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ABSTRACT: Relationship coefficients are tradition-
ally based on pedigree data. Today, with the develop-
ment of molecular techniques, they are often complete-
ly replaced by coefficients calculated from molecular 
data. Examples are relationships from microsatellites 
for biodiversity studies but also genomic relationships 
from SNP as currently used in genomic prediction of 
breeding values. There are, however, many situations 
in which optimal combination of both sources would be 
the best solutions. Obviously, this is the case for incom-
pletely genotyped populations, but also when pedigree 
information is sparse. Also, markers, even dense ones, 
do not reflect the whole genome and therefore give only 
an incomplete picture of relationships. The main objec-
tive of this study was therefore to develop a method 

to calculate a relationship matrix by the combination 
of molecular and pedigree data. It will be useful for 
all situations where pedigree and molecular data are 
available. In this study, based on simulations of pedi-
gree and marker data, we used partial least squares 
regression and linear regression to combine total al-
lelic relationship coefficients calculated for each marker 
with additive relationship coefficients calculated from 
incomplete pedigree. The results showed that the great-
est advantage of this method, compared with the one 
that replaces a part of the pedigree-based relationship 
matrix by a genomic relationship matrix, is that add-
ing the partial pedigree data allows for the correction 
of the molecular coefficient for the ungenotyped part of 
the genome.
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INTRODUCTION

Relationship coefficients correspond to genetic cova-
riances between related individuals expressed relatively, 
independent from the considered traits. Many authors 
contributed in a significant way to the theoretical de-
velopment of these coefficients that led to the existence 
of various definitions and denominations (Wright, 1922; 
Malécot, 1948). Knowledge of relationships among ani-
mals is useful for the study of wild populations and the 
genetic management of captive or threatened popula-

tions or both (Glaubitz et al., 2003). It is therefore 
probably one of the principal tools used to optimize 
conservation strategies (Caballero and Toro, 2002; Ver-
rier et al., 2005).

Relationship coefficients are traditionally based on 
pedigree data. But any pedigree is somewhat incom-
plete for various reasons. The most important are, first, 
that cut-off dates for recording the pedigree might ex-
ist (e.g., 1950) and, second, that animals of unknown 
origins enter the herdbooks (e.g., animals coming from 
another breed or country). Often this leads to the loss 
of relationships among individuals even if they have 
common ancestors because they are considered not 
related and their descendants not inbred (VanRaden, 
1992). With molecular data being available, pedigree-
based relationship coefficients are often completely re-
placed by coefficients calculated from molecular data. 
Examples are relationships from microsatellites for bio-
diversity studies (Caballero and Toro, 2002; Oliehoek 
et al., 2006), and genomic relationships from SNP as 
currently used in genomic prediction of breeding values 
(Zhang et al., 2007; VanRaden, 2008). However, the 
limit is that genotyping an entire population is gener-
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ally impossible due to its high cost or for logistic re-
strictions (i.e., culled, slaughtered, or foreign animals).

Consequently, there are many situations in which op-
timal combination of pedigree and molecular data in a 
single relationship matrix would be the best solution. 
This is the case for incompletely genotyped popula-
tions, but also when pedigree information is sparse. An 
example of this situation is the Skyros pony, a Greek 
indigenous horse breed that was used hereafter as a ref-
erence population for the simulations. The objective of 
this study was therefore to develop a new method to es-
timate relationships by combining molecular data with 
pedigree data. The following paper will put the method 
in a biodiversity setting, but it could be extended to 
other field of genetics, with further developments, such 
as genomic selection.

MATERIALS AND METHODS

Animal Care and Use Committee approval was not 
obtained for this study because the research was done 
on simulations.

Pedigree and Molecular Relationships

Definitions of pedigree relationships are numerous 
(Wright, 1922; Malécot, 1948; Henderson, 1976; Van 
Vleck et al., 1987; Minvielle, 1990). Combinations of 
molecular relationships with pedigree relationships can 
only be done using compatible coefficients. The addi-
tive relationship coefficient (Henderson, 1976) between 
2 animals x and y, referenced hereafter as axy, is directly 
related to the concept of identity by descent (IBD; 
Minvielle, 1990). Among the numerous molecular rela-
tionships coefficients, the total allelic relationship co-
efficient (Nejati-Javaremi et al., 1997), referenced as 
taxy between 2 animals x and y, seems to be the clos-
est match. Indeed, axy corresponds to 2 × Malecot’s 
relationship coefficient (Malécot, 1948), which is the 
probability for any locus that 1 allele drawn at ran-
dom among the 2 carried by animal x and that 1 allele 
drawn identically in animal y are IBD. The taxy coeffi-
cient, on the other hand, corresponds to 2 × molecular 
coancestry, which is the probability that for 2 alleles 
taken at random, 1 from each individual are identical. 
This molecular coefficient has the advantage that it 
applies the Malecot’s definition to the markers (Toro 
et al., 2002). However, it makes no distinction between 
IBD and identity-by-state (IBS) alleles (Fernández and 
Toro, 2006). The value of molecular coancestry (fM) for 
every pair of individuals x and y for locus l is computed 
as

fMxy,l = 1/4[Sac + Sad + Sbc + Sbd],

where the subscript l indicates the locus, the subscripts 
a, b, c, and d indicate allelic position 1 of l of individual 
x, allelic position 2 of l of x, allelic position 1 of l of in-

dividual y, and allelic position 2 of l of y, respectively, 
and S.. refers to values depending on whether alleles at 
the allelic positions in the subscript are the same (S.. = 
1) or not (S.. = 0). The computations of the total allelic 
relationship (taxy) of the 2 alleles of an individual (x) 
with the 2 alleles of the other individual (y) are done 
for each locus (l) as

taxy,l = 2 × fMxy,l,

where fMxy,l is the molecular coancestry between indi-
viduals x and y for locus l (Caballero and Toro, 2000; 
Eding and Meuwissen, 2001). Relationship matrices 
based on total allelic relationships are called TA here-
after.

New Method to Combine Molecular  
and Pedigree Relationships

Marker and pedigree information are already used 
simultaneously and independently in small populations 
to minimize inbreeding and genetic drift (Toro et al., 
1999; Wang, 2001). In QTL analysis, marker informa-
tion is combined with pedigree information to modi-
fy the genealogical coancestries that allow obtaining 
coancestries conditional to marker information (Fer-
nando and Grossman, 1989). However, the method is 
computationally very expensive. Recently, in field of 
genomic selection, some authors (e.g., VanRaden, 2008) 
combined genomic SNP-based relationship coefficients 
with pedigree-based coefficients using arbitrarily cho-
sen weighting (w). VanRaden (2008) presented a re-
gression-based approach, where the inverted formula 
was used to regress genomic coefficients toward pedi-
gree-based coefficients. The rationale behind this was 
that pedigree-based relationships would represent the 
correct expected value. However, genomic coefficients 
also do not distinguish IBS and IBD well, and the same 
is true for total allelic relationships used in this study. 
Therefore, by regressing molecular relationships on 
pedigree relationships, the starting point for consider-
ing IBD from IBS is based on the value of the constant 
term. VanRaden (2008) used some heuristics to obtain 
these regression coefficients. An alternative regression 
method, partial least square regression (PLSR), which 
corresponds better to these objectives, will be used in 
this study. The PLSR method can be described as a 
method in which both the independent and dependent 
variables are projected toward a common space to ex-
plain the maximum variance of the dependent variable 
(SAS Inst. Inc., Cary, NC). A second modification of 
the regression approach of VanRaden (2008) is the cre-
ation of a reference population to establish genealogi-
cal relationships, reflecting expected relationships in a 
complete pedigree and used to derive combining equa-
tions.

In a preliminary step, reference relationships are 
computed with a tabular method (Emik and Terrill, 
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1949) for animals having the greatest completeness of 
pedigree. In this study, these relationships were calcu-
lated on simulated pedigree, considered to be complete 
(100 yr of simulation, 15 known generations for living 
animals). These coefficients correspond to the theoreti-
cal expected values of relationships; the exact values 
are expected to be distributed around these values.

In a first step, prediction equations for reference re-
lationships were obtained by PLSR with single locus 
TA matrix coefficients as independent variables. The 
resulting equation combining the number of genotyped 
loci (nl) can be summarized as

	 a b b ta exy CPED l xy l
l

nl

xy, , ,= + ( )+
=
å0

1

	 [1]

where axy,CPED is the additive relationship coefficient be-
tween individuals x and y calculated on the complete 
pedigree (CPED) of the reference population, taxy,l is 
the total allelic relationship coefficient between indi-
viduals x and y for locus l, b0 and bl are respectively 
the intercept and the regression coefficients for the lth 
locus, and exy is the corresponding residual. Use of this 
PLSR procedure in a multiple-marker situation has the 
great advantage of giving a different weight to each 
marker. It takes into account that each marker has a 
different degree of informativeness. As explained be-
fore, this equation can be considered as a generalization 
of one of the methods described by VanRaden (2008), 
which is based on a single regression. Furthermore, in 
this method, the nature of the single locus relationship 
coefficients can be different from a total allelic relation-
ship as long as they are compatible.

As the markers describe only the regions of the ge-
nome, which are in linkage disequilibrium with the 
marker, the residuals were considered to capture the 
part of the genome that is not explained by the mark-
ers. Therefore, in addition to VanRaden (2008), we ex-
plained, in a second step, these residuals further by 
using least squares to regress additive relationship coef-
ficients obtained from the incomplete pedigree, created 
by random deletion of known parents, on adjusted rela-
tionships axy CPED,

*  using Eq. [2].

	 a a b ta b b a exy CPED xy CPED l xy l
l

nl

P xy IP xy,
*

, ,
*

,
*ˆ ,= - ( ) = + +

=
å

1
0 		

		  [2]

where axy IP,  is the additive relationship coefficient be-

tween individuals x and y calculated on the incomplete 
pedigree (IP), and b0

*  and bP  are the additional linear 
regression coefficients.

Based on the combination of Eq. [1] and Eq. [2], the 
prediction of combined relationship coefficients between 
animals x and y was obtained, in a third step, through 
formula Eq. [3]:

	 ˆ ˆ ˆ ˆ ˆ ., ,
*

,a b b ta b b axy combined l xy l
l

nl

P xy IP= + ( )+ +
=
å0

1
0 	 [3]

The matrix, which contains these coefficients, is called 
Acombined. The hypothesis behind this is that pedigree, 
even if incomplete, contains information on the propor-
tion of the genome that is shared by x and y for the 
ungenotyped part of the genome.

To test this last hypothesis, Eq. [3], hereafter called 
the full prediction equation (FPE), was compared with 
a reduced prediction equation (RPE; i.e., without the 
terms that include the pedigree (ˆ ˆ ).*

,b b aP xy IP0 +  For this 

comparison, the obtained regressions coefficients and 
intercept calculated on simulated pedigree and geno-
types are applied to other data (i.e., to other pedigree 
and genotypes having similar characteristics). Correla-
tion coefficients between predicted values and expected 
values obtained from CPED, considered as the true 
theoretical value of the relationship among individuals, 
were computed. The residuals obtained with the 2 equa-
tions were also compared.

Integration of Ungenotyped Animals

The procedure as described will only combine rela-
tionship coefficients of genotyped animals. However, 
the relationships between ungenotyped and genotyped 
animals as well as among related ungenotyped animals 
could be affected by the modification of relationships 
among genotyped animals. Modification of the com-
plete A matrix, calculated on incomplete pedigree, is 
therefore required. The resulting relationship matrix 
will be called the modified relationship matrix and 
written Amodified. Based on a suggestion by Gengler et 
al. (2007) that gene content could be modeled using 
the usual mixed model methodology, the propagation 
of relationships can be derived. As shown recently by 
several authors (e.g., Legarra et al., 2009; Christensen 
and Lund, 2010), by writing conditional distributions 
and predicting ungenotyped from genotyped animals, 
the following equation providing the inverted complete 
Amodified matrix can be derived, animals being consid-
ered sorted (ungenotyped before genotyped):

	 A A
0 0

0 A Amodified
combined genotyped

( ) = +
( ) -( )

é

ë

ê
ê
ê
ê

ù

û

ú- -
- -

1 1
1 1 úú

ú
ú
, 		

		  [4]

where the elements of Acombined( )-1
 are obtained through 

inversion of the combine matrix obtained using the 
strategy explained before, and Agenotyped is the pedigree-
based relationship matrix among genotyped animals. 
This modified matrix can then be directly used in ge-
netic evaluation programs or be inverted back to Amodified 
and used in programs for the management of small 
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breeds (e.g., GENCONT; Meuwissen, 2002). Equiva-
lent equations on a noninverted scale were established 
by Legarra el al. (2009), and their equivalence to Eq. [4] 
was shown by Aguilar et al. (2010) and Christensen and 
Lund (2010).

To test this new method to combine relationships, 
the relative errors between true relationship values, cal-
culated on the simulated CPED, and estimations ob-
tained in AIP or in Amodified were compared. Calculation 
of relative error was based on the Frobenius norm, as 
described by Misztal et al. (1995). This method has 
the advantage to be convenient for comparison of co-
variance matrices with similar diagonal elements. The 
biases of both estimations as well as the probability 
density function of the residuals were also calculated.

Simulations of Complete and Incomplete 
Pedigree and of Genotypes

This study was realized on simulated pedigree and 
marker data, 5 pedigrees were simulated and consid-
ered as complete (CPED1 to CPED5). Population pa-
rameters of the Skyros pony breed (e.g., age of sire/
dam at first calving, number of descendants per sire/
dam, maximum death age), were used as input for the 
simulation programs. We selected these CPED to have 
around 200 living animals (and around 900 animals in 
total), as the Skyros pony breed, and similar number 
of founders genome (between 15 and 20) than estimat-
ed for this breed. The genotypes of the living animals 
were considered to be known. Level of inbreeding was 
consequently high in the 5 pedigrees, as is the case of 
small populations or population with bottlenecks (be-
tween 13.57 and 33.08%); this situation gives also the 
opportunities to test the influence of inbreeding on the 
effectiveness of this new method. For these pedigrees, 
we have an above average knowledge of the pedigree 
of living animals [i.e., over 15 generation-equivalents 
(GEQ) for the 5 simulations]. For each CPED, 10 IP 
were also obtained by putting randomly a fraction of 
the parents to unknown. In 5 cases (IP A1 to A5), 25% 
of paternal records and 25% of maternal records were 
randomly deleted (with 5% in common). In the 5 other 
cases (IP B1 to B5), 40% of paternal records and 30% 
of maternal records were randomly deleted (with 20% 
in common) to be consistent with what we observed for 
the Skyros pony. This allows obtaining an average pedi-
gree knowledge for the living animals of about 3.06 and 
1.84 GEQ, respectively. Based on this simulated CPED 
and IP records, axy,CPED and axy,IP were calculated using 
the tabular method (Emik and Terrill, 1949).

Genotypes were distributed across the simulation of 
CPED by gene dropping. For each founder, 25 markers 
were simulated. The allelic frequencies were considered 
equal to 1 divided by the number of alleles in the found-
er population. The number of alleles was randomly se-
lected between 3 and 15. For each CPED, 10 repetitions 
of marker transmission were realized (data1 to data10). 
Genotypes were considered as known only for the living 

animals. Based on this simulation, 25 TA matrices were 
calculated, one for each simulated locus. Consequently, 
the intercept and 25, for RPE, and 26, for FPE, regres-
sion coefficients were obtained using CPED1, data1 of 
CPED1 and, only for FPE, IP A1 of CPED1. The ob-
tained coefficients were tested, first, on the other data 
and incomplete pedigree of CPED1. Second, those co-
efficients were tested on the 4 other pedigrees (2 with 
lower inbreeding level and 2 with greater inbreeding 
level) and the corresponding incomplete pedigrees and 
data.

RESULTS AND DISCUSSION

Combination of Molecular and Pedigree 
Relationships

The regression coefficients b1 to b25 obtained using 
CPED1 and data 1 of CPED1 for RPE and FPE are 
equal by definition and ranged, in this case, from 0.006 
to 0.045. We observed, as expected, that the coefficients 
were following the same pattern as the informativeness 
of markers (results not shown), calculated by the poly-
morphism information content (Botstein et al., 1980). 
The PLSR gave the least weight to the less informative 
markers and the greatest weight to the more informa-
tive markers. Through their derivation, the differences 
between the 2 equations were that FPE had an ad-
ditional regression coefficient (bP), obtained using IP 
A1 of CPED1, corresponding to the addition of a new 
term and that the intercept was modified by adding b0* 
to b0. The bP was equal to 0.378; this value was bigger 
than the weights obtained for each marker because the 
pedigree-based coefficient, even if incomplete, reflects 
the unexplained part of the genome. The other differ-
ence is that adding b0* to the intercept decreased the 
total value of the intercept, what is also a consequence 
of the inclusion of more information in the estimation.

The equations RPE and FPE were tested on other 
data and the other IP of CPED1, we obtained a signifi-
cant increase of the correlation with FPE as well as a 
decrease of all parameters describing the residuals (Ta-
ble 1). This was a consequence of the inclusion of more 
information in FPE. The high range of values of the 
residuals expressed that the residuals capture the dif-
ference between theoretical value of relationship, which 
measure the probable proportion of genes that are alike 
for 2 individuals due to their common ancestry, and 
“real” relationship, which is affected by Mendelian sam-
pling. For example, 2 full-sibs share theoretically 50% 
of their genome, but in reality, they can share 0%, if by 
chance they get a completely different part of the ge-
nome of their parents, to 100% of their genome, if they 
are twins. The mean residual was slightly negative be-
cause molecular-based relationship coefficients have the 
tendency to overestimate the relationships. Explanation 
of this overestimation was that molecular-based estima-
tors account not only for the IBD that arises during the 
population history (genealogical coancestry), but also 
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for the IBS present in the founder population (Toro et 
al., 2002; Fernández and Toro, 2006). However, account-
ing for the pedigree relationship value in the estimation 
decreased this overestimation of about 15%. The differ-
ences in the range and in the interquartile range of the 
residuals showed that the use of FPE also decreased 
the dispersion of these residuals. No significant differ-
ences were detected between the results obtained with 
IP of case A and IP of case B (results not shown). So, a 
pedigree of poor quality can give information about the 
theoretical part of the genome shared by individuals, 
independent of the depth of this one, at least for the 
genotyped individuals.

In practice, RPE could be computed from genotyped 
animals having complete pedigrees down to the base 
generation. In these cases, the method assumes that 
a sufficient number of animals with complete pedigree 
and well-known relationships were genotyped in addi-
tion to the animals of interest (e.g., animals with large 
number of descendants and unknown parents). For the 
Skyros pony, this was not the case, so it was necessary 
to simulate a pedigree and genotypes with similar char-
acteristics as the one of the population under study.

We tested these 2 equations on other pedigrees with 
greater or lower inbreeding level (Table 2). Again, the 
results were better when we used FPE. When applied 
on pedigree with lower inbreeding level than the one 
used for the development of the equation, the results are 
equivalent or slightly better. When applied on pedigree 

with a greater inbreeding level, results for all param-
eters decreased but remained significantly better than 
the one obtained with RPE. The range of values of 
the residuals has the tendency to stay similar between 
pedigrees. A possible explanation is that the inbreeding 
level introduced only a bias in the results. If confirmed 
by further experiments, this will allow for the calcu-
lation of the weight of the markers independent from 
the inbreeding level. The inbreeding level could then be 
used to calculate the intercept.

Integration of Ungenotyped Animals

After addition of this combined information in the 
complete relationship matrix, the mean relative error 
between true relationship values, calculated on CPED, 
and estimations obtained in AIP is equal to 0.931, 
whereas the mean relative error between true relation-
ship values and estimations obtained in Amodified is equal 
to 0.607. These values quantified the dispersion of the 
results; there is thus a decrease of 34.83% of the dis-
persion of the results when we combined pedigree and 
genotypes in a single matrix.

The total mean bias of estimations calculated with 
classical tabular method on IP was equal to 0.243, 
whereas bias of estimations obtained with modified 
matrix was equal to 0.149. Again, there is a strong 
decrease (39.07%) between the 2 values. These observa-
tions are reflected in Figure 1. With IP, the estimated 
values are always inferior (i.e., the curve starts at 0) to 
the true values, which creates an increased dispersion 
of the results and an increased bias. On the other hand, 
the presence of residuals inferior to 0 with modified es-
timations expressed that relationships can by chance be 
not only less but also greater than the theoretical value. 
If the estimations were perfect, the probability density 
function would have been a normal curve centered on 
0. This is not the case because some animals have no 
genotyped descendants; it is consequently impossible to 
transmit the molecular information to these animals. 
Figure 1 also shows that the results are better when 
the method is developed on IP with the same depth. 
When the method is tested with other pedigree of type 

Table 1. Correlation between true-simulated and pre-
dicted relationships and parameters describing the re-
siduals obtained with the reduced prediction equation 
(RPE) and the full prediction equation (FPE) applied 
on complete pedigree 1 

Parameter RPE FPE

Correlation (SD) 0.647 (0.023) 0.814 (0.015)
Residual
  Mean (SD) −0.040 (0.079) −0.034 (0.063)
  Range 0.816 0.577
  IR1 0.090 0.085

1IR = interquartile range.

Table 2. Correlation between true-simulated and predicted relationships and param-
eters describing the residuals obtained with the reduced prediction equation (RPE) and 
the full prediction equation (FPE) applied on pedigrees with greater or less inbreeding 
than pedigree 1 

Parameter

Less inbreeding Greater inbreeding

RPE FPE RPE FPE

Correlation (SD) 0.665 (0.016) 0.827 (0.009) 0.478 (0.032) 0.707 (0.022)
Residual
  Mean (SD) −0.062 (0.075) −0.057 (0.060) 0.120 (0.074) 0.125 (0.067)
  Range 0.809 0.578 0.746 0.571
  IR1 0.082 0.079 0.093 0.096

1IR = interquartile range.
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A (on the left), the curve is much closer to a normal 
curve than when we test the method on IP of type B 
(on the right) and the center of the curve is also closer 
to 0, which expressed a smaller bias. This observation 
showed that, if no significant differences were detected 
between the results obtained with IP of case A and IP of 
case B when we considered only the genotyped individ-
uals, differences appear when ungenotyped individuals 
are integrated. The explanation could be that the small 
difference that we considered as not significant is expo-
nentially increased when the information is transmitted 
to the ancestors of the genotyped individuals. Because 
there are fewer links in the pedigree, some links are not 
re-created and residuals increased. If the method is, as 
in this case, developed on simulated pedigree, the solu-
tion is always to calculate the regressions coefficient on 
a simulated pedigree with worse characteristics than 
what we observed in reality. The need to simulate pedi-
gree occurs when there are not enough animals with re-
quired completeness of pedigree (i.e., having complete 
pedigrees down to the base generation). 

In both cases, dispersion and bias, there were strong 
differences between values obtained with incomplete 
pedigree of type A and of type B (Figure 1), showing 
that even if there are no differences in case of the geno-
typed animals, there is one when the genotyped matrix 
is integrated in the complete matrix.

Conclusions

In conclusion, this method is a promising strategy 
to combine molecular information with genealogical in-
formation into a single relationship matrix, which is 
similar to A. Compared with the methods of VanRaden 

(2008) and Aguilar et al. (2010), this new method used 
PLSR to assign a weight to each marker, which seems 
to be linked to their informativeness, which solves the 
problem of giving an arbitrary weight (e.g., w in Van-
Raden, 2008) to the genomic matrix before combining 
it to the pedigree matrix. Even if w is related to bP, 
because both are a way (one empirical, the other calcu-
lated) to account for the polygenic effect not explained 
by the marker, their precise theoretical relationship is 
yet unclear. This method thus modifies the additive 
relationship matrix for “genomic” information but also 
corrected this molecular information for the ungeno-
typed part of the genome.
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