 94 n.a. <0.02 4.5 614 0.3 1.5 <0.1 1.1
7 117 �21.5 <0.02 5.6 801 0.1 9.1 <0.1 1.2
15 133 �21.6 1.5 24.3 925 1.2 <0.1 12.3 5.6
P5 149 �23.9 0.1 9.4 649 <0.1 3.3 0.1 1.4
8 155 �21.4 2 2.2 803 0.1 195.7 <0.1 4.4
U15 175 n.a. <0.02 0.1 939 0.1 12 <0.1 1.8
U16 188 n.a. <0.02 n.a. 786 <0.1 56.8 n.a. n.a.
U17 213 n.a. <0.02 3 710 <0.1 8.6 <0.1 0.7
U19 218 n.a. <0.02 n.a. 721 0.2 45.5 <0.1 1.2
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source of contamination. The data from these wells were divided
into three categories (Fig. 3), ‘‘strongly reducing”, ‘‘reducing” and
‘‘oxic” conditions. Wells were denoted as ‘‘strongly reducing” con-
ditions when under sulphate-reducing and/or methanogenic con-
ditions as indicated by HS� > 1 mg L�1 and/or CH4 > 15 lg L�1.
Wells with ‘‘reducing” conditions were characterised by denitrify-
ing (depletion of nitrate below the reference value at E6p), iron- or
manganese-reducing (Fe2+ and/or Mn2+ > 1 mg L�1) conditions. Fi-
nally, wells with ‘‘oxic” conditions were characterised by the ab-
sence of CH4, HS�, Fe2+, Mn2+, presence of NO�3 in concentrations
comparable to the reference well E6p, and presence of O2 in
groundwater (data not shown). ‘‘Strongly reducing” conditions
were mainly encountered in the source zone and in its immediate
vicinity to the East and South-East (Fig. 3). Concentrations of
HS� > 1 mg L�1 in 8 out of 25 wells indicate that sulphate reduction
is the predominant redox process at the site. Further to the East,
conditions change to ‘‘moderately reducing” and finally ‘‘oxic”
conditions.

In the 2006 sampling campaign, the highest benzene concentra-
tions were found in D1p in the source area (17,550 lg L�1, Table 1).
In several other sampling points in the vicinity of the source area,
benzene concentrations were >1000 lg L�1, while concentrations
rapidly decreased at locations further downgrading. At sampling
wells located more than 80 m from D1p, benzene concentrations
were 62 lg L�1. In these monitoring wells, no other BTEX, naph-
thalene (detection limit 5 lg L�1) or three-ring PAHs (detection
limit 15 lg L�1) were detected.

Fate of contaminants in the alluvial aquifer

Specific investigations were performed, in both the laboratory
and the field, in order to characterise the specific behaviour of
existing contaminants in the brownfield site (sorption, degrada-
tion, etc.). These investigations were aimed at identifying the most
problematic contaminants with respect to the off-site dispersion
risk toward the Meuse River, and at proposing adequate scenarios
to be modelled using the numerical groundwater flow and trans-
port model presented in the section ‘‘Groundwater flow and trans-
port modelling”. These investigations focused therefore on the

potential degradation of organic mono- and polycyclic aromatic
hydrocarbons as well as on the characterisation of redox condi-
tions as they possibly affect the mobility of inorganic pollutants.

Fate of inorganic pollutants

To determine the mobility of heavy metals present in the aqui-
fer, groundwater and sediment were sampled between 8 and 12 m
below ground level in well U15 (Fig. 1), located downgradient from
the source area, where no organic pollutants have been detected
till now.

Microcosms were set up in an anaerobic chamber at 20 �C con-
taining aquifer material (10 g) sampled and homogenised as de-
scribed by Vanbroekhoven et al. (2007).

The soil–water distribution coefficients (Kd) were calculated
from the measured equilibrium concentrations in the batch tests:

Kd ¼ ½ðCi � Cf Þ=Cf �L=S ð1Þ

where Ci and Cf are the initial and final metal concentrations in solu-
tion within the batches (mg m�3), and L/S is the liquid to solid ratio
(m3 kg�1).

The distribution coefficient Kd expresses the ratio of the total
amount of metals removed in the batches to the amount of metals
in solution in equilibrium with the aquifer material. In the pres-
ence of a carbon source (i.e. acetate, which simulates organic con-
taminants as a carbon source), low available fractions were
obtained for Zn (9%), Cd (14%), As (3%) and for Co (13%). Calculated
Kd values range from 9.9 to 27.8 m3 kg�1 for Zn, from 0.75 to
9.9 m3 kg�1 for Cd, from 0.034 to 0.223 m3 kg�1 for As, and from
0.66 to 1.30 m3 kg�1 for Co. These high sorption constants suggest
that heavy metals do not constitute a major risk in terms of off-site
dispersion.

Assessment of benzene biodegradation using stable carbon isotope
analysis

To determine residual concentrations of benzene in groundwa-
ter, samples were analysed with gas chromatography (Varian
3800) with a CP8410 autoinjector for solid phase microextraction

Fig. 3. Redox conditions at different locations shown for sampling campaign in 2006.
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(SPME). Benzene was extracted from the headspace of half-filled
2 mL sample vials using polydimethylsiloxane fibers (100 lm film
thickness, Supelco, Bellefonte, PA). Degradation of benzene along
the groundwater flow path was assessed and quantified using
compound-specific carbon isotope analyses of groundwater sam-
ples. As demonstrated in laboratory studies, during aerobic (Hun-
keler et al., 2001; Fischer et al., 2008) and anaerobic (Mancini
et al., 2003; Fischer et al., 2008) degradation of benzene, a signifi-
cant carbon isotope fractionation occurs because molecules con-
sisting of light 12C isotopes are degraded faster than those
containing a heavy 13C isotope. The remaining benzene resulting
from isotope fractionation becomes increasingly enriched in 13C
which can be used to track the progress of biodegradation.

Groundwater from 16 wells containing residual benzene sam-
pled in 2006 was analysed for stable carbon isotope ratios (Table
1). Benzene was extracted from groundwater using a Tekmar
Velocity Purge & Trap System and analysed using a Thermo Finni-
gan Trace gas chromatograph (GC) coupled to a Thermo Finnigan
Delta Plus XP isotope ratio mass spectrometer (IRMS) via a GC
combustion III interface.

The carbon isotope ratios are reported relative to the VPDB
standard using the d-notation:

d13C½‰� ¼
13Csample=

12Csample
13Creference=12Creference

� 1
� �

� 1000 ð2Þ

where a d13C shift in positive direction corresponds to an enrich-
ment in 13C.

First-order biodegradation rates can be retrieved from isotope
data using the following equation (Hunkeler et al., 2002; Blum
et al., 2009):

k ¼ �Dd13C=ðe� tÞ ð3Þ

Dd13C is the shift in the carbon isotope ratio between the source
and a downgradient monitoring point, e is the isotope enrichment
factor and t the travel time. Travel times were estimated based on
the average groundwater flow velocity (1.04 � 10�5 m s�1), itself
calculated from the average hydraulic gradient, saturated hydraulic
conductivity and effective porosity.

Natural attenuation of benzene

Sampling locations in the source area with benzene concen-
trations >10,000 lg L�1 were characterised by d13C values of
�24.8‰ and �23.5‰, while locations with lower concentrations
were generally enriched in 13C. This clearly demonstrates the
occurrence of biodegradation of benzene in the aquifer along
the groundwater flow. The observed increase in d13C was in
the same range as previously observed at a gaswork site in Ger-
many (Griebler et al., 2004). All of the sampling points with 13C
enriched benzene were located in zones with ‘‘strongly to mod-
erately reducing” conditions (Fig. 3). Furthermore, benzene was
degraded to concentrations below the limit of detection before
the contaminant plume turned oxic again, underlining that
benzene degradation at this site mainly occurred under anoxic
conditions. Consequently, for the determination of the biodegra-
dation rate constant using Eq. (3), an average carbon isotope
enrichment factor of e = �2.4‰ for anaerobic benzene biodegra-
dation was used. The isotope enrichment factor was determined
in a laboratory study (Mancini et al., 2003). For benzene
biodegradation, first-order rate constants were estimated for
the section between the source zone and points located down-
gradient, taking into account only sampling points indicating
‘‘reducing” or ‘‘strongly reducing” conditions (D1p, U9, U4, U10,
U13, 12, 7, or P5). Since the whole source zone (Fig. 4) was
not only presenting irregular benzene concentrations but also
different stable isotope signatures comprised between �23‰

and �24.8‰, we chose the piezometer D2bis (d13C = �24.8‰) lo-
cated at the Eastern (upgradient) fringe of the source zone and
oriented towards the groundwater flow direction, as a reference
point. A mean first-order degradation rate of 1.7 � 10�2/d was
obtained. This rate constant for benzene is slightly higher, but
in the same range as rate constants in a previous study on fuel
contaminated sites and former gas plants in the USA
(3.3 � 10�4/d to 4.4 � 10�2/d; Lewandowski and Mortimer,
2004) and it is higher than values observed at six former manu-
factured gas plants in the US (3.3 � 10�4/d to 4.1 � 10�3/d;
Lewandowski and Mortimer, 2004).

Fig. 4. d13C isotope ratios of residual benzene in the groundwater of the field site. Highlighted in dark ellipse is the major source zone (n.a.: not analysed).
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Summary on the fate of contaminants in the alluvial aquifer

Based on previous investigations performed on contaminants
that were detected in the brownfield site, the following conclu-
sions can be drawn. Redox conditions at the site favour immobili-
sation of heavy metals, as demonstrated by Vanbroekhoven et al.
(2007). These findings are confirmed by the low concentrations
of metals detected in the groundwater in the field (Table 2). For
the organic contaminants, the conclusions are not as straightfor-
ward, as PAHs seem to be relatively stable (i.e. naphthalene half-
life: 139 days; acenaphthene half-life: 1386 days; Batlle-Aguilar
et al., 2008). At the same time, they are known as being relatively
immobile (strong sorption). BTEX and particularly benzene, are
present at large concentrations and are potentially mobile. How-
ever, they have been shown to degrade in the alluvial aquifer.
The presence of oxidants at the site, particularly sulphate, is one
factor which could have contributed to the slightly higher biodeg-
radation rate constant. Although site specific and always prone to
uncertainties and variations, biodegradation rate constants for
one particular contaminant can be assumed to be in the same order
of magnitude under related environmental conditions. Therefore,
cautiously applied, rate constants which were determined at one
site might give important insights into further field scenarios.
The calculated rate constant of benzene corresponds to a half-life
of 41 days. When the half-life time is converted to the flow dis-
tance necessary for a mass reduction by a factor of two, 36 m are
obtained. Given that the river is about 160 m from the source area

in flow direction, a significant reduction of the benzene mass flux is
expected before the river is reached.

The risk of BTEX dispersion depends of the balance between
mobility and degradation effects along the flow path, downstream
the pollutant sources. Furthermore, in downgradient parts of the
plume, close to the river, biodegradation might be accelerated
due to the fluctuation of the water table and also the infiltration
of oxygen-rich river water (Williams and Oostrom, 2000).

Considering the above, benzene (as a representative of BTEX
compounds) has been identified as the most critical pollutant pres-
ent in the brownfield for short and middle terms risk of off-site dis-
persion towards the river. Subsequent modelling efforts have
consequently been focused on this particular compound.

Groundwater flow and transport modelling

A numerical groundwater flow and transport model was devel-
oped in order to run different scenarios of benzene pollution using
calculated degradation rates and to determine the risk of benzene
off-site dispersion.

Development and calibration of the groundwater flow and transport
model

The numerical groundwater flow model was developed using
MODFLOW-2000 (Harbaugh et al., 2000). The limits of the mod-
elled zone were extended to a larger part of the alluvial plain than
that occupied by the brownfield, in order to fit the ‘‘natural”
boundary conditions and to avoid the influence of self-defined
boundary on modelling results (Fig. 5). Upstream, along the Meuse
River (SW-boundary), the model was extended up to the Ivoz–Ra-
met dam, where a difference of 3 m in the Meuse River water level
is produced by the dam, inducing a lateral ‘‘bypass” of surface
water through the alluvial plain. At this boundary, piezometric lev-
els are prescribed (Dirichlet boundary) at a level equal to the water
level in the Meuse River upstream of the dam, inducing thus the
mentioned surface water lateral ‘‘bypass”. Downstream, along the

Table 2
Heavy metals concentrations in groundwater sampled from three different piezom-
eters in 2006 (concentrations are given in lg L�1).

Well Zn Cd Co Fe Cu Pb Hg Ni As Cr

U15 41.7 4.0 18.0 <1.95 9.1 104.0 <0.1 8.0 1.0 2.0
U17 <1.52 <1.84 4.4 150.6 <2.65 <26.52 <0.1 4.0 1.0 0.5
U23 <1.52 1.84 11.5 6496 <2.65 19.0 <0.1 1.0 5.0 0.2

Fig. 5. Conceptual model of the groundwater flow and transport model.
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Meuse River (NE-boundary), the model is extended to 1-km down-
stream the brownfield. At this boundary, piezometric levels are
prescribed (Dirichlet boundary) because there is no reason to think
that no-flow may occur across that specific limit. Laterally (NW-
boundary), the modelled area is extended to the limit between
the alluvial and the up-hill shaly bedrock. Because of the expected
large difference in saturated hydraulic conductivity between the
shaly bedrock and the alluvial deposits, a no-flow boundary condi-
tion was assumed. At the boundary between the Meuse River and
the alluvial aquifer (SE-boundary), a third-type boundary condition
(Fourier) is assumed to account for riverbank effect. The modelled
domain is made of a single layer horizontally subdivided into 204
columns and 88 rows with variable grid refinement from
5 m � 5 m inside the brownfield to 25 m � 25 m at the edges of
the regional modelled domain. More details on groundwater flow
modelling can be found in Batlle-Aguilar and Brouyère (2008)
and Batlle-Aguilar (2008).

The finite-difference groundwater flow model was calibrated
and validated using the very detailed transient groundwater head
dataset resulting from the monitoring performed with the pressio-
metric probes (see ‘‘Monitoring and analysis of interaction be-
tween rainfall, groundwater and surface water”). An innovative
combined zonation–pilot point modelling approach automatically
calibrated with Parameter Estimation Software – PEST (Doherty,
2003) was used. A classical zonation of saturated hydraulic con-
ductivity values was used outside the brownfield, which was com-
bined with the pilot points (de Marsily et al., 1984) distributed
throughout the area corresponding to the brownfield. This com-
bined approach, recently used by Doppler et al. (2007), allows an
improved representation of the alluvial deposits heterogeneity
within the brownfield. Daily groundwater heads monitored from
16 monitoring wells (Fig. 1) were used for the calibration of
groundwater flow, applying a calibration target of 5 cm. A compar-
ison between the observed and modelled groundwater heads in
several wells is presented in Fig. 6 to illustrate the quality of cali-
bration. Modelled groundwater heads match well with measured
ones (see Fig. 7) and show an efficient correlation coefficient
(R2 = 0.967). Optimised values of saturated hydraulic conductivity
ranged from 1 � 10�5 to 1 � 10�3 m s�1, lower than expected for
an alluvial aquifer but not unrealistic for the alluvial Meuse River
deposits (Brouyère, 2001).

A transport model was developed using MT3DMS (Zheng and
Wang, 1999). From the groundwater flow model developed using
MODFLOW, a ‘‘submodel” of reduced dimensions corresponding al-
most to the studied brownfield was created for solute transport
simulations (Fig. 5). This groundwater transport model has dimen-
sions of 550 m � 380 m, with 159 columns and 113 rows and a
variable grid refinement 0.5 m � 0.5 m in the benzene source to
10 m � 10 m at the limits of the model. Boundary conditions were
considered as follows: a Fourier boundary condition in the contact
area between the Meuse River and the aquifer (SE-boundary); pre-
scribed time-varying piezometric head levels for the other bound-
aries (NE, NW and SW), which values come directly from the
calibrated regional groundwater flow model. More details concern-
ing the groundwater transport model are presented by Batlle-Agu-
ilar and Brouyère (2008) and Batlle-Aguilar (2008).

The transport model was calibrated to fit measured break-
through curves obtained in radially convergent tracer tests. To do
so, the advection–dispersion equation (ADE) was considered, play-
ing with longitudinal dispersion, dual-porosity effect and first-or-
der transfer as fitting parameters to adjust observed to modelled
tracer concentration and mass recovery at the pumping well
(P5). Dual-porosity or mobile–immobile (MIM) water was consid-

Fig. 6. Comparison between observed and measured groundwater heads at wells located near and far from the Meuse River for long and short modelled periods of time
(distance between well and river is indicated in brackets).

Fig. 7. Observed vs. modelled groundwater heads.
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ered in order to avoid difficulties in modelling tracer concentration
attenuation and tailing for conservative tracers, such as iodide and
eosin yellowish. The hydrodispersive parameters obtained in
transport model calibration are summarised in Table 3. Mobile or
effective porosity (hm) is indeed somehow low, with values ranging
between 0.04 and 0.07; such effective porosity could be considered
as low for alluvial gravels. However, related to the heterogeneity of
the aquifer, this is relatively common for the alluvial deposits of
the Meuse River (e.g. Brouyère, 2001; Rentier, 2002).

Modelling benzene attenuation in the alluvial aquifer towards the
Meuse River

Although five characterisation campaigns were performed by
SPAQuE at the studied site between 1992 and 2006, these data ac-
quired do provide neither a spatial nor time continuity since the
site is so heterogeneous. Among the 100 piezometers drilled
within the brownfield during these campaigns, none of them has
been sampled on a regular basis through time. In the best case,
one or two measurements of contaminants are available in some
of them and there is not enough information for any comparison
between benzene concentrations observed in the field and calcu-
lated with the groundwater transport model. The approach is
therefore to model different pollution scenarios in order to evalu-
ate benzene dispersion and attenuation in the alluvial aquifer

using the previously calibrated groundwater transport model to-
gether with biodegradation rates as estimated in the field as well
as estimates of retardation constants coming from the literature.

The transport of benzene was modelled while considering
firstly the steady state flow conditions, with the Meuse River level
at its baseline (59.4 m a.s.l.) and the alluvial aquifer discharging
into the river. The source of benzene of 2 m � 2 m, was placed at
165 m from the Meuse River and was modelled as a constant con-
centration equal to 750 mg L�1, which corresponds to the maxi-
mum benzene concentration measured in groundwater in the
source area. Because piezometers in the brownfield are single
screened, the vertical distribution of the benzene is not known
and, thus, depth-average conditions were assumed. The different
scenarios are compared on the basis of the maximum concentra-
tion evolutions calculated at five control planes (A, B, C, D and E)
defined in the model between the source and the river, at respec-
tive distances of 25, 50, 80, 115 and 160 m from the source area
(Fig. 8).

A total of five scenarios were modelled to study benzene trans-
port in the aquifer (Table 4). Scenarios 1, 2 and 3 consider steady
state groundwater flow conditions, starting from the worst con-
taminant scenario where only advection–dispersion and dual-
porosity processes are considered without sorption or degradation
(scenario 1). Benzene retardation processes are then considered
(scenario 2) assuming linear sorption. Then, benzene degradation
is considered (scenario 3) assuming a first-order degradation
model with degradation constants as estimated in the field using

Table 3
Hydrodispersive parameters used for the calibration of tracer tests (hm: mobile
porosity; him: immobile–or less mobile-porosity; aL: longitudinal dispersivity; a:
diffusion coefficient between mobile and immobile domains; Kd: distribution
coefficient between sorbed and dissolved phases; p: fraction of sorption in contact
with the immobile phase).

Tracer hm (–) him (–) aL (m) a (s�1) Kd (m3 kg�1) p (–)

Iodide 0.041 0.10 1.4 4.50 � 10�8 – –
Eosin yellowish 0.060 0.05 3.0 1.60 � 10�7 – –
Lithium 0.068 0.70 4.5 1.05 � 10�7 1.0 � 10�4 0.91
Uranine 0.050 0.70 2.0 2.10 � 10�7 1.0 � 10�4 0.93
Sulforhodamine B 0.03 0.70 3.0 3.00 � 10�7 7.6 � 10�3 0.96
Naphtionate 0.047 0.10 2.2 2.10 � 10�8 – –

Fig. 8. Location of the main pollution source in the model and five control planes defined towards the river for modelling benzene transport in the aquifer.

Table 4
Benzene transport scenarios (ADE: advection–dispersion equation; MIM: mobile–
immobile water; U: process considered in modelling tasks; �: process not considered
in modelling tasks).

Scenario ADE MIM Sorption Biodegradation Steady state Transient

1 U U � � U �
2 U U U � U �
3 U U U U U �
4 U U U U � U

5 U U � � � U
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the isotopic fractionation. In order to evaluate the influence of
groundwater–surface water dynamics on benzene dispersion and
attenuation in the alluvial aquifer, the model was run under tran-
sient conditions for 2 years (scenario 4), corresponding to the per-
iod when Meuse river levels and groundwater levels were
monitored (from April 2005 to June 2007). Finally, an evaluation
of the river fluctuations on benzene migration was performed in
scenario 5. This scenario is quite similar to scenario 4 but without
considering benzene biodegradation and sorption. As initial condi-
tions for scenarios 1–3, benzene concentration was zero every-
where except in the source area. For scenario 4, initial conditions
correspond to the stabilised benzene plume of scenario 3. Finally,
the stabilised plume of scenario 1 was considered as initial condi-
tion in scenario 5.

Mean values of hydrodispersive and retardation parameters ob-
tained from the calibration of radially convergent tracer tests are
used for the five scenarios (Table 5) and, where required, the linear
distribution coefficient (Kd) was calculated as follows:

Kd ¼ Kocfoc ð4Þ

where Koc is the soil sorption coefficient for soil organic carbon
(L3 M�1), and foc is the fraction of soil organic carbon (–). For Koc

and foc characteristic values of alluvial aquifers were considered
(Alvarez and Illman, 2006). The resulting Kd value
(4.15 � 10�5 m3 kg�1) is in good agreement with values proposed
by Fetter (1993) and used by van den Brink and Zaadnoordijk
(1997) within a similar context.

The retardation factor R was determined as follows:

R ¼ 1þ ðqbKd=hmÞ ð5Þ

where qb is the bulk density (M L�3), Kd the distribution coefficient
(L3 M�1) and hm the mobile porosity.

The first-order biodegradation rate constant for benzene bio-
degradation’s estimation was based on the carbon isotope data
using Eq. (3) (see details in ‘‘Assessment of benzene biodegradation
using stable carbon isotope analysis” and ‘‘Natural attenuation of
benzene” sections).

Results on benzene transport modelling

Benzene concentrations at control planes A to E for scenarios 1
(no retardation), scenario 2 (retardation by physic-chemical atten-
uation) and scenario 3 (including all NA processes) using a loga-
rithmic scale are illustrated in Fig. 9. Although the retardation
and attenuation of benzene were expected to be away from the
source because of sorption and degradation, it is interesting to ob-

serve that degradation alone can explain the very low benzene
concentrations near the river. For scenario 3 and with a degrada-
tion rate of 3 � 10�7 s�1, benzene concentrations stabilise much
faster in comparison to scenarios 1 and 2, and concentrations are
considerably reduced. Downgradient of control plane C (80 m),
benzene concentrations are below 1 � 10�6 mg L�1. Results of
transient modelling of groundwater flow and transport are pre-
sented in Fig. 10. Benzene concentrations are presented at control
plane B (50 m to the source area), together with the Meuse River
levels and the groundwater levels for the same period. Benzene
concentrations change over time inversely to river fluctuations.
When the river water level fluctuates gently around its baseline
(i.e. 59.4 m a.s.l.), the benzene concentration is at its maximum
while when the river water level rises up to 61 m (hydraulic gradi-
ent inversion; e.g. January 2007), benzene concentration decreases
to its minimum. This is due to the fact that the benzene plume
moves backs as a consequence of the hydraulic gradient inversion
between the river and the aquifer. When the river water level re-
turns to its baseline, the benzene plume moves forward; this is
translated in an increase of the benzene concentration. During
the modelled period, benzene concentrations calculated in the
zone adjacent to the river remain under the detection limit
(lg L�1), which is in good agreement with sampling results ob-
tained in 2005 and in 2006.

The impact of river fluctuations on benzene migration was stud-
ied by running the model for scenario 5, where benzene degrada-
tion and sorption were not considered any longer. From Fig. 11 it
is to observe that the benzene concentrations, being the same at
the beginning of the simulation as those corresponding to scenario
1, are higher than concentrations presented in Fig. 10 for scenario
4. This further demonstrates that biodegradation is the main pro-
cess controlling benzene migration in the aquifer. From a purely
hydraulic point of view, the reversal of the groundwater flow direc-
tion is not efficient enough to prevent benzene migration off-site to
the Meuse River.

Discussion

It was observed in the field that benzene was present at concen-
trations on the order of mg L�1 in the source zone and also that
these concentrations decreased of several orders of magnitude
within a relatively short distance downstream from the source.
As an example, benzene concentrations on the order of lg L�1 have
been reported in piezometer U10, located 115 m downgradient the
source and located at a distance of about 50 m from the Meuse
River (corresponding to control plane D). The numerical model
demonstrated that a plume formed more than 25 years ago (i.e.
at least around 1984, at which time industrial activities in the
brownfield were stopped definitively and installations were
demolished) would extend much further the downgradient source,
in the absence of biodegradation and under the assumption of a
constant benzene source of 750 mg L�1. Consequently, high con-
centrations of benzene should be observed in groundwater close
to the river. However, benzene was never detected in the different
sampling points located in shorter distance to the Meuse River
(U15, U17, P4). The strong decrease in the benzene concentrations
over such a short distance can be attributed to biodegradation un-
der strongly reducing conditions, as confirmed by the enrichment
of 13C in benzene with increasing distance from the source. When
biodegradation is considered in the model, concentrations below
10 lg L�1 are predicted at locations downgradient control plane
B, which matches well with the measured data (Table 1). This con-
clusion is in agreement with a recent field study that used a stable
isotope-based first-order decay model to investigate the natural
attenuation of BTEX and naphthalene (Blum et al., 2009).

Table 5
Hydrodispersive and retardation parameters used for benzene transport simulations
(hm: mobile porosity; him: immobile–or less mobile-porosity; aL: longitudinal
dispersivity; aT: transversal dispersivity; a: diffusion coefficient between mobile
and immobile domains; p: fraction of sorption in contact with the immobile phase; R:
retardation factor; Kd: distribution coefficient between sorbed and dissolved phases;
Koc: soil sorption coefficient for soil organic carbon; foc: fraction of soil organic carbon;
qb: bulk density; k: first-order degradation rate constant).

Hydrodispersive and retardation parameters

hm (–) 0.04
him (–) 0.1
aL (m) 2.5
aT (m) 0.5
a (s�1) 1 � 10�7

p (–) 0.95
R (–) 3
Kd (m3 kg�1) 4.15 � 10�5

Koc (m3 kg�1) 0.083
foc (%) 0.05
qb (kg m�3) 2000
k (s�1) 3 � 10�7
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Considering the redox map of the site (Fig. 3), it becomes evident
that benzene is mainly biodegraded under sulphate-reducing
conditions. In particular, HS� concentrations higher than 1 mg L�1

are observed in zones where benzene concentrations are larger
than 1 mg L�1 in groundwater, therefore confirming this assump-
tion. The potential for anaerobic biodegradation of benzene in
the aquifer material from the site was also confirmed by a labora-
tory microcosm study, under in situ like conditions, using 13C
labeled substances. In these microcosms, 140 mg L�1 of sulphate

as main electron acceptor were initially added to groundwater
from the field site and mineralisation of benzene was observed
(Morasch et al., 2007). A complementary batch study with aquifer
material and groundwater from the site was performed to investi-
gate the fate of heavy metals (Vanbroekhoven et al., 2007). The
decrease in sulphate was monitored during degradation of acetate
as an easily available carbon source and the effect of sulphide on
heavy metal concentrations in the water phase was followed
over time.

Fig. 9. Steady state benzene concentrations (logarithmic scale) at control planes A, B, C, D and E for scenarios 1 (no sorption), 2 (R = 3) and 3 (k = 3 � 10�7 s�1) (see Table 4 for
details).

Fig. 10. Modelled transient benzene concentrations at control plane B (50 m to the
source area) for a period of 2 years (scenario 4; see Table 4 for details).

Fig. 11. Modelled transient benzene concentrations at control plane B (50 m. to the
source area) for a period of 2 years (scenario 5; see Table 4 for details).
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Based on these two microcosm approaches, it can be assumed
that the immobilisation of divalent metals like Zn and Cd as met-
alsulphides is likely to take place in the aquifer and might be linked
to the degradation of organic contaminants. The hypothesis could
also explain the low concentrations of divalent Zn and Cd in the
groundwater sampled from piezometers U15 (Vanbroekhoven
et al., 2007). On the contrary, reducing conditions are expected
to lead to a mobilisation of As(III).

Biodegradation processes have proved to be the main factor
preventing benzene migration off-site. However, near the river,
the fate of benzene or other organic contaminants could still be
influenced by groundwater–surface water interaction as follows.
Firstly, contaminants might be diluted by infiltrating river water
which would decrease measured concentrations without removing
the benzene out of the system. Secondly, infiltrating river water
might stimulate biodegradation by supplying oxidants or nutri-
ents. For PAHs such as naphthalene and acenaphthene, which
can be biodegraded in the aquifer under anoxic conditions but at
relatively low rates (Morasch et al., 2007), biodegradation by infil-
trating river water might be even more pronounced. Finally, in
areas where organic pollutants have not been reported (e.g. around
piezometers U15 and U17), oxic conditions still prevail. In this
case, As(III) might be converted to As(V) and immobilised; on the
contrary, Zn and Cd would be released.

Conclusions and perspectives

Under prevailing conditions, the risk of contaminant dispersion
to the Meuse River through groundwater discharge seems low. The
largest fraction of benzene, and possibly also of other monoaro-
matic contaminants, is predominantly degraded under sulphate-
reducing conditions. The sulphide that is released by contaminant
degrading bacteria can lead to the precipitation of divalent cations
Zn and Cd as their metalsulphides. Further downgradient source
and closer to the river, a natural attenuation of more persistent
organic contaminants could probably be enhanced by groundwa-
ter–surface water interactions. That is, groundwater level being
influenced by river water level fluctuations, because surface water
infiltration can induce the possible dilution of the front of the
plume and supply oxidants, enhancing thus benzene biodegrada-
tion. As long as sulphate remains available at elevated levels, one
can expect an efficient attenuation of organic compounds and a
subsequent immobilisation of heavy metals such as Zn and Cd in
the strongly reduced zone of the aquifer. It would be helpful firstly,
to gain more insight into the long term availability of sulphate and
secondly, to evaluate the temporal evolution of contaminant con-
centrations under the influence of fluctuating river levels in further
details. Finally, there is a need for batch experiments directly link-
ing the degradation of organic contaminants with the precipitation
and dissolution of metal cations, under various reduced conditions.
The use of a more advanced reactive transport modelling that
incorporates geochemical processes would also provide additional
understanding and knowledge on contaminant dispersion in the
studied site, in particular or their possible interactions.
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