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Magnetically controlled ballistic deposition.
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Abstract

The -ow and deposition of polydisperse granular materials is simulated through the magnetic
di.usion limited aggregation (MDLA) model. The random walk undergone by an entity in the
MDLA model is modi1ed such that the trajectories are ballistic in nature, leading to a magnet-
ically controlled ballistic deposition (MBD) model. This allows to obtain important ingredients
about a di4cult problem that of the nonequilibrium segregation of polydisperse sandpiles and
heterogeneous adsorption of a binary distribution of particles which can interact with each other
and with an external 1eld. Our detailed results from many simulations of MBD clusters on a
two-dimensional triangular lattice above a -at surface in a vertical 1nite size box for binary sys-
tems indicates intriguing variations of the density, “magnetization”, types of clusters and fractal
dimensions. We derive the 1eld and grain interaction-dependent susceptibility and compress-
ibility. We deduce a completely new phase diagram for binary granular piles and discuss its
complexity inherent to di.erent grain competition and cluster growth probabilities.
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1. Introduction

Understanding the -ow and static structures of granular matter is becoming increas-
ingly relevant. Many raised questions are tackled along various lines of approach [1].
It has already been claimed that the simpli1cations found in basic models need to
be improved in order to explain features of such complex materials. Granular pile
spreading processes driven by cooperative nonlinear evolution rules lead to developed
patterns which often reach a high level of complexity. It is of present interest to exam-
ine whether growth models can be used for describing granular structures and related
material properties. Furthermore, the nonlinear processes at work in granular -ows
and depositions hint toward simulation approaches [2]. Cooperative e.ects in ballistic
deposition of hard disks have been recently mentioned [3].
Kinetic growth models (KGM) have received much attention [4] like the Eden model

[5] and the di.usion limited aggregation model [6] (DLA). They have served to de-
scribe nonequilibrium phenomena like 1lm or crystal growth [7,8], epidemics [9], mate-
rial fractures [10], etc. In all cases, such models are mainly concerned by the transition
from dense branching to dendritic morphology.
One important physical constraint has to be considered in describing granular ma-

terials: the materials are not made of symmetrical (spherical or cubic) entities. The
surface of grains is usually rough, thus leading to speci1c angles of repose [11]. Also,
the grain anisotropy leads to phenomena like jams [12], in -ow, and arches [13], in
static structures. It seems therefore necessary to have at least one degree of freedom
in order to describe grains; we are even aware that only one degree is a very strong
approximation. This degree of freedom should be coupled to some 1eld, just like a
spin to a magnetic 1eld. Whence one can imagine that grains are identical entities ex-
cept for one degree of freedom, call it a spin though it can be any physical feature of
particular interest, like the grain roughness or shape feature. Clearly, a spin allows for
referring to a direction or a rotation process; if this is admitted, to take such a degree of
freedom into account in describing granular piles should basically improve the granular
state overall description. (Generalizations are immediately imagined by anyone familiar
with spin models and statistical mechanics; one can later on imagine many component
vector models, including Potts-like models [14].) In fact, a constrained Ising spin chain
has been recently considered and studied as a toy model for granular compaction [15].
The exchange energy J describing the “spin–spin interaction” is analogous in granular
matter to the contact energy due to surface roughness between grains. A similar inter-
pretation of J for 7ows can be found in Pandey et al. [2]. The external “magnetic”
9eld in such a case can be, e.g. a wind 1eld, the sign depending on, e.g. change in
pressure due to grain drag. We thus combine topology and mass (or weight) in order
to describe granular materials in a simple way.
The above ideas remind us that a similar set of considerations has been found in the

magnetic Eden model [16] and in the magnetic di.usion limited aggregation (MDLA)
model [17] when attempting to describe crystal growth in a magnetic 1eld, when
there is a competition between entities. Aggregation can proceed under short-range or
long-range dipolar interactions in fact [18,19]. However, the studies pertained to the
growth of clusters starting from a point seed. In a recent set of investigations on the
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magnetic Eden model, Albano et al. [20–23] have pointed out the interest of such mod-
els for examining deposition and 1lm growth, thus starting from a substrate—sometimes
with rather complex realistic rules. The studies are also related to nonequilibrium wet-
ting questions [24], -and other deposition problems [25].

The same type of studies can be done with the MDLA, i.e. examining the growth of
clusters from a substrate. It is clear that a substrate having 1nite (or not) size destroys
the spatial isotropy or more generally spatial symmetry. In simple words, there is a
top and bottom, if the substrate is horizontal. It is obviously of interest for granular
materials in a gravitational 1eld to consider what happens only in the half space above
the (1nite size of course) substrate. This reduction is however of fundamental and
practical interest because one can also consider that the system is in a vertical box
with walls, as in the Albano et al. 1lm growth geometry [21–23] with binary competing
entities. In DLA, the di.using particle follows a random walk [6]. However, it seems
very hard to let this usual DLA rule holds here concerning the path of the granular
entity launched far away from the seed or substrate. In the present considerations, it
seems more appropriate to let the granular entity follows a ballistic vertical trajectory
like in rain models [25] rather than a random walk.
In this paper, we calculate what changes result in the features of a classical ballistic

deposition [25–27] (BD) model when we add one extra degree of freedom, a “spin”,
to the classical BD. The spin re-ects, e.g., the orientation of oblate grains or their
roughness characteristic. The spins, as usual, interact through some exchange energy J
which, for grains, is often mechanical or electrostatic in nature. The external 1eld H is
thought to be the image of a classical 1eld positioning or in-uencing the -ow of grains,
like some wind velocity or, more generally, pressure di.erence, or an electric 1eld.
This model is hereby called the magnetically controlled ballistic deposition (MBD)
model falls into the category of kinetic growth models. In Section 2, we enumerate
the algorithm rules and brie-y comment upon them. In Section 3 we present results on
the “density” and “magnetization”, “susceptibility” and “compressibility”. The types of
clusters and their fractal dimensions are discussed in Section 4. In Section 5, a brief
conclusion can be found.

2. Experimental procedure

For simplicity we will thereafter call a grain, a spin. It will take here only two states
(up or down) or two values (+1 or −1). The external 1eld is supposed to be constant
and uniform throughout the whole system. For obvious reasons, like higher packing
considerations and possible geometrical frustrations, the underlying lattice should not
have a square symmetry; we have taken a triangular lattice in the following simulations
(Fig. 1).
One of the main problems to be tackled is how to choose the best rule for aggregating

granular falling entities (spins) in order to get them stick together and form clusters.
We have chosen the simplest sticking rule, usual in statistical physics, i.e., namely a
Metropolis-like rule, as also in Pandey et al. [2], presented here below. The algorithm
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Fig. 1. Example of a 4× 4 triangular lattice. The arrow indicates the fall direction. The substrate has been
marked with crosses.

goes as follows:

1. 1rst, we choose a horizontal substrate of spins with a predetermined (for example
antiferromagnetic-like or random) con1guration;

2. a falling (up or down) spin is dropped along one of the lattice lines (see Fig. 1)
from a height rmax + 5a, where rmax is the largest distance between a cluster site
and the substrate, i.e., here it is the height of the highest column growing from the
substrate on the lattice; at each step down the spin can -ip, i.e., change its sign,
with equal probability; e.g. the anisotropic grain can rotate;

3. the spin goes down until it reaches a site perimeter of the cluster; the local gain in
the Ising energy

�E =−�J
∑

〈i; j〉
�i�j − �H

∑

i

�i ; (1)

is calculated before and after the spin possible impact, thus cluster growth. If the
gain is negative the spin sticks to the cluster immediately (sticking probability =1.0)
and we go back to step (2). In the opposite case the spin sticks to the cluster with a
rate exp(−P�E) where P�E is the local gain in the Ising energy. If the spin does
not stick to the cluster it continues going down toward the substrate or bottom of
the box. Of course if the site just below the spin is occupied the spin immediately
stops and sticks to the cluster. When the spin sticks to the cluster we go back to
step (2).

4. After dropping a (large) number of spins the physical quantities of interest like the
magnetization, density, fractal dimension, etc. are computed.

It should be noticed that there is no toppling nor relaxation at this time like in
Manna sandpile model or its extensions [15,28,29]. Moreover, since the number of
nearest neighbors on a triangular lattice is equal to 6, and due to the rule of MBD
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Table 1
Rate of sticking and con1gurations in the MDM model on the triangular lattice. First (second) column shows
the rate of sticking an up (down) spin to the preexisting spin con1guration

exp(+4�J+�H)

exp(−4�J+�H)

exp(+3�J+�H)

exp(−3�J+�H)

exp(+2�J+�H)

exp(−2�J+�H)

exp(−�J+�H)

exp(−�J+�H)

exp(+�H)

Spin up Spin down Configurations

exp(−4�J−�H)

exp(+4�J−�H)

exp(−3�J−�H)

exp(+3�J−�H)

exp(−2�J−�H)

exp(+2�J−�H)

exp(+�J−�H)

exp(+�J−�H)

exp(−�H)

(above paragraph), we do not have to take into considerations the spin con1gurations in
which the depositing spin has a neighbor just vertically over it or just below (because
it would then always stick to the cluster). Therefore, there are only four neighboring
sites where spin con1gurations are relevant for calculating the local gain in the Ising
energy. On the other hand there are three kinds of site occupation: spin up, spin down
and no spin, hence 52 con1gurations (excluding the empty one—when there is no
spin on the perimeter). Some of these con1gurations are symmetrical with respect to
rotations. Finally, 23 con1gurations are to be examined having at least one spin on
the perimeter. All these sticking con1guration rates (also distinguishing the sign of the
falling spin) are shown in Table 1. The contribution to the sticking rate arising from
the interaction of the depositing spin with the 1eld has also to be evaluated. The rates
of sticking to the cluster read like

Pn;s = e−P�E = es(n�J+�H) ; (2)

where P�E is the local gain of the Ising energy, and n is the di.erence between the
number of up and down spins: the possible values are −4;−3; : : : ; 4, and s is the value
(or sign) of the falling spin(−1 or 1). Equating all these rates lead us to a set of
16 relations between �J and �H ; in fact as in the MDLA [17]. Fig. 2 determine 32
regions where granular packing cluster growth processes di.er from each other. The
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Fig. 2. Relations between �J and �H on the �J–�H plane; 32 regions result from these relations.

case �J = 0 and �H = 0 corresponds to the usual ballistic deposition model (standard
deposition without spin and 1eld) [4].
Notice that the model contains two order parameters, as in the Blume–Emery–

Gri4ths model [30,31], one corresponds to the density, the other to the magnetization.

3. Numerical results and discussion

All results reported below are for a triangular lattice of horizontal size L = 100,
i.e., the width of the seed substrate, and when the pile made of clusters has reached a
500 lattice unit height. Every reported data point corresponds to an average over 1000
simulations.

3.1. Density

We de1ne the density of a cluster as

G =
number of spins in the cluster
number of sites on the lattice

; (3)

in which obviously the number of lattice sites =50 000. Fig. 3 illustrates the behavior
of the density with respect to the �H parameter. This 1gure convinces us that the
results are symmetrical with respect to �H =0. Therefore, in the following subsections
we will often present results for �H ¿ 0 only. It is observed that the density presents
a sharp minimum when �H = ±�J . The granular pile is rather loosely packed since
the density varies between 0:37 and 0:45. This low value with respect to experimental
1ndings arises from the fact that we have not included relaxation processes in this
investigation.
In Fig. 4 one illustrates in a 3D way the in-uence of the interaction part of the

hamiltonian, i.e., �J , on the density. This sort of diagram allows us to emphasize that
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Fig. 3. Dependence of density on �H for di.erent �J . Observe that the behavior is symmetrical with respect
to �H = 0.
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Fig. 4. Dependence of the MBD pile density on �H and �J . Observe trenches at borders between plateau
regions.

the density is almost the same everywhere, as mentioned above, but there are several
minima: the main density variations occur along lines bordering plateau regions, lines
which correspond to the equal probability lines mentioned in the previous section.
One can observe a set of trenches near these borders between di.erent growth (or
packing) regions. In these trenches, the density is markedly lower than in the immediate
neighborhood. Indeed such trenches correspond to the highest possible rate of sticking,
thus to a condition for loose packing (see also below).
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Fig. 5. Dependence of the density on �J for di.erent �H .
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Fig. 6. Dependence of the density on �H and �J . Di.erent gray colors correspond to di.erent density levels
with “color” scale indicated on the right.

From Fig. 5, the value of the density is seen to be slightly di.erent for �J ¿ 0 and
for �J ¡ 0, but remains qualitatively the same. These di.erences indicate that a little
higher density is obtained for ferromagnetic systems �J ¿ 0 than for antiferromagnetic
ones, in particular when the external 1eld is di.erent from 0. Something similar had
been found in studies on the MDLA [17]. Further discussion on this point is postponed
for after examination of the clusters in Section 4.
Another illustration of the density dependence is exhibited in Fig. 6 as a projection

on the (�J , �H) plane. The main trenches are observed, i.e., only 10, out of all 32
possible ones: they are located at �H=0; �H=±�J; �H=±2�J . One can distinguish a
trench for positive and negative values of �J and �H . The last one is not clearly visible
in Fig. 6, but in Fig. 5, one can observe a small hollow near the trench �H =−�J for
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Fig. 7. Theoretical maximum probability of sticking a spin to a cluster for a cluster con1guration with:
(a) one spin, (b) two spins, (c) three spins, (d) four spins.

�J ¡ 0. Hollows are positioned along the trench �=−2�J . Such structures (hollows)
are artefacts due to resolution of the simulation.
The �H =±2�J trench is very clearly seen in Fig. 5; for �H =5, a small minimum

is observed for �J =±5, a symptom of the existence of a trench.
To explain the behavior of the density due to �J and �H parameters, let us compute

the maximum probability of cluster sticking for the con1guration having n spins in a
site neighborhood. The results for each con1guration, with respect to the number of
spins in the perimeter are presented in Fig. 7. The discrete color changes is real but
the zig zag blurring is an artefact due to the numerical sampling with �J and �H .
Next, from this 1gure it can be concluded that the biggest drop in density occurs for
�H=±�J indeed (Fig. 7a). The reason stems from the con1gurations which correspond
to a case with a small amount of spins, i.e., with one or three spins, thus to a possibly
high relative change in Ising energy. This observation further explains the existing
density trenches observed in Fig. 4 (or Fig. 6) for �H =±�J .
A very similar conclusion pertaining to the �H=0 and �H=±2�J lines can be drawn

for the appropriate trenches in Fig. 4 (or Fig. 6); the drop is thereby smaller because
these con1gurations contain two and four spins—starting from a four spin con1guration
does not obviously reduce the density after one extra spin sticks to the cluster.
At each step, the available “volume of interest” on the perimeter corresponds to

seven sites. For a con1guration with the largest possible number of “useful” spins for
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sticking in the perimeter we have a 1nal 1ve spin con1guration (4 + the dropping
spin), whence the local density is at most 5

7 ≈ 0:71. However, this occurs at most six
times (out of 23), see Table 1 leading to a rough estimate of 2(6/23)(5/7)=0.37 for
the density.
On the other hand, con1gurations with three and four spins on the perimeter lead to

an increase in the density after spin sticking roughly equal to 0:46 as observed.
The behavior of the density in the vicinity of the zero 1eld and zero interaction

case is of interest with respect to observe deviations from the classical BD model. In
Fig. 8, it is seen that when the 1eld is di.erent from 0 the density is almost constant
over some �J interval, the width of which depending on the 1eld value, i.e., the
higher the 1eld, the wider the interval. Observe that the density value in the interval
does not seem to be varying linearly with the 1eld. Notice that the density dependence
observed in Fig. 5 and its characteristic structures, i.e., the trenches are again observed
for moderately high 1elds (ca. 0.8).
Finally, Fig. 9 exhibits the behavior of the density for �H = �J , i.e., along the

deepest trench (Fig. 4 or Fig. 6). It should be emphasized that the �J ¡ 0 trench level
has a lower density than the �J ¿ 0 one due to the imbalance in sticking probabilities
for preferred ferromagnetic or antiferromagnetic-like con1gurations. Worth mentioning
is that the second deepest trench, i.e., �H = −�H has exactly the same dependence
like that shown in Fig. 9.

3.2. Magnetization

In this subsection we present results concerning the magnetization of the cluster of
spins. The magnetization is de1ned as

M =
n+ − n−
n+ + n−

; (4)
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Fig. 10. Dependence of the magnetization on �J and �H .

where n+ and n− are the number of up and down spins, respectively. This quantity
can be considered as a measure of the di.erence in grain orientations in the packing.
As seen in Fig. 10, the magnetization dependence on �H and �J presents a sort of

terraces and is slightly undulating, at the borders of speci1c regions previously empha-
sized in the density dependence discussion. Interestingly, all expected dependences
are better visible on the magnetization than on the density pictures. In particular,
see Fig. 11.
Figs. 12 and 13 present the behavior of the magnetization for di.erent �J and �H

values. The maximum magnetization occurs for �J = 0 and no 1eld. For a 1nite 1eld
the maximum is rather broad. Terrace structures are seen like in Fig. 10 for the density.
There are about six terraces with di.erent values of the magnetization. Each terrace
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Fig. 11. Dependence of the magnetization on �J and �H , with a gray color scale as indicated.
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Fig. 12. Dependence of the magnetization on �J for di.erent values of �H .

occurs in ranges like those of the regions previously mentioned. It is emphasized that
the magnetization terrace levels di=ers in the antiferromagnetic and the ferromagnetic
coupling regions, i.e., for �J ¡ 0 and �J ¿ 0,—the level height depending on the 1eld
sign.
This is well stressed through Fig. 13 which exhibits the dependence of the magneti-

zation on �H for di.erent �J . Notice that for the case without spin–spin interaction,
one obtains a kind of saturation at a value ca. ±0:36. Observe the surprising form of
the (M;H) curve, as for classical soft magnets. For a 1nite 1eld, the magnetization
does not saturate like in the case of zero 1eld, for the values that we have investigated,
but M saturates creating stair-like structures.
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Fig. 14. Dependence of the magnetic susceptibility on �J and �H .

3.3. Magnetic susceptibility

The magnetic susceptibility of the clusters can be obtained by numerically di.eren-
tiating the magnetization M over the 1eld H , at 1xed J or H , i.e.

�J =
dM
dH

∣∣∣∣
J
; �H =

dM
dJ

∣∣∣∣
H
: (5)

The dependence is presented in Fig. 14. The highest susceptibility occurs for regions
where �H =�J =0 and the main trenches. Other regions have a rather relatively small
susceptibility. The results can be understood through the role of the interaction between
spins which as usual induces a drop in the magnetic susceptibility of the materials.
On the other hand, the variation of the orientation di.erence (M) of the grains in a
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Fig. 15. Dependence of the compressibility on �J and �H .

packing with respect to an external (wind or) 1eld should be an interesting experimental
test.

3.4. Compressibility

Similarly, the compressibility (Fig. 15) at 1xed H or J is

�H = − 1
G
dG
dJ

∣∣∣∣
H
; �J = − 1

G
dG
dH

∣∣∣∣
J
; (6)

where G is the density. The displayed data is rather blurred because of the limited
amount of data for numerical di.erentiation near the trenches and in the region of
the standard BD, in particular. Nevertheless, this 1gure indicates some mild variation
due to internal competition and external conditions. Let us also recall that while the
susceptibility is singular in spin glass models of compaction [32] at the critical percola-
tion value, the compressibility seems to remain 1nite. [32,33] Our model indicates the
same, as experimentally or numerically observed. Further experimental and numerical
considerations should be given to this point.

4. Pile structures

In this section we present some examples of typical clusters created by the MBD
in speci1c regions, as observed and discussed here above. The size of the lacunes in
each cluster allows some emphasis and contrasting.

4.1. Typical clusters

In Fig. 16, nine clusters from nine di.erent growth regions are shown. The central
cluster has the smallest density: it corresponds to the case when there is no interaction
between spins and no 1eld, i.e. it is the standard BD model [26].
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On the other hand the clusters for �J = 0 and �H = ±5 have the highest density;
they illustrate regions where the density is saturating (above 0:44, see Fig. 3). It should
be mentioned that the results are symmetrical with respect to the 1eld sign.
For a 1nite J interaction between spins, a quite di.erent behavior of the clusters is

observed. The clusters corresponding to the trenches (�J =±5 and �H =±5) have a
smaller density (ca. 0.41) than those outside the trenches (see for example clusters with
�J=0 and �H=±5). Also observe, in Fig. 16, 1eld-free grown clusters and di.erences
between �J ¡ 0 and �J ¿ 0 clusters. When �J ¿ 0, the spins show a tendency toward
similar sign spin “domains”. In the antiferromagnetic-like region, i.e. where �J ¡ 0,
adjacent spins have more often opposite directions—a cluster with �J ¡ 0 and �H =0
is a typical example. This allows us to emphasize that the internal competition leads
to di.erent cooperative phenomena in cluster packing [3].

4.2. Fractal dimension

For further relating the model and our investigations to granular piles, it is of interest
to check the fractal dimension [34,35] of the piles in the di.erent parameter regions.
The (box counting) technique [34,35] consists in covering, without overlapping, the
whole cluster by squares of the same size, and computing the number of squares which
have at least one spin up (or down), for di.erent square sizes. We have distinguished
between the fractal dimension of the cluster of up and down spins. When computing
the fractal dimension of the whole cluster it was simply checked whether there was at
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Fig. 17. The fractal dimension for the whole cluster, i.e. not recognizing the spin signs.

least one spin and its sign in the relevant square. From the best linear 1t to the data,
i.e., −log(square size) vs. log(number of squares with a spin), the fractal dimension
is obtained through the slope. The results are reported in Figs. 17 and 18.
Let us discuss the results corresponding to di.erent regions, either not distinguish-

ing over the spin sign (Fig. 17), or on the contrary considering down or up cases
(Fig. 18a or b, respectively). The fractal dimension in every case ranges from 1.91
to 1.95, therefore is about equal to 2, taking into consideration the error bars. This
value is similar to what is found in classical BDM [4,26] and in the rain model [25].
Surprisingly, the lowest fractal dimensions are found in the above for the trenches and
in particular for the classical BDM.

5. Conclusion

We have presented a nonequilibrium ballistic deposition model with one degree of
freedom per entity, degree which can be coupled to an external 1eld. We have ex-
amined the cluster properties emphasizing the existence of two-order parameters, since
two characteristic 1eld (J and H) are intrinsic to the model. This model can serve to
describe in a 1rst approximation the deposition of a distribution of grains, distribution
characterized by one intrinsic parameter which can be coupled to an external 1eld. The
degree of freedom can be either the anisotropy factor or the surface roughness or
an electrostatic imbalance of a grain—the corresponding 1eld being immediately
thought of.
For the sake of such an extension of usual deposition models, the degree of freedom

has been called “spin”. We have simulated the nonequilibrium deposition in a 1nite size
2D vertical box, admitting that grains -ow down along linear trajectories on a triangular
lattice. The “quenching” of the degree of freedom on the cluster leads to branching
or compactness and moreover to combined geometric and physical regions at speci1c
“1eld” and “spin–spin interaction” values. This was seen through the calculation of the
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Fig. 18. The fractal dimension for the granular cluster when we recognize the spin signs.

“density” and the so called “magnetization”. Di.erent cluster regimes were expected
according to the (spin sticking) packing rule.
We have investigated a box geometry and a triangular underlying lattice. The ranges

in density and magnetization are limited, but features exist resulting from competitive
nonequilibrium growth/deposition processes. Minima in density occur along speci1c
sticking probability lines. Slight di.erences exist whether the “spin–spin interaction
energy” is positive or negative. The fractal dimension of clusters whatever the type of
grains and the parameter sign or values is however rather trivial and equal to 2. This
di.ers markedly from what was found in the MDLA model starting from a central
seed in which both in the ferromagnetic interaction regions, and the AF regions, the
cluster morphology was dendritic with an important thickening of the branches and the
fractal dimension ranging from 1:68 to 1:99. Instead of a critical a value �Jc, a set
of values depending on the external 1eld divide the parameter plane in regions, with
trenches and plateaus. Thus, a spreading phenomenon is avoided around such �Jc(H).
It is of interest to further examine whether this has interesting consequences in granular
deposition situations [36].
The connection between this model and granular matter systems suggests some ex-

perimental work. In the MBD the spin can be interpreted as a rotation or de1ning a
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direction process. The coupling constant can be mapped to a mechanical friction energy,
the magnetic 1eld to gravity or wind pressure. It is known that packing is impaired by
static electrical charges. Such e.ects may be considered in the above framework.
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