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Abstract Positioning is a fundamental issue in mobile robot applica-
tions that can be achieved in multiple ways. Among these methods, trian-
gulation is a proven technique. As it exists for a long time, many variants
of triangulation have been proposed. Which variant is most appropriate
depends on the application because some methods ignore the beacon or-
dering while other have blind spots. Some methods are reliable but at
a price of increasing complexity or special cases study. In this paper,
we present a simple and new three object triangulation algorithm. Our
algorithm works in the whole plane (except when the beacons and the
robot are concyclic or colinear), and for any beacon ordering. Moreover, it
does not need special cases study and has a strong geometrical meaning.
Benchmarks show that our algorithm is faster than existing and com-
parable algorithms. Finally, a quality measure is intrinsically derived for
the triangulation result in the whole plane, which can be used to identify
the pathological cases, or as a validation gate in Kalman filters.
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1 Introduction

Positioning is a fundamental issue in mobile robot applications. Indeed, in most
cases, a mobile robot that moves in its environment has to position itself before
it can execute its actions correctly. Therefore the robot has to be equipped with
some hardware and software capable to provide a sensory feedback related to its
environment [1]. Positioning methods can be classified into two main groups [3]:
(1) relative positioning, and (2) global or absolute positioning. The first group
(also called dead-reckoning) achieves positioning by odometry which consists to
count the number of wheel revolutions to compute the offset relative to a known
position. Odometry is very accurate for small offsets but is not sufficient be-
cause of the unbounded accumulation of errors over time (due to wheel slippage,
imprecision in the wheel circumference, or wheel inter axis) [3]. Furthermore
odometry needs an initial position and fails when the robot is “waken-up” (af-
ter a forced reset for example) or is raised and dropped somewhere, since the
reference position is unknown or modified. A global positioning system is thus
required to recalibrate the robot position periodically.
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Relative and global positioning are complementary to each other [1,4] and are
typically merged together by using a Kalman filter [12,14]. In many cases, global
positioning is ensured by beacon-based triangulation or trilateration. Triangula-
tion is the process of determining the location of a point by measuring angles to
it from known points, while trilateration methods involve the determination of
absolute or relative locations of points by measurement of distances. Because of
the large variety of angle measurement systems, triangulation has emerged as a
widely used, robust, accurate, and flexible technique [10]. Another advantage of
triangulation versus trilateration is that the robot can compute its orientation
(or heading) in addition to its position, so that the complete pose of the robot
can be found. The process of determining the robot pose from three beacon an-
gle measurements is termed Three Object Triangulation [7]. Fig. 1 illustrates the
process of triangulation. In the remainder of this paper, we concentrate on three
object triangulation methods.
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Figure 1. Triangulation setup in the 2D plane. R denotes the robot. B1, B2, and B3
are the beacons. α1, α2, and α3 are the angle measurements respectively for B1, B2,
and B3, relatively to the robot reference orientation θ.

1.1 Related Works
Various triangulation algorithms may be found in [1,5,6,7,8,10,11,12,13,14,15,16].
These algorithms can be classified into four groups: (1) Geometric Triangula-
tion, (2) Geometric Circle Intersection, (3) Iterative methods (Iterative Search,
Newton-Raphson, etc), and (4) Multiple Beacons Triangulation. The first group
could be named Trigonometric Triangulation because it makes an intensive use
of trigonometric computations. The second group computes the parameters (ra-
dius and center) of two (of the three) circles passing through the beacons and the
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robot, then it computes the intersection between these two circles. The first and
second groups are typically used as a solution of the three object triangulation
problem. The third group linearizes the trigonometric relations to converge to
the robot position after some iterations, from a starting point (usually the last
known robot position). The fourth group addresses the more general problem of
finding the robot pose from multiple angle measurements (usually corrupted by
errors). It appears that the second group (Geometric Circle Intersection) is the
most popular for solving the three object triangulation problem [13,16].

These algorithms all have advantages and drawbacks, and the method has
to take the requirements of a particular application into account, which leads to
make some compromises. For example, if the setup contains three beacons only
or if the robot platform has a low computing power, methods of the first and
second groups are the best candidates. Methods of the third and fourth groups
are appropriate if the application must handle multiple beacons and if it can
accommodate to a higher computational cost. The main drawback of the third
group is the convergence issue (existence or uniqueness of the solution) [7]. The
main drawback of the fourth group is the computational cost [1,5].

The drawbacks of the first and second group are usually a lack of precision
in the following points: (1) the beacon ordering needed to get the correct so-
lution, (2) the consistency of the methods when the robot is located outside
the triangle defined by the three beacons, (3) the strategy to follow when falling
into some particular geometrical cases (typically mathematical undeterminations
when solving trigonometric equations with an argument equal to 0 or π, division
by 0, etc), and (4) the quality measure of the computed position. Simple meth-
ods of the first and second groups usually fail to propose an answer to all these
raised issues. To work in the whole plane and for any beacon ordering (for in-
stance [11]), they have to consider a set of special geometrical cases, resulting in
a lack of clarity in the method. Finally, none of these algorithms gives a realistic
quality measure of the computed position.

1.2 Overview
Our paper presents a new three object triangulation algorithm that works in the
whole plane (except when the beacons and the robot are concyclic or colinear),
and for any beacon ordering. Moreover it uses a minimal number of trigonometric
computations and, finally, it leads to a natural and quantitative quality measure
of the computed position.

The paper is organized as follows. Our triangulation algorithm is described
in Section 2. Section 3 presents simulation results. Then, we conclude the paper
in Section 4.

2 Description of a New Three Object Triangulation
Algorithm

Our algorithm belongs to the second group, that is: Geometric Circle Intersec-
tion. It first computes the parameters of the three circles passing through the
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robot and the three pairs of beacons. Then it computes the intersection of these
three circles, by using all the three circles, not only two of them.

Our algorithm relies on two assumptions: (1) the beacons are distinguish-
able (a measured angle can be associated to a given beacon), and (2) the angle
measurements from the beacons are taken separately, and relatively to some
reference angle θ, usually the robot heading (see Fig. 1). Note that the sec-
ond hypothesis simply states that angles are given by a rotating angular sensor
(goniometer). Such sensors are common in mobile robot positioning using trian-
gulation [2,3,6,15,16,17]. By convention, in the following, we consider that angles
are measured counterclockwise (CCW), like angles on the trigonometric circle.
Changing the rotating direction to clockwise (CW) requires a minimal changes
of our algorithm.

2.1 First Part of the Algorithm: the Circle Parameters

In a first step, we have to find the locus of points R that see two fixed points
B1 and B2 with a constant angle α12, in the 2D plane. It is a well-known result
that this locus is an arc of the circle passing through B1 and B2, whose radius
depends on the distance between B1 and B2, and α12 (Proposition 21 of Book
III of Euclid’s Elements). More precisely, this locus is composed of two arcs of
circle, which are the reflection of each other through the line joining B1 and B2
(see the left drawing of Fig. 2).

A robot that measures an angle α12 between two beacons without any caution
can stand on either of these two arcs. It would be the case if the beacons were
not distinguishable or if the angular sensor was not capable to measure angles
larger than π. To avoid this ambiguity, we impose that, as shown in the right-
hand drawing of Fig. 2, the measured angle between two beacons B1 and B2,
denoted α12, is always computed as α12 = α2 − α1 (this choice is natural for a
CCW rotating sensor). This is consistent with our measurement considerations
and it removes the ambiguity about the locus. For now the locus is a single circle
passing through R, B1, and B2. But it requires that beacons are indexed and
that the robot is capable to guess the index of any beacon.

The circle equation may be derived by using the complex representation of
2D points (Argand diagram). The idea consists to express that the complex
argument of (B2 − R) is equal to the complex argument of (B1 − R), plus α,
or:

arg
{
B2 −R
B1 −R

}
= α

⇒ arg
{

(B2 −R) (B1 −R)
}

= α
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Figure 2. Left-hand side drawing: the locus of points R that see two fixed points B1
and B2 with a constant angle α12, in the 2D plane, is formed by two arcs of circle.
Right-hand side drawing: the ambiguity about the locus is removed by taking the
following convention: α12 = α2 − α1.

Then replacing R by (x+ iy), B1 by (x1 + iy1), and B2 by (x2 + iy2), we have
that

arg
{

(x2 + iy2 − x− iy) (x1 − iy1 − x+ iy) e−iα
}

= 0
⇒ Im {[(x2 − x) + i (y2 − y)] [(x1 − x) + i (y − y1)] [cosα− i sinα]} = 0

⇒ − sinα (x2 − x) (x1 − x) + sinα (y2 − y) (y − y1)
+ cosα (x2 − x) (y − y1) + cosα (y2 − y) (x1 − x) = 0

where i =
√
−1. After many simplifications, we find the locus

(x− x12)2 + (y − y12)2 = R2
12

which is a circle whose center {x12, y12} is located at

x12 = (x1 + x2) + cotα (y1 − y2)
2 , y12 = (y1 + y2)− cotα (x1 − x2)

2
and whose squared radius equals

R2
12 = (x1 − x2)2 + (y1 − y2)2

4 sin2 α

These equations may also be found in [13]. The replacement of α by π + α in
the above equations yields the same circle parameters (Fig. 2, right), which is
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consistent with our measurement considerations. For an angular sensor turning
in CW direction, one have to change the sign of cotα in the center coordinates
equations. In the following, we use these notations:

– Bi is the beacon #i, with coordinates {xi, yi},
– R is the robot position, with coordinates {xR, yR},
– αi is the measured angle for beacon Bi with respect to the robot orientation,
– αij = αj − αi is the bearing angle between beacons Bi and Bj ,
– Tij = cot(αij),
– Cij is the circle passing through Bi, Bj , and R,
– cij is the center of Cij , with coordinates {xij , yij}:

xij = (xi + xj) + Tij (yi − yj)
2 , yij = (yi + yj)− Tij (xi − xj)

2 (1)

– Rij is the radius of Cij , derived from:

R2
ij = (xi − xj)2 + (yi − yj)2

4 sin2 αij
(2)

All the previous quantities are valid for i = 1, 2, 3 and j = (i)mod 3 + 1. The
special cases (αij = 0 or αij = π) are discussed later.

2.2 Second Part of the Algorithm: the Circles Intersection

From the previous section, each bearing angle αij between beacons Bi and Bj
constraints the robot to be on a circle Cij , passing through Bi, Bj , and R (Fig. 3).
The parameters of the circles are given by Equ. 1 and 2. Note that we are in
the case of a trilateration problem with virtual beacons (the circle centers) and
virtual range measurements (the circle radii). Common methods use two of the
three circles to compute the intersections (when they exist), one of which is the
robot position, the second being the common beacon of the two circles. This
requires to solve a quadratic system and to choose the correct solution for the
robot position [13]. Moreover the choice of the two circles is arbitrary and usually
static, whereas this choice should depend on the measured angles and beacons
configuration.

Hereafter, we propose a novel method to compute this intersection, by using
all the three circles, and reducing the problem to a linear problem. To understand
this simple method, we first have to remind the notion of the power center (or
radical center) of three circles. The power center of three circles is the unique
point of equal power with respect to these circles [9]. The power of a point p
relative to a circle C is defined as:

PC,p = (x− xc)2 + (y − yc)2 −R2 (3)

where {x, y} are the coordinates of point p, {xc, yc} are the circle center coor-
dinates and R is the circle radius. The power of a point is null onto the circle,
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Figure 3. Triangulation setup in the 2D plane, using the geometric circle intersection.
R is the robot. B1, B2, and B3 are the beacons. αij are the angles between Bi, R, and
Bj . Cij are the circles passing through Bi, R, and Bj . Rij and cij are respectively the
radii and center coordinates of Cij . θ is the robot orientation in the world coordinate.

negative inside the circle and positive outside the circle. It defines a sort of dis-
tance of a point relative to a circle. The power line (or radical axis) of two circles
is the locus of points having the same power with respect to each circle [9]. It
is perpendicular to the line joining the circle centers and passes through the
circle intersections, when they exist. When considering three circles, the three
power lines, defined by the three pairs of circles are concurring in the power cen-
ter [9]. Fig. 4 shows the power center of three circles for various configurations.
The power center is always defined, except when at least two of the three circle
centers are equal, or when the circle centers are colinear (parallel power lines).

The third case of Fig. 4 (right-hand drawing) is remarkable as it perfectly
matches to our triangulation problem (Fig. 3). Indeed, the power center of three
concurring circles corresponds to their unique intersection. In our case, we are
sure that the circles are concurring since α31 = −(α12 + α23) by construction
(only two of the three bearing angles are independent). It has the advantage
that this intersection may be computed by intersecting the power lines, which
is a linear problem. The power line of two circles is obtained by equating the
power of the points relatively to each circle (Equ. 3). In our problem, the power
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Figure 4. The black point is the power center of three circles for various configurations.
It is the unique point having the same power with respect to the three circles. It is the
intersection of the three power lines.

line of C12 and C23 is given by:

(x− x12)2 + (y − y12)2 −R2
12 = (x− x23)2 + (y − y23)2 −R2

23

⇒ x (x12 − x23) + y (y12 − y23) = x2
12 + y2

12 −R2
12

2 − x2
23 + y2

23 −R2
23

2
⇒ x (x12 − x23) + y (y12 − y23) = k12 − k23

where we introduce a new quantity kij which only depends on Cij parameters
(kij is the power of the origin relatively to Cij , divided by two):

kij =
x2
ij + y2

ij −R2
ij

2 (4)

In our triangulation problem, we have to intersect the three power lines, that is
to solve this linear system:

x (x12 − x23) + y (y12 − y23) = k12 − k23

x (x23 − x31) + y (y23 − y31) = k23 − k31

x (x31 − x12) + y (y31 − y12) = k31 − k12

As can be seen, any of these equations may be obtained by adding the two others,
which is way to prove that the three power lines coincide in a unique point: the
power center. The coordinates of the power center, that is the robot position is
given by:

xR =

∣∣∣∣k12 − k23 y12 − y23
k23 − k31 y23 − y31

∣∣∣∣∣∣∣∣x12 − x23 y12 − y23
x23 − x31 y23 − y31

∣∣∣∣ , yR =

∣∣∣∣x12 − x23 k12 − k23
x23 − x31 k23 − k31

∣∣∣∣∣∣∣∣x12 − x23 y12 − y23
x23 − x31 y23 − y31

∣∣∣∣ (5)

The denominator D, common to xR and yR is equal to:

D =
∣∣∣∣x12 − x23 y12 − y23
x23 − x31 y23 − y31

∣∣∣∣ =

∣∣∣∣∣∣
x12 y12 1
x23 y23 1
x31 y31 1

∣∣∣∣∣∣ (6)
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which is the signed area between the circle centers, multiplied by 2. This result
confirms that the power center exists, that is D 6= 0, if the circle centers are not
colinear. The special case (D = 0) is discussed later.

2.3 First (Naive) Version of the Algorithm

A first, but naive version of our algorithm is described by Algorithm 1.

Algorithm 1 First version of the algorithm.
1. compute the three cot(.): Tij = cot(αij),
2. compute the six circle centers coordinates {xij , yij} by Equ. 1,
3. compute the three squared radii R2

ij by Equ. 2,
4. compute the three parameters kij by Equ. 4,
5. compute the denominator D by Equ. 6. Return with an error if D = 0.
6. compute the robot position {xR, yR} by Equ. 5 and return.

This method is correct but it is possible to simplify it with some considera-
tions about the involved equations. First, note that the squared radii R2

ij only
appear in the parameters kij . If we replace the expression of R2

ij (Equ. 2) in the
expression of kij (Equ. 4), we find, after many simplifications that:

kij = xixj + yiyj + Tij(xjyi − xiyj)
2 (7)

which is much simpler than Equ. 2 and 4 (no squared terms anymore). In ad-
dition, the 1/2 factor involved in the circle centers coordinates (Equ. 1) as well
as in the parameters kij (Equ. 4) disappears in the robot position coordinates
(Equ. 5). This factor can thus be omitted. For now, we use these modified circle
center coordinates {x′ij , y′ij}:

x′ij = (xi + xj) + Tij (yi − yj) , y′ij = (yi + yj)− Tij (xi − xj) (8)

and parameters k′ij :

k′ij = xixj + yiyj + Tij(xjyi − xiyj) (9)

The second version of our algorithm is given in Algorithm 2.

2.4 Final Version of the Algorithm

The most important simplification consists in translating the world coordinate
frame into one of the beacons, that is solving the problem relatively to one
beacon and then add the beacon coordinates to the computed robot position.
In the following, we arbitrarily choose B2 as the origin (B2 = {0, 0}). The
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Algorithm 2 Second version of the algorithm.
1. compute the three cot(.): Tij = cot(αij),
2. compute the modified circle centers coordinates {x′

ij , y
′
ij} by Equ. 8,

3. compute the modified parameters k′
ij by Equ. 9,

4. compute the denominator D by Equ. 6. Return with an error if D = 0.
5. compute the robot position {xR, yR} by Equ. 5 and return.

other beacon coordinates become: B1 = {x1 − x2, y1 − y2} = {x′1, y′1} and
B3 = {x3 − x2, y3 − y2} = {x′3, y′3}. Since x′2 = 0 and y′2 = 0, we have k′12 = 0,
k′23 = 0. Also, we can compute the value of one cot(.) by referring to the two
other cot(.) because the three angles are not independent (α31 = −(α12 +α23)):

T31 = 1− T12T23

T12 + T23
(10)

The final algorithm is given in Algorithm 3.

Algorithm 3 Final version of the algorithm.
Given the three beacon coordinates {xi, yi} and the three angle measurements αi:

1. compute the modified beacon coordinates:

x′
1 = x1 − x2, y′

1 = y1 − y2, x′
3 = x3 − x2, y′

3 = y3 − y2

2. compute the three cot(.):

T12 = cot(α2 − α1), T23 = cot(α3 − α2), T31 = 1− T12T23

T12 + T23

3. compute the modified circle center coordinates {x′
ij , y

′
ij}:

x′
12 = x′

1 + T12 y
′
1, y′

12 = y′
1 − T12 x

′
1

x′
23 = x′

3 − T23 y
′
3, y′

23 = y′
3 + T23 x

′
3

x′
31 = (x′

3 + x′
1) + T31 (y′

3 − y′
1), y′

31 = (y′
3 + y′

1)− T31 (x′
3 − x′

1)
4. compute k′

31:
k′

31 = x′
1x

′
3 + y′

1y
′
3 + T31(x′

1y
′
3 − x′

3y
′
1)

5. compute the denominator D (if D = 0, return with an error):

D = (x′
12 − x′

23)(y′
23 − y′

31)− (y′
12 − y′

23)(x′
23 − x′

31)

6. compute the robot position {xR, yR} and return:

xR = x2 + k′
31(y′

12 − y′
23)

D
, yR = y2 + k′

31(x′
23 − x′

12)
D
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2.5 Discussion

This algorithm is very simple, while keeping a strong geometrical meaning (each
involved quantity has a physical meaning). Moreover, the number of conditional
statements is reduced (there are two tests related to the argument of cot(.) and
one conditional test to check if D = 0), which increases its readability and eases
its implementation. Furthermore, computations are limited to basic arithmetic
computations and two cot(.) computations. Among these computations, we have
to take care of the cot(.) and the division by D. If a bearing angle αij between
two beacons is equal to 0 or π, that is the robot stands on the line BiBj , the
cot(αij) is infinite. The corresponding circle degenerates as the line BiBj (in-
finite radius and center coordinates). The robot position is the intersection of
the remaining power line and the line BiBj . It can be shown that the mathe-
matical limit limTij→±∞ {xR, yR} exists and corresponds to this situation. The
algorithm could deal with these special cases but it is not necessary. In practice,
we have to avoid Inf or NaN values in floating point computations. This can be
done by limiting the cot(.) value to a minimum or maximum value, correspond-
ing to a small angle that is far below the measurement precision. In practice,
we limit the value of the cot(.) to ±108, which corresponds to an angle of about
±10−8 [rad]; this is indeed far below the existing angular sensor precisions.

The denominator D is equal to 0 when the circle centers are colinear. For
non colinear beacons, this situation occurs when the beacons and the robot are
concyclic (they all stand on the same circumference, termed the critic circum-
ference). In that case, the three circles are equal as well as their centers, which
causes D = 0. For colinear beacons, this situation is encountered when the bea-
cons and the robot all stand on this line. For these cases, it is impossible to
compute the robot position. This is referred as the restrictions common to all
three object triangulation, whatever the algorithm used [10,13,16]. The value of
D, computed in the final algorithm, is the signed area delimited by the circle
centers, multiplied by 8. It is quiet natural to use the absolute value of D as a
quality measure of the computed position. Indeed |D| decreases to 0 when ap-
proaching the critic circumference (almost colinear circle center, almost parallel
power lines). In the next section, we show that 1/|D| is a good approximation of
the position error. In practice, |D| can be used as a validation gate after the tri-
angulation algorithm or when using a Kalman filter with triangulation. Finally,
it should be noted that the robot orientation may be determined by using any
beacon Bi and its corresponding angle measurement αi, once the robot position
is known.

3 Simulations

In order to validate our algorithm, we have performed some simulations in a
square shaped area (4×4 [m2]), with three non colinear beacons. For each point in
this area, we compute the exact angles αi seen by the robot (the robot orientation
is arbitrary set to 0 degree). Then we add Gaussian noise to these angles, with
zero mean, and with two different standard deviations (σ = 0.1° and σ = 1°). The
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noisy angles are then used as inputs of our algorithm to compute the estimated
position. The position error∆dR is the Euclidean distance between the exact and
estimated position. The orientation error ∆θR is the difference between the exact
and estimated orientation. The experiment is repeated several times to compute
the mean of the position error E{∆dR} and the mean of the orientation error
E{∆θR}. The means of the position and orientation error are drawn in Fig. 5.
The beacon positions are represented by black and white circles. The left column
is the result for σ = 0.1°, the right column is the result for σ = 1°. The first,
second and third rows show the position error, the orientation error, and the
quality measure 1/|D| respectively.

Our simulation results are consistent with common three object triangulation
algorithms [11,13]. In particular, we can easily spot the critic circumference
where errors are large. From these graphics, one can see that 1/|D| has a similar
shape than the position or orientation error, up to a constant multiplicative
factor. It can be proven (but this beyond the scope of this paper), by a detailed
sensitivity analysis of the robot position error with respect to angles, that

∆dR '
1
|D|

∆αf(.)

where ∆dR is the position error, ∆α is the angle error, and f(.) is some function
of all the other parameters. This explain why 1/|D| can be used as an approxi-
mation of the position error, up to a constant multiplicative factor.

In this paper, we do not provide results obtained with a real sensor. An
absolute comparison between simulation results and real data is at least difficult
if not impossible to produce because many unknown or uncontrolled parameters
impact on results. The precision of the sensor is one of these critical parameters
but the absolute position of beacons and the sensor position onto the robot
are very difficult to measure with a high accuracy. These difficulties did not
prevented us to implement the algorithm and run it on our platform with success
during the qualification of the Eurobot competition.

We have also compared the computational time of our algorithm against two
other algorithms. The first algorithm is the Generalized Geometric Triangulation
from Esteves et al. [11]. The second is the Geometric Circle Intersection from
Font-Llagunes et al. [13]. We chose these algorithms because they work in the
whole plane and for any beacon ordering, like ours. The simulations were per-
formed in the same square shaped area, with a resolution of 0.5 [mm]. It appears
that our algorithm is about 40 % faster than Esteves et al. [11], and 20 % faster
than Font-Llagunes et al. [13], for exactly the same precision.

4 Conclusions

This paper presents a new and simple three object triangulation algorithm based
on the power center of three circles. As it exists for a long time, many variants
of triangulation have been proposed. Which variant is most appropriate depends
on the application because some methods ignore the beacon ordering while other
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Figure 5. Simulation results giving position and orientation error with noisy angle
measurements. The beacon positions are represented by black and white circles. The
left column is the result for σ = 0.1°, the right column is the result for σ = 1°. The
first, second and third rows show the position error (expressed in [m]), the orientation
error (expressed in [degree]), and the quality measure 1/|D| (D being expressed in [m2])
respectively.
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have blind spots. Some methods are reliable but at a price of increasing complex-
ity or special cases study. Our algorithm works in the whole plane (except when
the beacons and the robot are concyclic or colinear), and for any beacon order-
ing. It does not need special cases study, which makes it clear. Moreover it has
a strong geometrical meaning (each involved quantity has a physical meaning),
while keeping simple. Furthermore it uses only basic arithmetic computations,
and two cot(.) computations. Benchmarks show that our algorithm is faster than
existing and comparable algorithms. Finally it naturally gives a quality measure
of the triangulation result in the whole plane. Simulation intuitively show that

1
|D| is a natural and efficient criterion to estimate the precision of the positioning.
To our knowledge, algorithms of the same family do not provide such a crite-
rion. This quality measure can be used to identify the pathological cases (critic
circumference), or as a validation gate in Kalman filters based on triangulation.
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