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Abstract

Technical analysis (TA) has been used for a long time before the availability of more sophisticated instruments for

financial forecasting in order to suggest decisions on the basis of the occurrence of data patterns. Many mathematical and

statistical tools for quantitative analysis of financial markets have experienced a fast and wide growth and have the power

for overcoming classical TA methods. This paper aims to give a measure of the reliability of some information used in TA

by exploring the probability of their occurrence within a particular microeconomic agent-based model of markets, i.e., the

co-evolution Bak–Sneppen model originally invented for describing species population evolutions. After having proved

the practical interest of such a model in describing financial index so-called avalanches, in the prebursting bubble time rise,

the attention focuses on the occurrence of trend line detection crossing of meaningful barriers, those that give rise to some

usual TA strategies. The case of the NASDAQ crash of April 2000 serves as an illustration.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Quantitative analysis of financial market data has well assessed several properties like the long term memory
in volatility [1–4], returns [5–7], speculative bubbles [8], and the presence of fractals [9] that has been
extensively studied since a pioneering paper [10]. Many mathematical and statistical models [11–16] are
available nowadays for a phenomenological description of financial data, while rigorous theoretical
frameworks have shown to be able to encapsulate some conjectures like the Elliot waves [17].

Alongside the descriptive analysis of macroeconomic quantities, theories derived for complex systems can
explain the aggregate behavior of markets through the analysis of its components at the microeconomic level.
Microeconomic models of financial markets rank in complexity from the simplest models, typically
considering the interaction of two main types of agents—the fundamentalists and the chartists [18–21]—to the
most heterogeneous types of agents; an intermediate step considering the presence of noise traders that act
e front matter r 2006 Elsevier B.V. All rights reserved.
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either without market information or not caring about the fundamentals, thus creating white noise, while
mean reversion effects [22] can be accounted due to the activity of fundamentalists. The first question to be
raised is whether a microeconomic approach can be found based on insight about the mechanism of the
formation of financial quantities. If investigations of micro- or macroeconomic models rely on simulation
frameworks whenever more theoretical tools are not available, the evaluation of investment strategies driven
by models, even empirical ones, like those leading to technical analysis (TA) is a need. Nevertheless, it is
difficult to implement them, even through simulations of multiagent systems, because of the lack of reliability
of the parameters. Indeed it is not easy to perform computer simulations of markets with interacting agents
that trigger their orders on the basis of TA patterns because TA rules are more complex than those commonly
assigned to chartists and fundamentalists in computer simulations. Moreover, to get the best trading decision
is still an art, independently from a model sophistication; indeed the interpretation of charts heavily relies on
the expertise of the analyst.

Therefore, we study model property and statistics instead of trying to draw results relying on heavy
computer simulations of a multiagent system.

On the other hand, a decision based on financial signal TA must take into account the temporary
occurrence of several patterns. However, to start the study of the occurrence and of the reliability of the
simplest components is a compulsory step towards the comprehension of more complex configurations. This
can in turn lead to a systematic assessment of the expertise of such a kind of market analysts.

A cornerstone for TA comes from the expertise of Charles H. Dow that developed the set of methods that
are gathered under the name of Dow theory. Dow theory [23] considers major trends as those lasting more
than one year. Intermediate trends are those that range from a minimum of three weeks to a maximum of
several months, as those which can be useful in futures markets. Short trends can be identified for time
intervals shorter than two or three weeks. Thus, it is very important to decide upon a reliable time interval for
implementing a strategy, before trying to define any trend. Statistics of trend lines will be exploited on the
aggregate of the proposed microeconomic model and compared with the results obtained on raw data. Such
analyzes should show their power at their best when performed during periods of high risk exposure. Among
them the rising part of speculative bubbles of market indices, due to endogenous causes, has been chosen
below because of the availability of already well assessed theories [24–28]. It is worth remarking that stock
market indices actually are a weighted mean of stock prices. To perform buy/sell strategies on stock market
indices (eventually triggered by TA signals) has the meaning to buy/sell a previous selected financial product
replica of the index (Exchange Traded Funds, ETF, certificates).

Therefore, the aim of this paper is twofold. The first task is to set up a microeconomic approach based on
insight about the mechanism of the formation of financial quantities; the second target is to show how to use
the property of the aggregate rising from the model structure in order to evaluate the reliability of already
often used methods like those found by chartists in so-called TA [29]. In particular, the analysis will focus on
the probability estimate of the occurrence of trend lines slopes and on the estimate the probability of trend
lines crossing.

The paper is organized as follows. The next section shortly gives an overview of the main properties of the
NASDAQ July 2000 crash, of its statistical properties, and shows the bases of the models that we are going to
apply and how to combine them for data modeling. Section 3 introduces TA signals of interest, in particular
so-called barriers. Section 4 shows how to use the model information in order to set up a tool in order to
estimate both the occurrence of barrier crossing and the formation of a trend line.

Section 5 serves as a conclusion and suggestions for going beyond the present work. It will appear that the
numerical values used to build the agent-based model describing the financial index are those of the two-
dimensional square lattice Bak–Sneppen (BS) co-evolution model [30]. For completeness the one-dimensional
case is treated in the Appendix.

2. Microeconomic model

This section aims to set up a model for the rising part of speculative bubbles due to endogenous causes in
order to capture data features as the property of long term memory, the distribution of the size of fluctuations
around at the mean, and the main trend. The modelization tasks can be accomplished through several models,
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depending on the properties of the time series that need to be maintained. Already existing models for
speculative bubbles [24–28] do provide a deterministic function for the main trend and oscillation modeling
through log-periodic patters, but they do not capture some residual correlation. Let them be improved as
below.
2.1. Large financial crashes

The theory of speculative bubbles due to endogenous causes has been extensively examined indicating self-
similarity in market indices. Widely developed numerical studies have extracted common features of bubbles
providing a range for the most important parameters, taxonomy of bubbles and investigation about signatures
for bubbles due to endogenous causes [31]. Anytime the amplitude of the crash is proportional to the total
price then there is a strong indication for modeling the logarithm of the index value [26,32,33], instead of using
the index itself [31,34].

The modelization of large financial crashes as critical points [25] and a subsequent simplification driven by
universality assumptions [27,28] lead to the approximation of the main trend of the logarithm of the stock
market index w.r.t. the time to crash tc � t given by

F ðtÞ ¼ Aþ B lnðtc � tÞ, (1)

where tc is the most probable crash time and A, B are parameters to be estimated via numerical optimization.
In order to show an example and for further reference below let us sum up the (speculative) bubble of the

NASDAQ that collapsed into the crash of April 2000 (Fig. 1).
Accordingly to Refs. [26,31] let the financial signal data fyðtÞgt¼1;T be the logarithm transformation of the

NASDAQ 100 Composite index daily closing value between January 01, 1997 and March 10, 2000, i.e.,
T ¼ 833. The best fit of (1) to the ascending part of the bubble has been performed using the minimum least
squares method. The results are A ¼ 7:91, B ¼ �0:54, and tc corresponding to July 4th, 2000 [31,35]. Notice
that the actual crash date, April 11th, approximately occurs three months before the tc estimated by the fit. We
have noticed on other data as well that this is usually experienced when (1) is used.

Evolution models more complex than (1) can be considered for the description of the main oscillations [31],
but the scaling of correlations changes only slightly. The periods that correspond to the rise and to the
successive burst of a speculative bubble due to endogenous causes are characterized by several oscillations
around the main trend [24,36–38], as widely examined through the papers that assess the similarities of large
financial crashes properties with earthquake phenomena [31] or sandpile avalanches on fractal structures
[24,39]. Although the importance of log-periodic accelerating oscillations going close to the most probable
crash time is deeply connected with the self-similarity hypothesis, and discrete scale invariance, its validity is
still debated, because the residual correlation evidences the role of residual noise, pointing to the limit of the
theory and suggesting to look for other models for describing the major fluctuations.

Let the so-called residuals RðtÞ be defined through (see Fig. 1(b) for a display)

RðtÞ ¼ expðyðtÞÞ � expðF ðtÞÞ. (2)

It is usually found that most market index data RðtÞ show long term memory correlation indicating a mean
reverting process [22]. This implies that a useful statistical property to compare models to real data should be
found in the Hurst exponent. The detrended fluctuation analysis (DFA) technique [40–42] is often used in
order to characterize fluctuation correlations in such time series, through the power law exponent a. In this
NASDAQ case study fRðtÞgt¼1;T is characterized by a ¼ 1:39ð1:37; 1:40Þ1 corresponding to a Hurst exponent
H ’ 0:39ð0:37; 0:40Þ. Thus, the residuals RðtÞ can be modeled through a theoretical fractional Brownian
motion (fBm). In this case the time at which the random walker starting at the origin first returns to the origin,
i.e., be the first return time T of a fBm has the following probability decay [43,44]:

PðTÞ�TH�2. (3)
1For each variable empirically estimated the numbers inside the parentheses are the 95% confidence interval.
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Fig. 1. The NASDAQ 100 Composite index case study: (a) NASDAQ 100 Composite index daily closing value and its exponential

approximating function (1). The data set used in order to study the ascending speculative bubble ending at the crash is for the trading days

since January 1st, 1997 till March 10th, 2000, for a total of 833 points. The vertical line corresponds to December 23rd, 1998 and

emphasizes the starting day of the period that is best suitable for the BS model; (b) Plot of the residuals RðtÞ, as from Eq. (2), i.e., the

difference between the raw NASDAQ 100 Composite index daily closing value and its exponential approximation. The horizontal line

corresponds to the level Rð1Þ; (c) The estimate of PðTÞ on the entire time series at level Rð1Þ according to (3) gives H ¼ 0:42ð0:06; 0:77Þ; and
(d) The estimate of PðTÞ on data since December 23rd, 1998 till the end gives H ¼ 0:58ð0:12; 1:04Þ at the level of the first day value.
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The estimate of PðTÞ on fRðtÞgt¼1;T data at the level of the initial time value Rð1Þ in the NASDAQ case gives
H ¼ 0:42ð0:06; 0:77Þ and fine agreement with the above estimated H through the DFA (see Fig. 1(c)).

2.2. The Bak and Sneppen model

The simple self-organized criticality model of BS [30,45,46] has been shown to fulfill not only characteristics
of species distribution evolutions like a power law in the distribution of avalanches, but also the characteristics
required for earthquake modeling, both for spatial and temporal correlation functions, or also in landslides
[47–49]. It is of great interest that the probability of the occurrence of the next avalanche can be estimated, as
it emerges from the model dynamics. Interestingly earthquake models were shown to be well suited for the
description of market data that are characterized by cascade crashes and are followed by slow recoveries
[50,27]. This behavior has been detected in several speculative bubbles and attributed to endogenous causes [8].
At each time t the d-dimensional BS model deals with Ld species that compete for their survival.
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In a financial application of the BS model each species can represent either an agent or a class of them
through a representative agent. At time t each species is fully described by its fitness f d

i ðtÞ, i ¼ 1; . . . ;Ld drawn
at time 0 from a uniform distribution in ½0; 1�d . A change in fitness of one species implies an evolution of others
as well: there is co-evolution. In the original evolution model the fitness can represent either the living
capability of the species or the population, or a barrier to be overcome. The average fitness can be defined as
the simple mean [51–53] of the individual fitness, i.e.,

f̄
d
ðtÞ ¼

1

Ld

XLd

i¼1

f d
i ðtÞ.

The BS model has been introduced for simulating the collective behavior of interacting groups or individuals.
In financial markets each f i can be interpreted as the estimate of the market price by either groups or agents.
On financial markets this mean fitness f̄

d
ðtÞ 2 ½0; 1� can be used as an approximation of the market index value,

resulting from the market price, as seen by/at each agent level, scaled to the ½0; 1� interval as it is built up
through the components of the market and the agent behaviors. Thus, the Ld species can be interpreted as Ld

groups of investors, more properly than just Ld single investors, whose contribution to the formation of the
price at time t is given by f d

i ðtÞ that can include the raw price pd
i ðtÞ (normalized to 1) as well as the raw price

already multiplied by the weight of the group due to its social impact f d
i ðtÞ ¼ od

i ðtÞ p
d
i ðtÞ,

P
io

d
i ðtÞ ¼ 1.

Groups (agents in the smallest size case) are thus modeled as organized in a simple social lattice or network
that in dimension d connects each group only to his first 2d nearest neighbors. The usual boundary
conventions of the BS model hold. We are aware that this model should be considered as a high simplification
of a social/financial network that keeps trace only of the most important influences of a group over the other.
Extensions to more complex networks imply further work depending on possibly unrealistic features to be
found in our d-dimensional model.

Let at each time step the group with the lowest price2 randomly ‘‘adapt’’, i.e., change the price and affect its
nearest neighbors in the spirit of the BS model. Extremal values are those the furthest away from the mean.
The replacement of the lowest value f i by a random number can be interpreted as the correction to the worst
price underestimate. When L!1, and for t large enough almost all species have their fitness above a
threshold f d

c [55,56]; these fitnesses are therefore uniformly distributed in ðf d
c ; 1Þ.

An evaluation of the ‘‘distance’’ of this simple toy model hypotheses and implications from true social/
financial systems with complex interactions and imitative behaviors is nearly impossible. Nevertheless it is
interesting to note that the threshold for f̄

d
ðtÞ becomes f̄

1

c ¼ 0:83351 if d ¼ 1 and f̄
2

c ¼ 0:66443 if d ¼ 2 [57]
(Fig. 2(a)), as noticed by Li and Cai [52], reasonably similarly to what is found in some social systems. An
interesting behavioral remark is that the critical threshold in the case d ¼ 2 fits social rules that assign a special
weight to decisions when approximately 2

3
of people agree.

2.3. Avalanches: degradation and recovery

At this stage it is of interest to stress that the BS model has led to several definitions of avalanches [30,52,55].
The duration of an avalanche in the original BS model refers to the time spent by the lowest f iðtÞ below f c. On

the other hand, Li and Cai define an avalanche (duration) as the time spent by f̄
d
ðtÞ below f̄

d

c . This is in fact

only degradation part of the whole BS avalanche. This definition neglects part of the signal, i.e., the time spent
by the signal f̄

d
ðtÞ above the threshold. This signal is of interest as well in particular in financial and social

matters. One could define and analyze the statistics of time intervals between maxima (in/and minima) of the
signal. These would encompass cycle like situations containing degradation and recovery processes. In the
present paper the Li–Cai avalanche definition will be used, leaving other definition investigation for other
work.

An important feature concerns the structure of such avalanches. After the first transient phase the
model dynamic leads to the activity of the system characterized by f̄

d
ðtÞ4f̄

d

c [57]. Following the
definition reported in Refs. [51,52], the size s of the degradation part of avalanches is defined as its temporal
2It could be the value the furthest away from the market price at time t� 1, see Ref. [54] for such an alternative in macroeconophysics.
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Fig. 2. Two-dimensional BS trajectory in the stable phase: (a) A sample and the critical level f̄ c. For this sample H ¼ 0:38ð0:35; 0:40Þ,
t ¼ 0:05ð�1:89; 1:99Þ; (b) Estimate of the self-similarity degree H through the DFA analysis on 1000 trajectories of the two-dimensional BS

model during the stable phase and its cumulative function. The mean is 0.277 and the standard deviation is sH ¼ 0:088. The frequency of

BS trajectories that have the H exponent confidence interval overlapping the confidence interval of the NASDAQ H on the entire time

series is approximately 17%, while on the period since December 23rd it is approximately 24%; and (c) Estimate of the avalanche exponent

t on subsequences with length T of trajectories of the two-dimensional BS model during the stable phase and its cumulative function. The

mean is 1.9 and the standard deviation is st ¼ 2:23. The large t spread around at the theoretical value t ¼ 1:72 can be addressed to finite-

size of the sampling.
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duration, i.e., an avalanche of size s remains below f̄
d

c for s� 1 time steps f̄
d
ðtÞ. Thus the duration is the

number s such that

f̄
d
ðtÞ4f̄

d

c ; f̄
d
ðtþ 1Þof̄

d

c ; . . . ; f̄
d
ðtþ s� 1Þof̄

d

c ; f̄
d
ðtþ sÞ4f̄

d

c .

It has been shown [57,58] that the s-distribution of such degradation part of avalanches follows a power law:

PðsÞ / s�t. (4)

For the one-dimensional BS model t ¼ 1:8; for the two-dimensional square lattice BS model t ¼ 1:72 [51].
Moreover, although the average avalanche size depends on the distance from f̄

d

c , the values of t are
independent of the level chosen [52] for an infinite system.

For the purposes of TA, and trend line property searches we also studied the recovery situation, identified
by the permanence of the signal above the threshold f̄

d
ðtÞ in the sense of Li–Cai. In order to do so a mirror-like

situation must be envisaged.
Of course �f̄

d
ðtÞ has the same long memory degree as f̄

d
ðtÞ; moreover, it is possible to define the recovery

size s as being a sequence of s time steps such that

�f̄
d
ðtÞo� f̄

d

c ;�f̄
d
ðtþ 1Þ4� f̄

d

c ; . . . ;�f̄
d
ðtþ s� 1Þ4� f̄

d

c ;�f̄
d
ðtþ sÞo� f̄

d

c .

Because of the fact that

Pð�f̄
d
ðtÞo� f̄

d

c ;�f̄
d
ðtþ 1Þ4� f̄

d

c ; . . . ;�f̄
d
ðtþ s� 1Þ4� f̄

d

c ;�f̄
d
ðtþ sÞo� f̄

d

c Þ

¼ Pðf̄
d
ðtÞ4f̄

d

c ; f̄
d
ðtþ 1Þof̄

d

c ; . . . ; f̄
d
ðtþ s� 1Þof̄

d

c ; f̄
d
ðtþ sÞ4f̄

d

c Þ

the scaling of the recovery time span maintains the property (4).
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2.4. The BS model applied to residuals of financial indices

As seen in the previous section the BS model provides a description for the distribution of species evolution
avalanches. It is of interest to consider them as the analog of those that are found before a large financial crash
and are compatible with the recoveries to the mean trend observed on usual data; thus the BS model provides
an interesting modelization for the oscillations of the residuals. Of course the range of f̄

d
ðtÞ must be properly

rescaled in order to fit the range of RðtÞ.
The self-similarity degree of the simulations obtained through the DFA on the one-dimensional BS model

gives a self-similarity exponent H ¼ 0:07, quite far from the value of RðtÞ of the NASDAQ case study, whilst
the same analysis performed on the stable phase of the two-dimensional BS model gives values approximately
normally distributed with mean H̄ ¼ 0:277 and standard deviation sH ¼ 0:088 (Fig. 2(b)). Taking into
account that numerical estimates are biased by errors due to finite-size of the sampling, as it emerges also for t
(Fig. 2(c)), the above results allow to state that the trajectories f̄

d
ðtÞ obtained through the two-dimensional

square lattice BS model can replicate the self-similarity degree of case studies like the NASDAQ residuals, and
constitutes a better choice than the one-dimensional BS model.

A further empirical analysis looking for the subsequence of NASDAQ data that best fits the two-
dimensional BS model parameters H and t has been performed. The residuals time series starting since
December 23rd, 1998 (see the vertical line in Figs. 1(a) and (b)) till the end shows parameters and H ¼

0:28ð0:25; 0:31Þ; t ¼ 1:48ð1:22; 1:74Þ (Fig. 1(d)) and it is the part of the NASDAQ data that best fit both the H

and t BS model parameters (see Fig. 1(a)).
Hereinafter let ff̄

d
ðtÞgt¼1;T be a sampling from the two-dimensional square lattice BS model in the stable

phase. The one-dimensional case is briefly worked out in the Appendix. Thereafter, we drop the index d ¼ 2
for simplicity in writing.

The detection of a mean reverting process allows us to look for the parameters y and g such that

yþ gf̄ ðtÞ (5)

has the same self-similarity degree H and the same range as RðtÞ, thus explaining the oscillations as due to the
most important social interaction links of each agent. Recall that practically

g ¼
maxðRðtÞÞ �minðRðtÞÞ

maxðf̄ ðtÞÞ �minðf̄ ðtÞÞ
(6)

and

y ¼ �gminðf̄ ðtÞÞ þminðRðtÞÞ. (7)

Recalling (2) we have that

g1ðtÞ ¼ expðF ðtÞÞ þ yþ gf̄ ðtÞ (8)

constitutes a model for market indices during the rise of speculative bubbles that replicates the deterministic
exponential trend, the avalanche exponent t and the H self-similarity exponent of the NASDAQ index. The
faster than exponential growth is typical of speculative bubbles due to endogenous causes.

The modelization of the NASDAQ RðtÞ through a fBm leads to the first return time probability decay
exponent equal to H � 2. Thus (3) measures the decay of the size of periods passed either over or under the
value of the process at the initial time, henceforth including, but not being limited to, the avalanches as defined
in the BS model within the Li–Cai description. However, the agreement of the exponent t ¼ 1:72 of the two-
dimensional square lattice BS model and the exponent 2�H into the 95% confidence interval in the case of
the NASDAQ provide a further validation of the choice of the two-dimensional square lattice BS model.

The function

g2ðtÞ ¼ expðF ðtÞÞ þ y0 � g0 f̄ c (9)

is also well suitable for our modelization proposal, imposing that

y0 � g0 f̄ ðtÞ (10)
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has the same self-similarity degree H and the same range as RðtÞ. Parameters g0 and y0 are calculated by using
formula (6) and (7) where f̄ ðtÞ was substituted by �f̄ ðtÞ.

The recovery time scale distribution to the function obtained substituting f̄ ðtÞ by f̄ c is equal to the avalanche
time scale distribution calculated for g1ðtÞ under the same substitution. The best fit to the data starting on
December 23rd, 1998 leads to the same parameters g, g0, y, y0 because the maximum and the minimum of RðtÞ

occur after December 23rd, 1998 (see formula (6) and (7)).
Table 1 resumes the values of NASDAQ avalanches under gþ ¼ expðF ðtÞÞ þ yþ gf̄ c, and of recoveries of

g2ðtÞ to g� ¼ expðF ðtÞÞ þ y0 � g0 f̄ c, that correspond to the critical level f̄ c for f̄ ðtÞ. Figs. 3(a) and (b) show
samplings of (8) and (9). Notice the mirror symmetry w.r.t. gþ and g�. We are going to use g1ðtÞ in order to
model avalanches, and g2ðtÞ in order to model recoveries. We are going to use the above results in Section 4 in
order to give an estimate of the probability of gþ and g� crossing and trend line slope and location.
3. Technical analysis signals

TA [29] is based on the reaction of financial agents to market conditions as they can be detected through the
study of charts, i.e., financial market data plot. It is characterized by the usage of particular signals in order to
trigger buy/sell orders.

The most significant criticism against such a technique is its possible lack of precision in the recognition of
signal patterns and its subjective judgement in their interpretation. These could mislead to the precise timing
of signals. In spite of this uncertainty it is worth remarking that the methods have been surviving and
developing for a long time. This consideration suggests to look for the extraction of the essence of the methods
not affected by any psychological effect but which can be detected by an automatic decision support system
properly calibrated.
Table 1

Avalanche and recovery size estimates

NASDAQ t Avalanche size

Most frequent Median Mean

Avalanche below gþ 0.72 (0.18,1.25) 3 (28%) 4 13

Recoveries to g� 1:79 ð1:33; 2:25Þ 2 (38%) 4 11

According to definition the minimum sized avalanche stays only one time step below the threshold, giving rise to avalanche size s ¼ 2.
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Fig. 3. Sampling drawn accordingly to g1ðtÞ (8) (a) and g2ðtÞ (9) (b). The curves correspond to the critical level for f̄ ðtÞ, i.e., gþ (a) and g�
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NASDAQ index (see Fig. 2 for more details on H statistics).
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TA signals are triggered by the occurrence of some patterns, that can be separated further on. The easiest
figures to deal with and which can provide useful trading information are horizontal barriers. An immediate
further step is given by the crossing of lines with a not null slope, like trend lines, fan lines, and channels.
Trend lines are straight lines joining sequences of at least two minima (maxima) with the second one higher
(lower) than the first one; fan lines are trend lines joining two points: the first one is kept fixed (it is common to
all of them), and it is a minimum (maximum), while the second point is given by the subsequent minimum
(maximum). Channels can be drawn in the case for which the data exhibits a sequence of minima with linearly
growing height and a sequence of maxima with approximately the same linearly growing height. In this case
the line fitting the sequence of maxima and the line fitting the sequence of minima identify a channel. The
identification of the above quantities is highly sensitive to the time scale that is chosen, as moving averages and
their relative crossing are [59].

Buy/sell signals rely on the identification of particular configurations. Several rules are known for their
identification [23]. They provide a set of buy/sell triggering orders more complex than the simple crossing of an
horizontal barrier. However, the knowledge and the understanding of the base components are the starting
points towards the analysis of more complex patterns.

Recently TA has been reconsidered and strategies redefined in order to take into account not only the price
variation but also the effect of volume bearing upon classical mechanics ideas [60,61]. Although the volumes
play an important role in TA their examination is also outside the scope of this paper.

4. Self-barrier crossing

As recalled here above, the probability of avalanche duration in self-organizing critical systems can be used
for modeling the probability of falls in markets, thus carrying on the comparison with the earthquake theory,
as it has been evidenced across the literature on large financial crashes [28].

Here below, it is shown how to use the property of the model previously discussed in order to estimate the
probability of the expected time for line crossings. For this crossing search we use the data self-generated
values, i.e., gþ and g� defined in Section 2.4 so that we call the problem self-barrier crossing in analogy with
self-avoiding walk wording [62].

4.1. Line crossing estimate based on the model structure

Let lðtÞ ¼ a tþ b be a straight line, see Fig. 4. Let gðtÞ be either g1ðtÞ or g2ðtÞ. The average

qðtÞ ¼ hgðtÞi

is equal to

qðtÞ ¼ expðF ðtÞÞ þ yþ ghf̄ ðtÞi
Fig. 4. Line crossing.
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in the case gðtÞ ¼ g1ðtÞ, and to

qðtÞ ¼ expðF ðtÞÞ þ y0 þ g0h�f̄ ðtÞi

in the case gðtÞ ¼ g2ðtÞ. The function qðtÞ is a deterministic function of t, and the expected intersection time
t ¼ t� for the line crossing can be calculated by

qðt�Þ ¼ lðt�Þ. (11)

In the case gðtÞ ¼ g1ðtÞ the error on t� can be deduced from gVarðf̄ ðtÞÞ. This provides an estimate about the
spread around the expected time for the process to cross any line (Fig. 4).

Since it is known that the maximal change in s steps, 8t 2 ½1;T �, is max j f̄
d
ðtþ sÞ � f̄

d
ðtÞ j¼ ð2d þ 1Þs=Ld

[52] it is found that the max and min slope between two points ðt; g1ðtÞÞ and ðtþ s; g1ðtþ sÞÞ are given by

eF ðtþsÞ � eF ðtÞ � g
5s

L2

� �
1

s
. (12)

Analogous results hold for gðtÞ ¼ g2ðtÞ. In order to tighten bounds on slopes let us analyze the distribution of
the slopes of lines joining ðt; expðyðtÞÞÞ and ðtþ s; expðyðtþ sÞÞÞ, ðt; g1ðtÞÞ and ðtþ s; g1ðtþ sÞÞ, and ðt; g2ðtÞÞ and
ðtþ s; g2ðtþ sÞÞ, respectively, for s ¼ 2; 3; 4; 11; 13, that are values significant for the NASDAQ avalanches and
recoveries.

The analysis is carried on both the entire NASDAQ time series (Figs. 5(a), 6(a), and 7(a)) and the best fitted
subperiod starting on December 23rd, 1998 (Figs. 5(b), 6(b), and 7(b)). Due to the avalanche distribution the
most frequent value is lower than the median, that is lower than the mean. Fig. 5 reports the histograms and
their cumulative distribution. For each fixed time step s the frequency of the slope of lines joining points with
time distance s (either on the raw data or on the simulated ones) can be obtained directly from the histogram.
A trader would examine how many percentage of the slopes is between two bounds in order to estimate the
risk of some strategy.
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Fig. 5. Histograms and cumulative function of the distribution of the slopes of lines joining ðt; expðyðtÞÞÞ and ðtþ s; expðyðtþ sÞÞÞ, ðt; g1ðtÞÞ
and ðtþ s; g1ðtþ sÞÞ, and ðt; g2ðtÞÞ and ðtþ s; g2ðtþ sÞÞ, respectively, for s ¼ 2; 3; 4; 11; 13: (a) Analysis on the entire time series; and

(b) Analysis on the time series since December 23rd, 1998.
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Fig. 6. Normal distribution hypothesis testing of data reported in Fig. 5. The solid line corresponds to the normal distributed value with

the same mean and variance of raw data (represented by dots): (a) Analysis on the entire time series. Both the Lilliefors and the

Jarque–Bera test reject the normal hypothesis distribution at 95% confidence level in all the NASDAQ cases and for the biggest values of

s ¼ 11 and s ¼ 13 also on g1 and g2; and (b) Analysis on the time series since December 23rd, 1998. The Lilliefors test rejects the normal

hypothesis distribution at 95% confidence level in the NASDAQ cases s ¼ 2, s ¼ 13, and on g1 for s ¼ 11; the Jarque–Bera test provides

the same results given on the entire series, apart on the NASDAQ case for s ¼ 11, in which it does not reject the normal hypothesis

distribution.
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As an example, referring to Fig. 5(a), the 75% of the slopes are in a interval of width the standard deviation
around at the mean, whilst 10% are in a more tight interval with width 2.3 (see Fig. 8).

On the entire time series both the Lilliefors and the Jarque–Bera test reject the normal
hypothesis distribution at 95% confidence level in all the NASDAQ cases and for the biggest values of
s ¼ 11 and s ¼ 13 also on g1 and g2 (Fig. 6(a)). On the NASDAQ data set starting on December 23rd, 1998
both tests reject the normality hypothesis only for s ¼ 2 and s ¼ 13 (Fig. 6(b)). Table 2 resumes the values of
mean and standard deviation on both the entire time series and on data since December 23rd, 1998. It is worth
noting the relationship between the slopes distributions of the NASDAQ, g1, and g2 (Fig. 7). Their
comparison shows the probability of the occurrence of slopes joining points at time step distance
corresponding to the most frequent avalanche size, to the median, and to the mean. The NASDAQ
distribution is higher around at its mean in all the reported samples. The frequency of the slopes of g1 and g2

around at the mean is a lower bound for the NASDAQ slopes. The evaluation of bounds relevant for
particular strategies is left for future work.

In TA trend lines must be drawn by joining either decreasing sequences of maxima (at least
two), or increasing sequences of minima [23]. No method seems available up to now in order to forecast
whether the second maximum (minimum) is lower (higher) than the first one, thus giving rise to a
trend line [23]. However, because the deterministic part of gðtÞ is strictly monotonous it is possible to
calculate some bounds: the minimum time s such that gðtþ sÞ4gðtÞ, is given by expðF ðtþ sÞÞ�

expðF ðtÞÞ4g5s=L2. The maximum time s such that the inequality gðtþ sÞogðtÞ can hold is given by
expðF ðtþ sÞÞ � expðF ðtÞÞog5s=L2.
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Fig. 7. For each avalanche size s the cumulative functions of the distribution of the slopes of lines joining ðt; expðyðtÞÞÞ and ðtþ
s; expðyðtþ sÞÞÞ (solid line), ðt; g1ðtÞÞ and ðtþ s; g1ðtþ sÞÞ (line with crosses), and ðt; g2ðtÞÞ and ðtþ s; g2ðtþ sÞÞ (line with dots) are plotted

together for comparison. The frequency of the slopes of g1 and g2 around the mean are lower bounds for the NASDAQ slopes: (a)

Analysis on the entire time series. The deviation of the NASDAQ from the normal distribution and the leptokurtosis is evidenced at most

for s ¼ 2; and (b) The same analysis performed on the time series since December 23rd, 1998. Deviation of the NASDAQ from the normal

distribution is best evidenced for s ¼ 2.
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s ¼ 2.

Table 2

Mean and standard deviation (between the parentheses) of the slopes of lines joining ðt; expðyðtÞÞÞ and ðtþ s; expðyðtþ sÞÞÞ (NASDAQ),

ðt; g1ðtÞÞ and ðtþ s; g1ðtþ sÞÞ (g1), and ðt; g2ðtÞÞ and ðtþ s; g2ðtþ sÞÞ (g2) for s ¼ 2; 3; 4; 11; 13: (a) Analysis on the entire time series;

(b) Analysis on the time series since December 23rd, 1998

Data s ¼ 2 s ¼ 3 s ¼ 4 s ¼ 11 s ¼ 13

(a)

NASDAQ 4.51 (39.1561) 4.52 (27.3603) 4.45 (22.3469) 4.24 (12.0141) 4.18 (10.8556)

g1 4.95 (44.2339) 4.90 (29.1199) 4.86 (22.3350) 4.72(9.5639) 4.69 (8.6526)

g2 4.04 (44.3814) 4.05 (29.4014) 4.06 (22.8014) 3.92(10.6265) 3.87 (9.7463)

(b)

NASDAQ 9.36 (55.5312) 9.29 (38.3107) 9.05 (30.9240) 8.42 (15.6117) 8.27 (13.8854)

g1 8.98 (46.0860) 8.89 (30.1768) 8.71 (23.2664) 8.31 (9.7973) 8.23 (8.8547)

g2 9.53 (46.1976) 9.50 (30.4889) 9.57 (23.8624) 9.21 (11.2231) 9.09 (10.2732)

G. Rotundo, M. Ausloos / Physica A ] (]]]]) ]]]–]]] 13
4.2. Trend line detection

Trend lines [23] play an important role because they serve as a basis for classical TA. Such lines are
drawn joining a sequence of at least two maxima (minima) with the second one lower (higher) than the first
one, each one being selected as global maxima (minima) on time windows [23]. The size of time
windows depends on the information that the analyst is looking for. Thus, to trace out trend lines strictly
depends on the time width that is chosen. Major trends are defined by the Dow theory as trends during more
than one year, although this limit can be lowered to six months on the future market. Thus, in this case
maxima (minima) can be looked for on monthly time windows. At the opposite time window size choice there
are short time trends, that are shorter than two to three weeks. Intermediate trends should take into account
periods of two to three weeks up to several months. They are more stable than those observed on short time
intervals [23], and more meaningful than those over long time intervals, on which the exponential trend is
already visible.
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Any upward (downward) peak can be considered as a maximum (a minimum) and can be used for trend line
identification. On the NASDAQ and on the BS simulations the peaks occur in any two to three steps, thus
short time trend lines could be drawn and the results on the previous section could be directly applied.

However, the choice of the time window where to look for global maxima much relies on the feeling of the
analyst. We stress that the BS model can provide a further contribution about the occurrence of trend lines in
the case in which the investor is not interested to peaks inside the avalanche, even if they are local maxima in
their time window.

Information model-related furnishes estimates on the occurrence of two maxima separated by an avalanche.
Their time steps distance is bigger than the time width of an avalanche. The function g1ðtÞ takes into account
avalanches following the definition of the Li–Cai model [51], and the function g2ðtÞ considers recoveries.

Henceforth the function g1ðtÞ can provide information about the time steps distance of values separated by
an avalanche, thus about the minimal distance between maxima separated by an avalanche. On the other hand
the function g2ðtÞ can provide information about the time steps distance of values separated by a recovery,
thus about the occurrence of minima. This kind of approach can be useful to set up automatic trading rules
that trigger orders on the basis of the occurrence of falls in the market, or in the case of the end of a small
bubble and of the return to the fundamental price.

The BS model shows a distribution of avalanche sizes which decays as a power law with the size of the
avalanches. Thus the most frequent value is much smaller than the mean (Fig. 2(c)). An investor can thus
practically estimate the probability to have a short time avalanche instead of a medium size one directly from
frequencies of avalanches sizes. Because of the asymmetry of the frequency distribution of an avalanche sizes,
that is limited by 0 on its left, and that has power law tail on the right, the most frequent values are the smallest
ones (1 and 2 time steps below the threshold, i.e., avalanche sizes 2 and 3); notice that the median of the
avalanche size is lower than the mean (Fig. 9).

The above remarks evidence once more that short time trend lines—even separated by an avalanche f̄
d
ðtÞ—

are the most frequent.
Thus, downward trend lines can be considered for short time intervals, but not for medium size ones.

Anyway in a growing market downwards trend lines are surely going to be crossed; the most interesting
question is about the upward trend lines that join sequences of local minima which height is increasing.

The function g2ðtÞ can be used in order to give estimates of distances between minima separated by
recoveries. Its structure of recoveries is mirroring the structure of BS ordinary avalanches. Thus, the mean



ARTICLE IN PRESS
G. Rotundo, M. Ausloos / Physica A ] (]]]]) ]]]–]]] 15
distance between two minima separated by a recovery is bigger than the avalanche size. Here, again the short
time recoveries are the most frequent ones, but in this case the second minimum could not be higher than the
first one. Due to the exponential term, the median and the mean size recoveries separate minima with the
second one higher than the first one.

5. Conclusions

Any automatic trading system can trigger buy/sell orders when some either upper or lower barrier is
crossed. Rules like these, even so simple, have been able to cause crashes in markets. Technical analysis studies
concern a more complex structure of signals and often rely on the sensitivity of the analyst.

We have observed an analogy between statistical properties of a co-evolution model, in particular the
avalanche content description, with the residuals of a financial index signal like the NASDAQ 100
Composite—residuals obtained from the latter signal first order approximation obtained by the theory of large
financial crashes.

In view of the analytical properties of the superposition of such a microscopic models, we have been able to
derive estimates for avalanche and recovery duration time. We have pointed out the qualitative features
helping technical analysts to elaborate more refined approached than classical ones. Several quantitative
features are also available. Other indices could be used for a search on universality properties. We stress that
we have discussed not only degradation, but also recovery features.

The suitability of the mean fitness properties for bubble models as they emerge from the BS model dynamics
does not stop at the level of numerical analysis of correlations, but goes further into the dependence structure
of avalanches, making this approach a sound complement to the fBm approach. Moreover, the BS model
furnishes an agent-based model for an explanation of the cooperative behavior that leads to the earthquake
and large financial crashes phenomena, thus embracing simulations into a theoretical framework that allows
to state the reliability of the results apart from numerical instabilities.

The set up of a model for the residuals provides a further insight on the formation of trend lines. Statistics
drawn on the BS model about the occurrence of trend lines slopes provide market analyst by bounds of the
probability of the occurrence of trend lines on market index data. Moreover, once trend lines are drawn, the
probability of their crossing can be estimated from the model. This is a first step towards other signal TA and
to the assessment of the usage of TA rules that supersede the skill of the single analyst.

In addition the two-dimensional model, necessarily implying the existence of more than two nearest
neighbor agents, obviously four for the square lattice data examined here above, finds some correspondence in
the sand pile model on a fractal basis simulating financial avalanches before a crash as studied in Ref. [24,39]
where the periodicity of the log-periodic oscillations indicate that the relevant number of agents is between
three and four.

For further work, it could be suggested that more complex signals be examined, together with a deeper
analysis of the fractal and multifractal structure both of the microscopic model and of market data.
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Appendix

In this appendix we outline a few results corresponding to those on the main text, but in which a one-
dimensional model rather than a two-dimensional model is used. We recall that f̄

1

c ¼ 0:8335; the value of t for
avalanches in the Li–Cai spirit is t ¼ 1:80 [52] and it is the same degradations or recoveries.

The estimate of H fluctuates around at 0.07. These values are rather far from the NASDAQ data indicating
poor agreement with a one-dimensional model.

The long term memory property of a time series can be estimated through its components: it is reported in
Ref. [11] that the sum of two independent fractionally integrated processes of order, respectively, d and d 0 is
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maxfd; d 0g. The relationship H ¼ d þ 1
2
[63] allows to deal with a fBm zH ðtÞ, H ¼ d þ 1

2
in order to fix y, g, z, H

such that

yþ gf̄ ðtÞ þ zzH ðtÞ (13)

has the same self-similarity exponent and the same range of RðtÞ.
Whilst the contribution of f̄ ðtÞ is due to the local agent interactions, the contribution of zH ðtÞ can be

interpreted either like the contribution of noise traders, in the case of uncorrelated signal, or like the presence
of fundamentalist traders in the market whether a mean reverting process occurs [22]. This gives an interesting
perspective about the level of SOC that can be masked by either noise or fundamentalists traders. However,
for the purposals of this paper to give an evaluation tool for the crossing of lines this model would give more
weak results. As an example in (11) the variance about the expected crossing time would contain also the
variance term due to the presence of fBm. Also the BS structure of avalanches would be modified, moreover a
model of data based uniquely on fBm would result more simple, and so preferable to (13). Thus the choice of
the two-dimensional BS models meets the task to give simple description at a microeconomic level more
meaningful of those related to a generic fBm, with the maintenance of properties (self-similarity, avalanches
and recoveries) at the macrolevel more suitable for data than the one-dimensional BS model.
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