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Automated manufacturing systems

Keywords: numerically controlled (NC, CNC) machines, flexible
manufacturing systems (FMS), robots, ...

Main feature: flexibility
variety of operations,
rapid changes of tools,
flexible material handling systems.

Particularly well adapted for production of small series.
But also used for automation of repetitive manufacturing.
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Industrial applications

Applications include: laser, flame and plasma cutting, welding,
bending, spinning, pinning, gluing, fabric cutting, sewing, tape
and fiber placement, routing, picking and placing, sawing, etc.

Large variety of situations⇒ large variety of models.

Focus here on two types of situations:

Models:
tool management for NC machines
flexible assembly lines

special, reasonably “clean” types of combinatorial machine
scheduling problems
connexions with many other problems and structures.
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Batch selection
Tool switching

Tool management problems

Main features
automated tool interchanging device
can switch tools very fast between the tool magazine
(carousel) and the workhead
allows each machine to perform various operations with
very small setup times.
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CNC machine
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Vertical machining centers
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Tool carousels
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Tool changes

Videos:

http://www.metacafe.com/watch/2649895/limac_
r4000atc_series_cnc_router/

http://www.youtube.com/watch?v=HSsKVHrMg2E

http://www.youtube.com/watch?v=ezTdFDD5db0
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PCB assembly

Similar situations arise in printed circuit board assembly.

http://www.youtube.com/watch?v=g2TXhqCq9-c
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Setup minimization

Tool setup minimization:

limited size of the tool magazine (say, 10 to 120 tools)
many more tools may be stored in a central storage area
transferred to the machines as required
costly, slow, error-prone operations

One-machine scheduling with tooling decisions:

Simultaneously
sequence parts to be processed and
allocate tools required to the machine

so as to minimize tool setup costs.
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Setup minimization

Various models for setup minimization.

Common data
M: number of tools;
N : number of parts;
A : M × N tool-part matrix:
aij = 1 if part j requires tool i , 0 otherwise;
C : capacity of the tool magazine ( = number of tool slots)

Feasible batch
A batch of parts is feasible if it can be carried out without tool
switches, i.e., if it requires at most C tools.
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Example

Capacity: C = 3

Parts
Tools P1 P2 P3 P4 P5

T1 1 0 1 0 1
T2 1 0 0 1 0
T3 0 1 1 1 0
T4 0 1 0 0 1
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A basic model

Batch selection
Find a feasible batch of maximum cardinality.

Equivalently:

Batch selection
Find a largest subset of columns of the tool-part incidence
matrix such that the submatrix induced by this subset has at
most C nonzero rows.

or...

Batch selection
Given a hypergraph, find a subset of C vertices that contains
the largest possible number of hyperedges.

Yves Crama Combinatorial Optimization Models in Automated Manufacturing



Automated manufacturing
Tool management

Flexible assembly lines

Batch selection
Tool switching

Example

Capacity: C = 3

Parts
Tools P1 P2 P3 P4 P5

T1 1 0 1 0 1
T2 1 0 0 1 0
T3 0 1 1 1 0
T4 0 1 0 0 1
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Complexity

Theorem
Batch selection is NP-hard.

Generalization of maximum clique.

Many papers on this problem:
integer programming
heuristics
special “graphical” case
subproblem for part grouping problem: partition parts into
small number of feasible batches (minimize setups).
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Heuristics

Problem is hard −→ heuristics are appealing.

Mostly based on priority lists: selection rule is used iteratively to
add parts to the current batch, as long as magazine capacity
allows.

Empirically, most successful selection rules rest on variants of
the Maximal Intersection rule:

Maximal Intersection rule
Among the parts not yet selected, select one that shares the
maximum number of common tools with the parts already in the
batch.
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Worst-case ratio

From a theoretical point of view, one may ask:

Worst-case ratio
What is the (theoretical) worst-case ratio of heuristics for the
batch selection problem, where:

wcr =
optimal value
heuristic value

?
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Analysis

Observe:
every heuristic puts at least one part in the batch
every feasible batch contains at most

( C
[C/2]

)
parts.

Worst-case ratio
For every heuristic,

wcr =
optimal value
heuristic value

≤
(

C
[C/2]

)
= Ω(

2C
√

C
)

Crama and van de Klundert (1999) proved:

Theorem
The worst-case ratio of the list-processing heuristic based on
the Maximal Intersection selection rule is of the order of

( C
[C/2]

)
.
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Analysis

Several other heuristics have similar worst-case performance
ratios.

Question
What is the best worst-case ratio attainable by a
polynomial-time approximation algorithm for batch selection?
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Analysis

Crama and van de Klundert (1999) proved:

Theorem
If there is a polynomial-time approximation algorithm with
constant worst-case ratio for batch selection, then there is also
a polynomial-time approximation scheme for this problem.

Conjecture
There exists no polynomial-time approximation algorithm with
constant worst-case ratio for batch selection, unless P = NP.

Perhaps even true:

Conjecture
There exists no polynomial-time approximation algorithm with
worst-case ratio O(poly(C)) for batch selection, unless P = NP.
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Model

Recall:
when a sequence of parts is processed, tools need to be
loaded on the machine between certain pairs of
successive operations
(and other tools need to be removed in order to create
space).

Tool switching problem
Determine a part input sequence and an associated sequence
of tool loadings such that the total number of tool switches is
minimized.
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Example

Capacity: C = 3

Parts
Tools P1 P2 P3 P4 P5

T1 1 0 1 0 1
T2 1 0 0 1 0
T3 0 1 1 1 0
T4 0 1 0 0 1

The part sequence P1,P2, . . . ,P5 requires 3 tool switches.
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Capacity: C = 3

Parts
Tools P1 P2 P3 P4 P5

T1 1 0 1 0 1
T2 1 0 0 1 0
T3 0 1 1 1 0
T4 0 1 0 0 1

The part sequence P1,P2, . . . ,P5 requires 3 tool switches.
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Analysis

Note: two distinct subproblems
sequence the parts
given the part sequence, optimize tool loadings.

Concentrate on

Tool loading problem

Given a part sequence, find the sequence of tool loadings that
entails the smallest number of tool switches.

Note: Related problems in computer memory management
(“paging problem”) or Web caching applications.
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Some old results

An optimal tooling can be computed in time O(MN) by the
KTNS (Keep Tool Needed Soonest) algorithm (Belady
1966; Tang, Denardo 1988).
Variant with tool-dependent setup times can be formulated
as an integer programming problem whose constraint
matrix has the consecutive ones property (Crama, Kolen,
Oerlemans, Spieksma 1994)

reducible to a network max flow problem;
yields KTNS when all setup times are equal.

More general version with tool-dependent switching times
can be directly formulated as a network max flow problem
(Finke, Privault 1993).
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More recent results

Previous results apply when all tools occupy exactly one slot.
What if some tools require more slots?
Crama, Moonen, Spieksma and Talloen (2007):

Theorem
Tool loading with arbitrary tool sizes is strongly NP-hard, even
with unit switching costs.

Theorem
Tool loading with arbitrary tool sizes can be expressed as a
shortest path problem on a graph with O(MCC!) nodes.
(Polynomial for fixed C.)
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Back to tool switching

What if the part sequence is not fixed?

The tool switching problem is NP-hard even when C = 2.
(Reduction from VLSI gate matrix permutation problem.)
Many heuristics, but very hard to solve exactly. (Difficult to
compute tight lower bounds on the optimal value.)
Very possible that, here again:

Conjecture
There exists no polynomial-time approximation algorithm with
worst-case ratio O(poly(C)) for the tool switching problem,
unless P = NP.
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Industrial robots

Main features
can perform a broad variety of tasks
can be used as flexible material handling devices
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Industrial robots

Video: http://www.youtube.com/watch?v=
xJVhe2QXDUA&feature=player_embedded
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Circular robotic cell
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Linear robotic cell
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Robotic cell flowshops

m machines in line (or on a circle), without buffer space:
M1,M2, . . . ,Mm

loading station M0 and unloading station Mm+1

set of parts to be produced by the line
a unique robot loads and unloads the parts

Robotic cell scheduling
Determine

a sequence of parts,
a robot activity sequence,
a production schedule (start/end times),
so as to minimize cycle time (maximize throughput).
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Additional details

Here:
cycle time = average time elapsed between successive
outputs
throughput = average number of parts per time unit

Number of parts:
finite (−→ minimize makespan)
infinite: a given set of parts (Minimal Part Set, MPS) is to
be produced repeatedly (−→ minimize the asymptotic
cycle time).
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Additional details

Duration of operations:
processing intervals : [Lkj ,Ukj ]

classical (free) case : Ukj =∞
no-wait : Lkj = Ukj

Robot travel time: dij = travel time from Mi to Mj .
symmetry: dij = dji

triangular inequalities: dij ≤ di` + d`j

additivity: dij = di` + d`j

Many other variants: multiple robots, finite buffers, reentrant
flowshops, parallel machines, different optimality criteria, etc.
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Publications

Many publications over the last 20 years.

Structural properties of optimal schedules
Algorithmic complexity
Approximation algorithms
etc.

See:
Dawande, M., Geismar, H.N., Sethi, S.P. and Sriskandarajah, C.,
Throughput Optimization in Robotic Cells, Springer, NY, 2007.

Brauner N., Identical part production in cyclic robotic cells: Concepts,
overview and open questions, Discrete Applied Mathematics 156
(2008) 2480-2492.

Yves Crama Combinatorial Optimization Models in Automated Manufacturing



Automated manufacturing
Tool management

Flexible assembly lines

Robotic cells
Assembly lines with flexible operations

Today’s assumptions

We mostly concentrate here on:

repetitive production of identical parts
cycle time minimization
free-processing case : Ukj =∞
no intermediate buffers
additive robot travel times.
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Structure of robot move sequences

In traditional scheduling models, we must take care of the part
input sequence.
Here, we need to consider robot move sequences.
A robot activity Ai is a sequence of robot moves in which the
robot:

1 unloads machine Mi

2 travels from Mi to Mi+1

3 loads machine Mi+1

Every sequence of robot moves can be decomposed into a
sequence of robot activities.
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1-Unit cycles

1-Unit cycles
A 1-unit cycle is a sequence of activities which unloads exactly
one part in the output buffer and which returns the cell to its
initial state.

(In particular, every activity is performed exactly once and the
cycle can be repeated indefinitely.)
Simulation: http://www.ie.bilkent.edu.tr/~robot/

Theorem
Every permutation of A0, . . . ,Am is a 1-unit cycle (and there are
exactly m! 1-unit cycles).
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1-Unit Cycles

1-unit cycles are attractive for practical and theoretical reasons:

simplicity of implementation
the optimal 1-unit cycle can be computed efficiently
1-unit cycle conjecture

Yves Crama Combinatorial Optimization Models in Automated Manufacturing



Automated manufacturing
Tool management

Flexible assembly lines

Robotic cells
Assembly lines with flexible operations

Optimal 1-Unit Cycles

Complexity
What is the complexity of computing an optimal 1-unit cycle?

Note:
remember: a 1-unit cycle corresponds to a permutation of
the activities A0, . . . ,Am;
for fixed m: enumerate all m! 1-unit cycles;
what about general m?
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Pyramidal Cycles

Crama and van de Klundert (1997) proved:

Theorem
There is a pyramidal cycle that minimizes the average cycle
time among all 1-unit cycles.

What is a pyramidal cycle?

a cycle π = (A0,Ai1 ,Ai2 , . . . ,Aim ) is pyramidal if the indices
i1, i2, . . . , im are first increasing, then decreasing.

Examples
πU = (A0,A1,A2, . . . ,Am−1,Am) (push, uphill);
πD = (Am,Am−1, . . . ,A2,A1,A0) (pull, downhill);
π = (A0,A2,A4,A5,A7,A6,A3,A1).
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Pyramidal Cycles

there are 2m−1 pyramidal permutations on m indices;
pyramidal permutations have been first investigated in
connection with the traveling salesman problem;
for the TSP, an optimal pyramidal permutation can be
computed in polynomial time;
this result does not extend in a straightforward way to
robotic cells; but...

Crama and van de Klundert (1997) proved:

Theorem
For a robotic cell with m machines, a pyramidal cycle that
minimizes the average cycle time can be computed in O(m3)
time.
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Note:
discussion was restricted to identical parts and additive
travel times
other versions of the problem are NP-hard.

We mentioned earlier: 1-unit cycles are attractive for practical
and theoretical reasons:

simplicity of implementation
the optimal 1-unit cycle can be computed efficiently
1-unit cycle conjecture

1-Unit Cycle Conjecture
There is a 1-unit cycle that minimizes the average cycle time
over all possible production cycles.

Yves Crama Combinatorial Optimization Models in Automated Manufacturing



Automated manufacturing
Tool management

Flexible assembly lines

Robotic cells
Assembly lines with flexible operations

Reformulation...
A k -unit cycle is a sequence of activities which unloads exactly
k parts in the output buffer and which returns the cell to its
initial state.

1-Unit Cycle Conjecture
There is a 1-unit cycle that minimizes the average cycle time
over all possible k -unit cycles.
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1-Unit Cycle Conjecture

Proof of the conjecture:

2 machines: Sethi et al. (1992)
3 machines: Crama and van de Klundert (1999)

Disproof of the conjecture:
The conjecture fails in general: when m > 3, the best
1-unit cycle may be suboptimal (Brauner and Finke 2001).
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Extensions

Since 1-unit cycles do not necessarily minimize cycle time,

Complexity
What is the complexity of computing an optimal (cyclic) robot
move sequence?

Problem has been open for 20 years.
More restrictive version:

Complexity of k -unit cycles
Given k ≥ 2, what is the complexity of computing an optimal
k -unit cycle?

Also open.
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Approximation properties

Alternatively: how good are 1-unit cycles in general?

Theorem
(Crama and van de Klundert 1997) The cycle time of the
downhill permutation πD = (Am,Am−1, . . . ,A2,A1,A0) is at
most twice the optimal cycle time.
(Geismar, Dawande and Sriskandarajah 2005) There is a
pyramidal permutation whose cycle time is at most 1.5
times the optimal cycle time.
(Geismar, Dawande and Sriskandarajah 2007) There is a
pyramidal permutation whose cycle time is at most
10/7 = 1.43 times the optimal cycle time.
Better yet??
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Open questions

Many other variants and results.
Main open questions:

Complexity
What is the complexity of computing an optimal (cyclic) robot
move sequence?

Complexity of k -unit cycles
Given k ≥ 2, what is the complexity of computing an optimal
k -unit cycle?

Smallest optimal k -unit cycles

For an m-machine cell, what is the smallest value of k = k(m)
such that k -unit cycles are optimal?
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Two-Machine Flowshops with Flexible Operations

Crama and Gulktekin (2010) investigate

Flowshop/assembly line with two flexible machines.
Identical parts require three operations.
Fixed operations can only be processed on a specific
machine: operation oi requires fi time units on machine Mi .
One flexible operation with processing time s can be
processed by either one of the machines.

Flexible assembly scheduling

Determine the assignment of the flexible operation to one of the
machines (for each part) and compute a schedule that
maximizes the throughput rate.
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Variations

Different problems depending on:

Buffer capacity between machines: 0, finite or infinite
Number of parts: finite or infinite

A main difficulty:

A problem instance is defined by 5 numbers: f1, f2, s, buffer
capacity b and number of parts n.
(Similar to robotic cell scheduling with 2 machines).

−→ High-multiplicity scheduling problem
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Main results

Infinite buffer case and the no-buffer case: the optimal
makespan (or cycle time) and the starting time for each
part can be computed in polynomial (constant) time.
Finite buffer case: polynomial-delay algorithm; the
algorithm proceeds sequentially, part after part; it requires
O(I) computing time to determine the assignment of the
flexible operation for the next part and O(I) time to
determine the optimal makespan (or cycle time).
Never more than 3 parts in the buffer.

Open questions
Can the complexity be improved in the finite buffer case?
Extensions to more complex situations: non-identical
machines, more machines, etc.
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