The vacuum UV photoabsorption spectrum of methyl chloride $\left(\mathrm{CH}_{3} \mathrm{Cl}\right)$ and its perdeuterated isotopomer $\mathbf{C D}_{3} \mathbf{C l}$ II. A vibrational analysis

R. Locht ${ }^{\text {a,* }}$, B. Leyh ${ }^{\text {a,1 }}$ A. Hoxha ${ }^{\text {a }}$, D. Dehareng ${ }^{\text {b }}$, H.W. Jochims ${ }^{\text {c }}$, H. Baumgärtel ${ }^{\text {c }}$
${ }^{\text {a }}$ Département de Chimie Générale et de Chimie Physique, Institut de Chimie, Bât.B6c, Université de Liège, Sart-Tilman par B-4000 Liège 1, Belgium
${ }^{\mathrm{b}}$ Centre d'Ingéniérie des Protéines, Institut de Chimie, Bât.B6a, Université de Liège, Sart-Tilman par B-4000 Liège 1, Belgium
${ }^{c}$ Institut für Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany

Abstract

The fine structure of the vacuum UV photoabsorption spectrum of $\mathrm{CH}_{3} \mathrm{C} 1$ and $\mathrm{CD}_{3} \mathrm{C} 1$ has been analyzed in the $7.5-10.5 \mathrm{eV}$ photon energy range. A large number of lines have been observed, classified and assigned to the vibrational excitation accompanying a series of Rydberg transitions. The vibronic transitions involve both Jahn-Teller distortion and spin-orbit splitting. The former effect has been evaluated by ab initio calculations showing that the ${ }^{2} \mathrm{E}$ state (in the $\mathrm{C}_{3 \mathrm{v}}$ symmetry group) splits into ${ }^{2} \mathrm{~A}^{\prime}$ and ${ }^{2} \mathrm{~A}$ " states in the C_{s} symmetry group. The ${ }^{2} \mathrm{~A}^{\prime}$ state is energetically the lowest component whereas the ${ }^{2} \mathrm{~A}$ " is found to be a transition state. The Jahn-Teller stabilization energy and the wave numbers associated with all vibrational modes have been calculated. Experimentally, the entire fine structure could be described by using three vibrational modes, i.e. $h c \omega_{5}=104 \pm 7 \mathrm{meV}, h c \omega_{6}=77 \pm 7 \mathrm{meV}$ and $h c \omega=162 \pm 3 \mathrm{meV}$ respectively, as resulting from an average over all the analyzed Rydberg states. In $\mathrm{CD}_{3} \mathrm{C} 1$ the corresponding energies are $h c \omega_{5}=81 \pm 4 \mathrm{meV}$, $h c \omega_{6}=66 \pm$ 5 meV and $h c \omega=124 \pm 4 \mathrm{meV}$. These values are in good agreement with those predicted by the present ab initio calculations for the the ion ground state. However, the agreement is not so good for the wave number ω which could be assigned to the v_{3} or to the v_{4} vibrational modes. Though some arguments favour v_{4} (the CH_{3} umbrella mode), within the error limits on the present measurements it is formally not possible to ascribe this wave number to one of these two vibrations.

1. Introduction

In our effort to understand the gas phase photochemistry and the ion chemistry of the mono-halogenated methanes, the starting step is the investigation of their vacuum UV photoabsorption spectrum. Obviously, as sufficiently proved in the past, the detailed analysis of the photoabsorption spectrum is an essential tool for the interpretation of the various spectra, e.g. the threshold photoelectron, constant ion state (CIS) spectra and ion yield in photoionization mass spectrometry.

In the frame of this work, we already examined in detail the photoabsorption spectrum of the $\mathrm{CH}_{3} \mathrm{~F}$ molecule in the 7-24 eV photon energy range [1]. In the preceding paper we went on with the photoabsorption spectrum of $\mathrm{CH}_{3} \mathrm{Cl}$ and CD 3 Cl between $6-12 \mathrm{eV}$ and restricted the analysis to the classification and assignment of the Rydberg series in these two molecules [2]. Numerous features have still to be interpreted in this spectrum. Essentially two previous studies mentioned and presented, partially at least, an analysis of these structures.

First, Felps et al. [3] reported the photoabsorption spectrum of $\mathrm{CH}_{3} \mathrm{X}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ and I$)$ in the $61000-$ $69000 \mathrm{~cm}^{-1}$ ($7.55-8.55 \mathrm{eV}$) spectral region. They reported a splitting of about $915 \mathrm{~cm}^{-1}$ which was related to the spin-orbit coupling and a few vibrational modes were identified. This group [3] also examined the lowest Rydberg transitions in the same spectral region for the corresponding perdeuterated methyl halides.

The most extensive study of the vacuum UV photoabsorption spectrum of $\mathrm{CH}_{3} \mathrm{C} 1$ has been reported by Truch et al. [4]. The spectrum was investigated in the wavelength region of $68600-94700 \mathrm{~cm}^{-1}(8.50-11.74 \mathrm{eV})$.

[^0]Valence-valence and Rydberg transitions were observed and assigned. The vibrational fine structure in this energy range was analyzed in some detail for the first time in this photon energy range.

The aim of this part of the present photoabsorption work is to identify and to classify the numerous features present in the vacuum UV absorption spectrum of both $\mathrm{CH}_{3} \mathrm{C} 1$ and $\mathrm{CD}_{3} \mathrm{C} 1$ in the $7.8-10.8 \mathrm{eV}$ photon energy range. The assignment to the excitation of vibrational normal modes will be based on ab initio quantum mechanical calculations on $\mathrm{CH}_{3} \mathrm{C1}^{+}$and $\mathrm{CD}_{3} \mathrm{C1}^{+}$presented in this work. This will also make a detailed investigation of the isotope effect on the excited vibrational normal modes possible.

2. Experimental

2.1. Experimental setup

The experimental setup used in this work has already been described in detail elsewhere [5]. Only the most salient features will be reported here.

Synchrotron radiation available from the BESSY I facility (Berlin, Germany) is dispersed with a modified vacuum UV normal incidence 225 McPherson monochromator with a focal length of 1.5 m , instead of 1 m in the commercial version ($1 \mathrm{~m}-\mathrm{NIM}-2$ beamline). A laminar Zeiss grating is used for the efficient reduction of the second spectral order. It is gold coated with $1200 \ell / \mathrm{mm}$ and its transmission breaks down above 26 eV ($210000 \mathrm{~cm}^{-1}$ or 47 nm). The width of the entrance and exit slits of $100 \mu \mathrm{~m}$ provides a 0.1 nm resolution. The light passes through a 1 mm thick stainless steel microchannel plate necessary to ensure a differential pressure of 1:1000 before entering a 30 cm long stainless steel absorption cell. Most of the spectra are recorded without filter on the light path. However, in some instances a LiF filter is used. It can be inserted in the light beam without vacuum breakdown. This filter has a transmission cutoff at $11.8 \mathrm{eV}\left(95000 \mathrm{~cm}^{-1}\right.$ or 105 nm$)$. The vapor pressure in the cell is measured by a Balzers capacitor manometer. The light is detected by a sodium salicylate sensitized photo-multiplier located at the end of the absorption cell and in front of the monochromator exit slit. Output pulses are recorded by a 100 MHz counter. The recording of an absorption spectrum requires one scan with gas in the absorption cell and one with the empty cell. The stability of the synchrotron radiation and of the pressure in the cell ensures reliable absorption data. If required, the spectra presented in the following sections are corrected for any pressure drift. The commercially available $\mathrm{CH}_{3} \mathrm{C} 1$, purchased from Praxair and of 99.5% purity, was used without further purification. The $\mathrm{CD}_{3} \mathrm{CL}$, purchased from Merck, Sharp and Dohme, is certified at $99 \mathrm{at} . \%$ purity. No noticeable impurity was observed by mass spectrometry at 21.2 eV photon energy. Therefore, the sample was used without further purification.

2.2. Data handling and error estimation

The wavelength calibration of the monochromator has been performed by using the Ar^{+}absorption spectrum between the ${ }^{2} \mathrm{P}_{3 / 2}$ and the ${ }^{2} \mathrm{P}_{1 / 2}$ ionic states. The accuracy of this calibration was better than 2 meV . In the measurements extending from 6 to 25 eV photon energy, the photoabsorption spectrum has been recorded with an energy interval of about 10 meV . The precision on the energy position of a feature is estimated to be 15 meV . In the photoabsorption spectra extending between 6 and 12 eV photon energy, an energy increment of 1.5 meV has been adopted. The precision on the energy position of a feature is estimated to be of the order of 2 meV . Therefore, in these cases the assigned total error would be 4 meV . This evaluation is confirmed by the reproducibility of energy positions measured in four different spectra recorded in a two years interval.

3. Experimental results

3.1. The $\mathrm{CH}_{3} \mathrm{Cl}$ photoabsorption spectrum

Fig. 1(a)-(d) reproduces the photoabsorption spectrum of $\mathrm{CH}_{3} \mathrm{C} 1$ on an expanded photon energy scale. The assignments of the observed fine structure to various vibrational progressions have been inserted in this figure. The convergence limits are the ionization energy values reported by Karlsson et al. [6] as measured by He-I photoelectron spectroscopy.

3.2. The $\mathrm{CD}_{3} \mathrm{Cl}$ photoabsorption spectrum

The photoabsorption spectrum of $\mathrm{CD}_{3} \mathrm{C} 1$ has been recorded between 6 and 12 eV photon energy. The fine structures, assigned to excitation of vibrational progressions in the successive Rydberg states, are clearly identified in an expanded photon energy scale, as shown in Fig. 2(a)-(d). In this case, only the first ionization
limits corresponding to the two spin-orbit components, as determined in the preceding paper, are used as convergence limit for each vibronic Rydberg series.

Fig. 1. The vacuum UV photoabsorption spectrum of $\mathrm{CH}_{3} \mathrm{Cl}$ on an expanded photon energy scale between 7.6 and $11.6 \mathrm{eV}(a)-(d)$. The assignments are inserted by vertical bars.

4. Ab initio calculations: procedures and results

Fairly recently, two high level ab initio quantum mechanical calculations were reported about CH 3 Cl and $\mathrm{CH}_{3} \mathrm{Cl}^{+}[7,8]$. Gauld and Radom [7] used HF/6-31G and MP2 with different basis sets ($6-31 \mathrm{G}, 6-311 \mathrm{G}$ and $\left.6-311 \mathrm{G}^{* *}\right)$ to describe $\mathrm{CH}_{3} \mathrm{X}$ and $\mathrm{CH}_{3} \mathrm{X}^{+}\left(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{OH}, \mathrm{NH}_{2}, \mathrm{SH}\right.$ and $\left.\mathrm{PH}_{2}\right)$ and their isomeric species $\mathrm{H}_{2} \mathrm{CX}^{+} \mathrm{H}$. They obtained the optimized geometries and thermodynamical properties. Good agreement was found between theory and experiment for most of the species, e.g. $\mathrm{CH}_{3} \mathrm{C1}^{+}$in the C_{S} symmetry. Geometrical parameters of the ylidion isomer $\mathrm{H}_{2} \mathrm{CC1}^{+} \mathrm{H}\left(\mathrm{C}_{1}\right.$ symmetry) were also calculated. Contrarily to the case of $\mathrm{CH}_{3} \mathrm{~F}^{+}$, the ylidion $\mathrm{H}_{2} \mathrm{CC1}^{+} \mathrm{H}\left(\mathrm{C}_{1}\right)$ structure is energetically less stable than the $\mathrm{H}_{3} \mathrm{CC1}+\left(\mathrm{C}_{\mathrm{S}}\right)$ by about 0.46 eV . In the case of $\mathrm{CH}_{3} \mathrm{~F}^{+}$ the ylidion structure is more stable than $\mathrm{H}_{3} \mathrm{CF}^{+}$by 0.065 eV . The $\mathrm{C}-\mathrm{Cl}$ bond distance in the molecular ion is shortened by 0.024 A with respect to the neutral.

Lugez et al. [8] investigated the infrared spectrum of the methyl halide cations trapped in a frozen neon matrix. The discussion of their experimental results is based upon ab initio calculations at MP2 and QCISD levels. These authors reach the same conclusions concerning the relatively higher stability of the $\mathrm{CH}_{3} \mathrm{C1}^{+}$ structure. With respect to the neutral molecule, the $\mathrm{C}-\mathrm{Cl}$ bond shortening upon ionization is calculated to be only $0.002 \AA$, instead of $0.11 \AA$ in the case of $\mathrm{CH}_{3} \mathrm{~F}^{+}$.

Furthermore, these authors [8] calculated the vibrational wave numbers in $\mathrm{CH}_{3} \mathrm{Cl}^{+}$and compared the theoretical results with their infrared data and with the values obtained for the cation by photoelectron spectroscopy [6]. However, this work was restricted to the lowest component of the Jahn-Teller split ${ }^{2} \mathrm{E}$ ground state of the $\mathrm{CH}_{3} \mathrm{C1}^{+}$cation. No informations are provided about the second component. Furthermore, superimposed on this effect, and more important than in $\mathrm{CH}_{3} \mathrm{~F}^{+}$, the ${ }^{2} \mathrm{E}_{3} / 2^{-}{ }^{2} \mathrm{E}_{1 / 2}$ spin-orbit splitting shows up in $\mathrm{CH}_{3} \mathrm{Cl}^{+}$.

In order to obtain a complete picture of the Jahn-Teller effect in $\mathrm{CH}_{3} \mathrm{Cl}^{+}$, we performed ab initio calculations on $\mathrm{CH}_{3} \mathrm{C} 1$ and $\mathrm{CH}_{3} \mathrm{C1}^{+}$using the GAUSSIAN94 program [9] at the MP2 level [10] with 6-31G** and $6-311 \mathrm{G}^{* *}$ basis sets $[11,12]$. The geometries are optimized respectively for the $\mathrm{C}_{3 \mathrm{v}}$ and the C_{S} symmetry
point groups. The use of MP2 level calculations with these basis sets was chosen because it is well suited, at reasonable cost, for vibrational frequency calculations [13] of neutral and ionic species. The results are shown in Table 1 for $\mathrm{CH}_{3} \mathrm{C} 1\left(\widetilde{\mathrm{X}}^{1} \mathrm{~A}_{1}\right)$ and $\mathrm{CH}_{3} \mathrm{C1}^{+}\left({ }^{2} \mathrm{~A}^{\prime}\right.$ and $\left.{ }^{2} \mathrm{~A}^{\prime}\right)$ together with the results provided by previous calculations [7, 8].

Fig. 2. The vacuum UV photoabsorption spectrum of $\mathrm{CD}_{3} \mathrm{Cl}$ on an expanded photon energy scale between 7.6 and $11.6 \mathrm{eV}(a)-(d)$. The assignments are inserted by vertical bars.

In agreement with these authors [7,8], a slight shortening of about $0.01 \AA$ is obtained at the MP2/ 6$31 \mathrm{G}^{* *}$ level for the $\mathrm{C}-\mathrm{Cl}$ bond after ionization in either the ${ }^{2} \mathrm{~A}^{\prime}$ or the ${ }^{2} \mathrm{~A}^{\prime \prime}$ component of the Jahn-Teller splitting. For both the ${ }^{2} \mathrm{~A}^{\prime}$ and the ${ }^{2} \mathrm{~A}^{\prime \prime}$ states, the largest $\mathrm{C}-\mathrm{H}$ bond change involves the lengthening of the $\mathrm{C}-\mathrm{Hl}(0.0165 \AA)$ and $\mathrm{C}-\mathrm{H} 2(0.0100 \mathrm{~A})$ respectively (for the H atoms numbering, see figure in Table 1). Moreover the change of one valence angle ($\mathrm{Hl}-\mathrm{C}-\mathrm{Cl}$ for the ${ }^{2} \mathrm{~A}^{\prime}$ state or $\mathrm{H} 2-\mathrm{C}-\mathrm{C} 1$ for the ${ }^{2} \mathrm{~A}^{\prime \prime}$ state) and of the dihedral angle is in the 3-5 range.

The vibrational wave numbers of the neutral molecule ground state and the ${ }^{2} \mathrm{~A}^{\prime}$ and the ${ }^{2} \mathrm{~A}$ " states of the cation have been calculated and weighted by the empirical 0.937 correction factor [13]. The results are displayed in Table 2 for $\mathrm{CH}_{3} \mathrm{C} 1$ and $\mathrm{CH}_{3} \mathrm{C1}^{+}\left({ }^{2} \mathrm{~A}^{\prime}\right.$ and ${ }^{2} \mathrm{~A}$ ") and for $\mathrm{CD}_{3} \mathrm{C} 1$ and $\mathrm{CD}_{3} \mathrm{C1}^{+}$in the corresponding electronic states. The nuclear motions associated with the nine normal modes are described with reference to symmetry coordinates (m_{1} to m_{11}) represented in Fig. 3.

For both neutral species $\mathrm{CH}_{3} \mathrm{C} 1$ and $\mathrm{CD}_{3} \mathrm{C} 1$ in the $\widetilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ state, the present calculated and the experimental wave numbers [14,15] are in good agreement. The largest deviation is $36 \mathrm{~cm}^{-1}$ or 4 meV which lies within the experimental error. Concerning the ${ }^{2} \mathrm{~A}^{\prime}$ state of the normal and per-deuterated cation, the results provided by the present calculations satisfactorily agree with those reported by Lugez et al. [8] working at the QCISD level. The discrepancy has to be ascribed to the level difference of the compared calculations and to the use of distinct basis sets. For the ${ }^{2} \mathrm{~A}^{\prime \prime}$ transition state (TS) the wave numbers obtained in this work are listed in Table 2.

Table 1: Optimized geometries of $\mathrm{CH}_{3} \mathrm{Cl}\left(\widetilde{\mathrm{X}}^{1} A_{1}\right)$ in the $C_{3 v}$ symmetry group and $\mathrm{CH}_{3} \mathrm{Cl}^{+}\left({ }^{2} A^{\prime}\right.$ and $\left.{ }^{2} A^{\prime \prime}\right)$ in the C_{S} symmetry group calculated attheMP2/6-31G** level

Level	C-Cl	C-HI	C-H2	HI-C-Cl	H2-C-C1	H2-C-C1-H1
$\mathrm{CH}_{3} \mathrm{Cl}\left(X^{1} A_{l}\right)$ in C_{30} symmetry						
MP2/6-31G**	1.7759	1.0843	1.0843	108.97	108.97	120.0
[7]	1.779	1.087	1.087	108.6	108.6	120.0
[8]	1.785	-	-	-	-	-
Exptl [19]	1.776	1.085	1.085	108.6	108.6	120.0
$\mathrm{CH}_{3} \mathrm{Cl}^{+}\left({ }^{2} \mathrm{~A}^{\prime}\right)$ in $\mathrm{C}_{\text {S }}$ symmetry						
MP2/6-31G**	1.7671	1.1008	1.0857	103.22	108.34	116.82
MP2/6-	1.7602	1.1062	1.0891	102.61	108.64	116.37
311G**						
[7]	1.755	1.108	1.089	101.6	108.60	116.02
[8]	1.783	-	-	-	-	-
$\mathrm{CH}_{3} \mathrm{Cl}^{+}\left({ }^{2} \mathrm{~A}^{\prime \prime}\right)$ in $\mathrm{C}_{\text {s }}$ symmetry						
MP2/6-31G**	1.7685	1.0822	1.0943	109.14	105.43	122.93

Distances are in A and angles in degrees. Comparison is made with previous calculations at their highest level [7,8] and experiment [19].

The threefold global $\mathrm{C}_{3 \mathrm{v}}$ symmetry of the CH 3 Cl system leads to three potential wells of A^{\prime} symmetry on the low-energy part of the Jahn-Teller distorted potential energy surface. These minima are located at symmetrically equivalent positions corresponding to polar angles of $30^{\circ}, 150^{\circ}$ and 270° respectively. They are connected by saddle points lying at $90^{\circ}, 210^{\circ}$ and 330°. These TS belong to the $\mathrm{A}^{\prime \prime}$ representation and correspond to the second state referred to in Tables 1 and 2. Fig. 4 illustrates this discussion by displaying the lower part of the Jahn-Teller distorted potential energy surface of the ${ }^{2} \mathrm{E}$ state of $\mathrm{CH}_{3} \mathrm{Cl}^{+}$. The displayed data are provided by a second-order perturba-tional treatment [16] leading to the following equation

$$
\begin{aligned}
V\left(q_{x}, q_{y}\right) & =V(\Delta, \phi) \\
& =E_{0}-\lambda \Delta+\left[\mu-\frac{v}{2} \sin (3 \phi)\right] \Delta^{2},
\end{aligned}
$$

A and φ are the polar coordinates associated with the $\left(q_{x}, q_{y}\right)$ degenerate symmetry coordinate. The parameters λ, μ and v can be deduced from the calculated position of the potential wells along with the energies of the A^{\prime} and $\mathrm{A}^{\prime \prime}$ states.

When comparing the wave numbers associated with the ${ }^{2} \mathrm{~A}^{\prime}$ and the ${ }^{2} \mathrm{~A}$ " states, the influence of the Duschinsky effect has to be mentioned [17]. As shown in Fig. 4, the normal modes resulting from a linear combination of a pair of coordinates $\left(q_{x}, q_{y}\right)$, degenerate in the $\mathrm{C}_{3 v}$ symmetry group, are rotated by 60° when one switches from the ${ }^{2} \mathrm{~A}^{\prime}$ state to the ${ }^{2} \mathrm{~A}^{\prime \prime}$ state. It is therefore expected that normal modes in the C_{s} symmetry group correlating to degenerate modes in the $\mathrm{C}_{3 \mathrm{v}}$ symmetry group will be affected. This is the case for the normal modes having components on m_{9}, m_{10}, m_{2} and m_{1}, $\mathrm{i} \cdot \mathrm{e}$. for $v_{1} v_{5}, v_{7}, v_{8}$ and v_{9}. From Table 2 it can be deduced that v_{1} and v_{5} are respectively $97 \mathrm{~cm}^{-1}$ and $135 \mathrm{~cm}^{-1}$ smaller in ${ }^{2} \mathrm{~A}^{\prime}$ than in ${ }^{2} \mathrm{~A}^{\prime}$. On the other hand v_{7} is $179 \mathrm{~cm}^{-1}$ larger in ${ }^{2} \mathrm{~A}^{\prime}$ than in ${ }^{2} \mathrm{~A}^{\prime}$ and v_{8} is nearly unaffected. Furthermore, v_{9}^{\prime} is characterized by an imaginary wave number in the ${ }^{2} \mathrm{~A}^{\prime \prime}$ state and corresponds therefore to the reaction coordinate linking the three potential wells. This reaction coordinate has a strong weight on the H-pivotal coordinate m_{2} which is thus the leading distortion factor associated with the Jahn-Teller effect. The symmetrical normal modes having components on m_{7}, m_{3} and m_{11} are almost unaffected by going from ${ }^{2} \mathrm{~A}^{\prime}$ to ${ }^{2} \mathrm{~A}^{\prime}$. As examples, v_{4} and v_{6} differ by less than $12 \mathrm{~cm}^{-1}$.

Table 2 : Vibrational normal modes and their corresponding wave numbers $\left(\mathrm{cm}^{-1}\right)$ resulting from ab initio calculations at the MP2/6-31G** level, for $\mathrm{CH}_{3} \mathrm{Cl}$ and $\mathrm{CD}_{3} \mathrm{Cl}\left(\widetilde{\mathrm{X}}^{1} A_{1}\right)$ and $\mathrm{CH}_{3} \mathrm{Cl}+$ and $\mathrm{CD}_{3} \mathrm{Cl}+\left({ }^{2} A^{\prime}\right.$ and $\left.{ }^{2} A^{\prime \prime}\right)$ respectively in the $C_{3 v}$ and C_{S} symmetry group

Designation	Description (see Fig. 3)	Calculated wave number			
		Experimental [14,15]		This work	
		$\mathbf{C H}_{3} \mathbf{C 1}$	$\mathrm{CD}_{3} \mathrm{C} 1$	$\mathrm{CH}_{3} \mathbf{C 1}$	$\mathrm{CD}_{3} \mathrm{C} 1$
$\mathrm{CH}_{3} \mathrm{CI}$ and $\mathrm{CD}_{3} \mathrm{CI}: \widetilde{X}^{I} A_{1}$ in the C_{30} symmetry					
a_{1} symmetry					
$\nu 1$	m_{7}	2967.8	2161	2969	2134
v_{2}	m_{3}	1355.0	1029	1370	1042
v_{3}	m_{11}	732.8	695	738	701
e symmetry					
v_{4}	m_{10}	3043.6	2286	3079	2293
v_{5}	m_{2}	1488.2	1058	1446	1049
v_{6}	m_{1}	1017.5	775	1013	764
		Ref. [8]		This work	
		$\mathbf{C H}_{3} \mathrm{Cl}^{+}$	$\mathrm{CD}_{3} \mathrm{Cl}+$	$\mathrm{CH}_{3} \mathrm{Cl}+$	$\mathrm{CD}_{3} \mathrm{Cl}+$
$\mathrm{CH}_{3} \mathrm{Cl}^{+}$and $\mathrm{CD}_{3} \mathrm{Cl}^{+}:{ }^{2} \mathrm{~A}^{\prime}$ in the C_{S} symmetry					
a^{\prime} symmetry					
$\nu 1$	m_{9}	3140	2305	3014	2222
v_{2}	m_{8}	2976	2138	2844	2049
v_{3}	m_{6}	1453	1073	1395	1033
v_{4}	m_{3}	1336	979	1297	952
v_{5}	m_{1}	904	693	879	677
v_{6}	$m_{11}+m_{4}$	622	576	579	550
a" symmetry					
v_{7}	m_{10}	3160	2332	3023	2236
v_{8}	m_{2}	1276	906	1230	877
v_{9}	m_{2}	606	477	571	441
	$\mathrm{CH}_{3} \mathrm{Cl}+$ and $\mathrm{CD}_{3} \mathrm{Cl}^{+}:{ }^{2} \mathrm{~A}^{\prime \prime}-\mathrm{TS}$ in the C_{S} symmetry				
a^{\prime} symmetry					
v_{1}^{\prime}	m_{9}	-	-	3111	2319
$v^{\prime} 2$	m_{8}	-	-	2883	2077
v^{\prime}	m_{3}	-	-	1386	1025
$v^{\prime}{ }_{4}$	$m_{4}+m_{6}$	-	-	1286	936
v_{5}^{\prime}	$m_{1}+m_{6}$	-	-	1014	770
v_{6}^{\prime}	m_{11}	-	-	582	563
a" symmetry					
v_{7}^{\prime}	m_{10}	-	-	2844	2067
ν_{8}^{\prime}	m_{2}	-	-	1259	899
v_{9}^{\prime}	m_{2}	-	-	1543	i423

The ${ }^{2} \mathrm{~A}$ "corresponds to a TS. All wave numbers are corrected by the coefficient proposed by Scott and Radom [13]

Table 3 : Gradient components $\hat{o} E / \hat{o} X$, in atomic units (hartree/bohr and hartree/radian), for ${ }^{2} A^{\prime}$ and ${ }^{2} A{ }^{\prime \prime}$ states of $\mathrm{CH}_{3} \mathrm{Cl}^{+}$calculated at the $C_{3 v}$ geometry of the ground state of the neutral molecule

State	X					
	C-Cl	C-H1	C-H2	H1-C-Cl	H2-C-C1	H2-C-C1-H1
${ }^{2} \mathrm{~A}^{\prime}$	-0.00670	0.00879	0.00229	-0.01640	-0.01133	-0.009464
${ }^{2} \mathrm{~A}$ "(TS)	-0.00672	0.00028	0.00654	-0.00997	-0.01458	+0.009554

[^1]On the basis of the geometrical differences between the cationic and the neutral ground states, the following vibrational motions are expected to be excited upon ionization. For the ${ }^{2} \mathrm{~A}^{\prime}$ state, the decrease of the $\mathrm{H} 1-\mathrm{C}-\mathrm{Cl}$ angle alone (see figure in Table 1) is linked with the motion m_{5} which is not represented in Table 2. However, it could be generated by a combination of v_{4} or v_{5} and v_{6} (see Table 2 and Fig. 3). The decrease of the dihedral angle $\mathrm{H} 2-\mathrm{C}-\mathrm{C} 1-\mathrm{H} 1$ is linked with the motion m_{6}. The increase of the bond length $\mathrm{C}-\mathrm{Hl}$ alone is linked with m_{8} and the decrease of $\mathrm{C}-\mathrm{Cl}$ with the motion m_{11}. These symmetry coordinates are involved in the v_{2}, v_{3} and v_{6} normal modes. The latter mode and v_{5} could be combined with v_{4}.

For the ${ }^{2} \mathrm{~A}^{\prime \prime}$ state, the decrease of the $\mathrm{H} 2-\mathrm{C}-\mathrm{C} 1$ angle nearly alone corresponds to the m_{4} motion, the increase of $\mathrm{H} 2-\mathrm{C}-\mathrm{Cl}-\mathrm{H} 1$ is linked with m_{6}, the lengthening of C-H2 combined with the very small increase of CHl is related to m_{9} and the decrease of $\mathrm{C}-\mathrm{Cl}$ corresponds to m_{11}. All these nuclear symmetry coordinates correspond to the a'-type normal modes $v_{1}^{\prime}, v_{4}^{\prime}, v_{5}^{\prime}$ and v_{6}^{\prime}. The magnitude of the energy gradient components (see Table 3) mostly confirms this prediction with the exception of the valence angle variations. On the basis of Table 3, both the $\mathrm{Hl}-\mathrm{C}-\mathrm{Cl}$ and $\mathrm{H} 2-\mathrm{C}-\mathrm{C} 1$ gradient components have about the same amplitude and the same sign for the ${ }^{2} \mathrm{~A}^{\prime}$ and the ${ }^{2} \mathrm{~A}^{\prime \prime}$ states. For the ${ }^{2} \mathrm{~A}^{\prime}$ mainly the symmetry coordinate m_{3} related to the v_{4} mode should be active and the slight difference between the gradients could be accounted for by a properly weighted combination with m_{4} or m_{5}. For the ${ }^{2} \mathrm{~A}^{\prime \prime}$ state, the symmetry coordinate m_{3} is related to the v_{3}^{\prime} mode and the gradient intensity for the two angles is reversed. For the dihedral angle $\mathrm{H} 2-\mathrm{C}-\mathrm{C} 1-\mathrm{H} 1$ the gradients for the ${ }^{2} \mathrm{~A}^{\prime}$ and ${ }^{2} \mathrm{~A}^{\prime \prime}$ have also about the same magnitude but opposite sign. This motion involves m_{6} related to v_{4}^{\prime} and v_{5}^{\prime} in ${ }^{2} \mathrm{~A} "$ and v_{3} in $^{2} \mathrm{~A}^{\prime}$.

Fig. 3. Schematic representation and description of nuclear symmetry coordinates m_{i}. of $\mathrm{CH}_{3} X^{+}$in the C_{s} symmetry group.

The energy gradient components are calculated at the initial geometry which corresponds to the neutral $\mathrm{C}_{3 v}$ symmetry. At least at short times, which govern the general pattern of the photo-electron spectrum, the motion of the wave packet center will be influenced mainly by the initial gradient. The geometry of the neutral and both cationic states are not very different. The ${ }^{2} \mathrm{~A}^{\prime \prime} \mathrm{TS}$ is only 2.5 meV higher than the ${ }^{2} \mathrm{~A}^{\prime}$ minimum as calculated at the MP2/6-31G** level. On the other hand, the stabilization energy through the Jahn-Teller distortion is calculated to be 40 meV . It has to be compared with the value of the spin-orbit coupling in $\mathrm{CH}_{3} \mathrm{Cl}^{+}$ where $\Delta E\left({ }^{2} \mathrm{E}_{3 / 2}-{ }^{2} \mathrm{E}_{1 / 2}\right)$ is 27 meV [6], i.e. about the same order of magnitude as the Jahn-Teller vibronic interaction. In the free Cl atom the spin-orbit splitting is 109 meV [18]. Contrarily, in $\mathrm{CH}_{3} \mathrm{~F}$ the Jahn-Teller stabilization energy was about 800 meV [1] whereas the spin-orbit splitting is negligible. The spin-orbit splitting in the free F atom is indeed 50 meV [18] and should be considerably quenched by the vibronic coupling [6].

5. Discussion of the experimental data

For clarity in the following discussion of the experimental results, the molecular orbital configuration of $\mathrm{CH}_{3} \mathrm{C} 1$ in the $\mathrm{C}_{3 \mathrm{v}}$ group of symmetry has to be kept in mind, i.e.

$$
\begin{aligned}
& \mathrm{Cl}\left(1 \mathrm{~s}^{2}\right) \mathrm{C}\left(1 \mathrm{~s}^{2}\right) \mathrm{Cl}\left(2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}\right)\left(1 \mathrm{a}_{1}\right)^{2}\left(2 \mathrm{a}_{1}\right)^{2}(1 \mathrm{e})^{4}\left(3 \mathrm{a}_{1}\right)^{2}(2 \mathrm{e})^{4} \\
& \quad: \widetilde{\mathrm{X}}^{1} \mathrm{~A}_{1}
\end{aligned}
$$

Fig. 4. Contour lines of the low-energy part of the Jahn-Teller distorted potential energy surface of the $\mathrm{CH}_{3} \mathrm{Cl}^{+}\left(\widetilde{\mathrm{X}}^{2} \mathrm{E}\right)$ state. The energies (eV) are given with respect to the apex (undistorted position). This diagram corresponds to a second-order perturbation treatment of the Jahn-Teller effect [16].

The most accurate and vibrationally well-resolved $\mathrm{He}(\mathrm{I})$ photoelectron spectrum [6] provides the adiabatic ionization energy at $11.289 \pm 0.003 \mathrm{eV}$ corresponding to the ground ionic state. This state shows a spin-orbit splitting of $27 \pm 6 \mathrm{meV}\left(218 \pm 50 \mathrm{~cm}^{-1}\right)$, i.e. ionization energies measured at $11.289 \pm 0.003 \mathrm{eV}$ and $11.316 \pm 0.003 \mathrm{eV}[6]$.

General Remark: A first rough examination of the spectrum laid open two aspects. First, concerning the line shape of the vibronic structure, though dominated by sharp strong lines whose broadness is limited by the optical resolution of the monochromator, many weak or very weak lines are broad or very broad. This could be ascribed to unresolved transitions embedded in the same "line".

Secondly, the overall aspect of the absorption spectrum is made of series of short vibrational progressions with very sharp and strong lines corresponding to $0-0$ transitions. Very rapidly the lines intensity becomes weak and even very weak.

This latter characteristic is closely related to the nature of the molecular orbital involved in the Rydberg excitation and, consequently, to the geometrical differences between the initial and final states.

From the ab initio calculations presented earlier (see Section 4) the main conclusion is that upon ionization, even though a Jahn-Teller distortion takes place when a $2 \mathrm{e}^{-1}$ ionization is involved, the geometrical characteristics of the $\mathrm{CH}_{3} \mathrm{Cl}^{+}$ion only slightly differ from those of the neutral molecule. This would lead to narrow vibronic "envelopes" with low vibrational excitation. The present spectral shape is in agreement with these ab initio predictions.

5.1. The $3 s a_{l}\left(a_{l}^{\prime}\right)$ series

As an introductory remark, the line shape of the $3 \mathrm{sa}_{1}\left(\mathrm{a}_{1}{ }_{1}\right)$ series (and its associated vibrational structure) has to be pointed out. The diffuseness of these bands is considerably larger than for the higher members of this series, as well as that of the np and nd series. Particularly convincing in this respect is the comparison of the $3 \mathrm{sa}_{1}$ with the 3p and 3d main lines observed for $\mathrm{CH}_{3} \mathrm{C} 1$ (see Fig. 1). The same observation holds for $\mathrm{CD}_{3} \mathrm{C} 1$ (see Fig. $2)$.

Table 4 : Energies (eV), wave numbers $\left(\mathrm{cm}^{-1}\right)$, effective principle quantum numbers (n^{*}), limits (eV) and assignments (0-0 means vibrationless transition) of vibrational progression of ($n \ell a_{1}$ or $n \ell e$) and ($n \ell a_{1}{ }_{1}$ or $n \ell e^{\prime}$) Rydberg series in $\mathrm{CH}_{3} \mathrm{Cl}$ converging respectively to the $\widetilde{X}^{2} E_{3 / 2}$ and to $\widetilde{X}^{2} E_{1 / 2}$ of $\mathrm{CH}_{3} \mathrm{Cl}^{+}$: Panel $A-$ $3 s a_{1}\left(a_{l}{ }_{1}\right)$ and Panel $B-n p$ and $n d\left(1 \mathrm{eV}=8065.48 \mathrm{~cm}^{-1}\right.$ [20])

This work						Ref. [3] ${ }^{\text {a }}$
Rydberg	eV	$\mathbf{c m}^{-1}$	n^{*}	Limit ${ }^{\text {b }}$	Assignment ${ }^{\text {c }}$	
Panel A						
$2 \mathrm{e} \rightarrow 3 \mathrm{sa}_{1}$	7.759	62582	1.936	11.289	0-0	62540
	7.833	63179	1.962	11.368	v_{6}	-
	7.858	63380	1.960	11.399	v_{5}	63455
	7.912	63816	1.969	11.422	$2 v_{6}$	63745
	7.923	63905	$(1.963){ }^{\text {d }}$	$(11.454)^{\text {d }}$	v	
	7.992	64461	$(1.963)^{\text {d }}$	$(11.523)^{\text {d }}$	$3 v_{6}$	64315
	8.014	64639	1.963	11.545	$v+v_{5}$	
	[8.032] ${ }^{\text {e }}$	[64784] ${ }^{\text {e }}$	1.964	11.558	$2 v_{5}+v_{6}$	64735
	[8.049] ${ }^{\text {e }}$	[64921] ${ }^{\text {e }}$	1.961	11.586	$3 v_{5}$	-
	8.097	65308	1.961	11.635	$2 v$	-
	8.166	65865	1.958	11.713	$2 v+v_{6}$	-
$2 \mathrm{e} \rightarrow 3 \mathrm{sa}_{1}{ }_{1}$	7.873	63501	1.987	11.316	0-0	63455
	7.940	63042	1.983	11.399	v_{6}	-
	7.975	63324	1.987	11.422	v_{5}	64315
	[8.032] ${ }^{\text {e }}$	[64784] ${ }^{\text {e }}$	1.986	11.482	v	64735
	[8.049] ${ }^{\text {e }}$	[64921] ${ }^{\text {e }}$	1.984	11.506	$v_{5}+v_{6}$	-
	8.074	65123	$(1.983)^{\text {d }}$	$(11.524)^{\text {d }}$	$2 v_{5}$	
	8.124	65526	1.983	11.586	$v+v_{6}$	65490
	8.140	65655	1.987	11.586	$v+v_{5}$	-
		-				66050
		-				66580
		-				67365
		-				68120
		-				68920
						Ref. [4] ${ }^{\text {a }}$
Panel B						
$2 \mathrm{e} \rightarrow 3 \mathrm{pa}_{1}$	8.815	71099	2.345	11.289	0-0	71070
	8.896	71753	2.346	11.368	v_{6}	71735
	8.923	71970	2.344	11.399	$v 5$	71935
	8.976	72398	2.343	[11.454]	v	72370
	9.010	72672	2.346	11.482	$v_{5}+v_{6}$	72680
		73059	2.349	11.523	$v+v_{6}$	73035
	$(9.084){ }^{\text {d }}$	(73 267) ${ }^{\text {d }}$	(2.345)	11.558	$v+v_{5}$	73285
	(9.112) ${ }^{\text {d }}$	(73 493) ${ }^{\text {d }}$	(2.345)	11.586	$2 v_{5}+v_{6}$	-
	$(9.161)^{\text {d }}$	$(73888)^{\text {d }}$	(2.345)	11.635	$v+2 v_{5}$	-
$2 \mathrm{e} \rightarrow 3 \mathrm{pa}_{1}{ }_{1}$	8.895	71753	2.371	11.316	0-0	71753
	8.976	72398	2.369	11.399	v_{6}	72370
	9.001	72597	2.370	11.422	v_{5}	-
	9.058	73059	2.369	11.482	v	73059
	9.090	73325	2.373	11.506	$v_{5}+v_{6}$	-
	9.120	73559	2.372	11.538	$2 v_{5}$	-
			2.371	11.558	$v+v_{6}$	-
	$(9.166)^{\text {d }}$	$\left(73\right.$ 928) ${ }^{\text {d }}$	(2.371)	11.586	$v+v_{5}$	-
	9.252	74622	2.371	11.670	$v+2 v_{5}$	
$2 \mathrm{e} \rightarrow 3 \mathrm{pe}$	9.208	74269	2.557	11.289	0-0	74250
	9.298	74995	2.564	11.368	v_{6}	75040

(continued on next page)

Table 4 (continued)

This work						Ref. [4] ${ }^{\text {a }}$
Rydberg	eV	$\mathbf{c m}^{-1}$	${ }^{*}$	Limit ${ }^{\text {b }}$	Assignment ${ }^{\text {c }}$	
	9.321	75180	2.556	11.399	ν_{5}	75210
	9.370	75575	2.555	[11.454]	v	-
	9.403	75842	2.558	11.482	$v_{5}+v_{6}$	-
	9.435	76100	2.563	11.506	$2 v_{5}$	76395
	9.480	76463	2.559	11.558	$v+v_{5}$	-
	9.492	76560	2.549	11.586	$v+2 v_{6}$	-
	9.606	77479	2.561	11.681	$2 v+v_{6}$	-
$2 \mathrm{e} \rightarrow 3 \mathrm{pe}{ }^{\prime}$	9.298	74995	2.597	11.316	0-0	75040
	9.378	75640	2.595	11.399	v_{6}	75700
	9.403	75842	2.595	11.422	v_{5}	-
	9.538	76931	2.595	11.558	$v+v_{6}$	76915
	9.576	77237	2.601	11.586	$v+v_{5}$	-
	9.622	77608	2.599	11.635	$2 v$	-
	9.654	77866	2.597	11.67	$v+2 v_{5}$	-
	9.679	78068	2.586	11.713	$2 v+v_{6}$	-
Not	9.703	78262			x	-
classified	9.769	78794			y	-
	9.856	79496			$x+0.155$	-
	9.879	79681			$y+0.110$	-
$2 \mathrm{e} \rightarrow 3 \mathrm{~d}$	9.816	79173	3.040	11.298	0-0	79170
	9.892	79786	3.036	11.362	$v 6$	-
	9.934	80125	3.047	11.399	ν_{5}	-
	10.040	80980	3.046	11.506	$v+v_{6}$	81000
	[10.088]	81367	3.040	[11.558]	$v+v_{5}$	-
	10.119	81617	3.045	11.586	$v+2 v_{6}$	81645
	10.230	82512	[3.062]	11.681	$2 v+v_{5}$	-
$2 \mathrm{e} \rightarrow 3 \mathrm{~d}^{\prime}$	9.892	79786	3.092	11.316	0-0	79800
	9.964	80399		11.399	$v 6$	80400
	10.002	80673	3.095	11.422	v_{5}	81000
	10.054	81093	3.086	11.482	v	81130
	10.119	81617	3.092	11.542	$v+v_{6}$	81645
	10.158	81932	3.086	11.586	$v+v_{5}$	-
	10.254	82706	3.088	11.681	$v+2 v_{5}$	82875
	10.290	82996	3.092	11.713	$2 v+v_{6}$	83015
$2 \mathrm{e} \rightarrow 4 \mathrm{pa}_{1}$	10.102	81180	3.386	11.289	0-0	81130
	[10.182]	82125	3.387			-
	10.230	82512	3.378	11.422	$\nu_{5}($? $)$	82520
	10.290	82996	3.378	11.482	$2 v_{6}$	83015
	10.308	83142	3.370	11.506	$2 v_{5}$	83175
	10.363	83585	3.374	11.558	$v+v_{5}$	83625
	[10.398]	83875	[3.384]	11.586	$v+2 v_{6}$	83920
	[10.448]	84271	[3.386]	11.635	$2 v$ or $v+2 v_{5}$	84275
	10.486	84577	[3.390]	11.67	$2 v+v_{6}$	-
$2 \mathrm{e} \rightarrow 4 \mathrm{pa}_{1}$	10.193	82190	3.476	11.316	0-0	82275
	10.273	82851	3.476	11.399	v_{6}	82875

(continued on next page)

Table 4 (continued)

This work						Ref. [4] ${ }^{\text {a }}$
Rydberg	eV	$\mathbf{c m}^{-1}$	n*	Limit ${ }^{\text {b }}$	Assignment ${ }^{\text {c }}$	
$2 \mathrm{e} \rightarrow 5 \mathrm{sa}_{1}$	10.290	82996	3.467	11.422	ν_{5}	83015
	[10.354]	83512	3.473	11.482	v	-
	10.426	84093	3.467	11.558	$v+v_{6}$	84095
	10.459	84359	3.474	11.586	$v+v_{5}$	-
	10.515	84811	3.485	11.635	$2 v$	-
	10.555	85135	3.476	11.681	$v+2 v_{5}$	85195
	10.422	84061	3.961	11.289	0-0	84095
$2 \mathrm{e} \rightarrow 5 \mathrm{sa}_{1}{ }_{1}$	[10.501]	[84 698]	[3.961]	11.368	v_{6}	84625
	10.441	84214	3.943	11.316	0-0	84275
	10.522	84868	3.939	11.399	v_{6}	84935
	10.609	85569	3.948	11.482	v	-
$2 \mathrm{e} \rightarrow 5 \mathrm{pa}_{1}$	10.578	85319	4.375	11.289	0-0	85340
	10.684	86174	4.362	11.399	ν_{5}	86190
$2 \mathrm{e} \rightarrow 5 \mathrm{pa}^{1}$	10.624	85690	4.434	11.316	0-0	85780
	10.696	86271	4.399	11.399	v_{6}	-
	[10.780]	[86948]	4.402	11.482	v	87025
	10.810	87190	4.421	11.506	$v_{5}+v_{6}$	87175
	10.867	87650	4.437	11.558	$v+v_{6}$	87720
Not classified	10.756	86755				86775
	10.912	88013				88030
	10.941	88247				88235
	11.121	89699				89695
	11.134	89804				

${ }^{\text {a }}$ Data of Refs. [3,4] reproduced without assignment.
${ }^{\text {b }}$ From Ref. [6].
${ }^{\mathrm{c}}$ The normal mode v stays for v_{3} or v_{4} : for details see text.
${ }^{\text {d }}$ Data in brackets: calculated convergence limits using the indicated n^{*} values.
${ }^{\mathrm{e}}$ Data in square brackets: ambiguous assignment.

Furthermore, the intensity of the first member of the $n \mathrm{sa}_{1}\left(\mathrm{a}_{1}{ }_{1}\right)$ transitions is relatively low. The vibrational structure associated with the higher members of this series will very likely be burried under the more intense $n \mathrm{p}$ and $n d$ series, particularly when the n^{-3} intensity law is kept in mind. However, the two spin-orbit components of the 3 s-member are fairly well isolated and lead therefore to well-separated vibrational progressions. However, the smallness of the spin-orbit splitting will make some overlap unavoidable.

The features pertaining to the 3 s-series will be discussed separately and their energy positions are listed in Tables $4\left(\right.$ Panel A) and $5\left(\right.$ Panel A) for $\mathrm{CH}_{3} \mathrm{C} 1$ and $\mathrm{CD}_{3} \mathrm{C} 1$ respectively.

From the data obtained in the present work for $\mathrm{CH}_{3} \mathrm{C} 1$, and the ionization limits measured by high resolution $\mathrm{He}(\mathrm{I})$ photoelectron spectroscopy [6], a vibrational assignment has been possible for both the $3 \mathrm{sa}_{1}$ and the $3 \mathrm{sa}^{\prime}{ }_{1}$ components. For both progressions, the features are characterized by a fairly constant effective principal quantum number, i.e. $n_{3 / 2} *=1-962 \pm 0.003$ for the $3 \mathrm{sa}_{1}$ and $n_{1 / 2} *=1-985 \pm 0.002$ for the $3 \mathrm{sa}^{1}{ }_{1}$. From the present analysis three vibrational normal modes appear to be active upon excitation. On the basis of our calculation these are identified as being v_{6}, v_{5} and v modes. Averaging over the the energy intervals available from the two spinorbit components of the $2 \mathrm{e} \rightarrow 3 \mathrm{~s}$ transitions observed in this energy range, values of $h c \omega_{6}=75 \pm 3 \mathrm{meV}(605 \pm$ $\left.20 \mathrm{~cm}^{-1}\right), h c \omega_{5}=99 \pm 3 \mathrm{meV}\left(798 \pm 20 \mathrm{~cm}^{-1}\right)$ and $h c \omega=164 \pm 3 \mathrm{meV}\left(1323 \pm 20 \mathrm{~cm}^{-1}\right)$ are obtained. These three values have to be compared with the predicted wave numbers (see Table 2) of $\omega_{6}=579 \mathrm{~cm}^{-1}, \omega_{5}=879$ cm^{-1} and $\omega_{4}=1297 \mathrm{~cm}^{-1}$ or $\omega_{3}=1395 \mathrm{~cm}^{-1}$. From the discussion in Section 4 some arguments favor v_{3} as being the most likely. However, the confidence of these wave numbers could perhaps be improved by the analysis of the vibrational structure observed at higher energies. It has to be pointed out that the error mentioned above is the largest deviation from the mean interval for about 12 observations only. The present results can only be
compared with the data reported by Felps et al. [3]. From Table 4 (Panel A) an agreement within about $100 \mathrm{~cm}^{-1}$, or better, is found between the two experiments. A better signal/noise ratio in the earlier work allowed the authors to observe the vibrational structure at higher energies (see Table 4 (Panel A)). The assignments are difficult to compare, Felps et al. [3] limiting their discussion to the framework of the $\mathrm{C}_{3 \mathrm{v}}$ symmetry of the neutral ground state of $\mathrm{CH}_{3} \mathrm{C} 1$. They explicitly mention wave numbers of 655,915 and $1205 \mathrm{~cm}^{-1}$. However, the authors express "several reasons to doubt on the correctness of the above assignments".

Table 5 : Energies (eV), wave numbers $\left(\mathrm{cm}^{-1}\right)$ and assignments ($0-0$ means vibrationless transition) of vibrational progressions of ($n \ell a_{1}$ or $n \ell e$) and ($n \ell a^{\prime}{ }_{1}$ or $n \ell e^{\prime}$) Rydberg series in $C D_{3} C l$ converging respectively to the $\widetilde{X}^{2} E_{3 / 2}$ and $\widetilde{X}^{2} E_{1 / 2}$ of $C D_{3} C l^{+}$: Panel $A-3 s a_{1}\left(a_{1}^{\prime}\right)$ and Panel $B-n p$ and $n d\left(1 \mathrm{eV}=8065.48 \mathrm{~cm}^{-1}\right.$ [20])

This work				Felps et Rydberg
RV	$\mathbf{c m}^{-1}$	Assignment	al.	

(continued on next page)

Table 5 (continued)

Table 5 (continued)

Rydberg	eV	$\mathbf{c m}^{-1}$	Assignment
Miscellaneo us	10.399	83875	v
	10.410	83964	$2 v_{6}$
	10.428	84109	$2 v_{5}$
	10.501	84698	$4 \mathrm{pa}^{\prime}{ }_{1}+2 v$
	10.515	84811	
	10.560	85174	$4 \mathrm{pa}_{1}{ }_{1}+2 v+v_{6}$
	10.575	85295	$4 \mathrm{pa}^{\prime}{ }_{1}+v+2 v_{5}$
	10.612	85593	$\begin{gathered} 4 \mathrm{pa}_{1}+2 v+v_{5} \\ \text { or } 4 \mathrm{~d}^{\prime}+v_{5} \end{gathered}$
	10.716	86432	$\begin{gathered} 4 \mathrm{~d}^{\prime}+v+v_{5} \text { or } \\ 5 \mathrm{pe}+v / 5 \mathrm{pe}^{\prime} \\ +v_{5} \end{gathered}$
	10.737	86601	$\begin{gathered} 4 \mathrm{~d}^{\prime}+v+v_{5} \text { or } \\ 5 \mathrm{pe}+2 v_{6} \end{gathered}$
	10.857	87569	$\begin{aligned} & 5 \mathrm{~d}+v 5 \text { or } \\ & 5 \mathrm{pa}_{1}+2 v_{6} \end{aligned}$
	10.929 10.959	88150	$\begin{gathered} 5 \mathrm{~d}^{\prime}\left(6 \mathrm{sa}_{1}\right)+v / 5 \mathrm{~d} \\ +v_{5}+v_{6} / 6 \mathrm{sa}_{1} \\ +\mathbf{2} v_{5} \end{gathered}$
	10.959	88392	$\begin{gathered} 6 \mathrm{pe}^{\prime}\left(6 \mathrm{pa}_{1}\right)+v_{5} / 6 \mathrm{pe} \\ +v / 5 \mathrm{~d}^{\prime}\left(6 \mathrm{sa}^{\prime}{ }_{1}\right) \\ +2 v_{5} \\ \hline \end{gathered}$

${ }^{a}$ Data in brackets: ambiguous assignments.

The energy positions recorded for the corresponding Rydberg transitions in $\mathrm{CD}_{3} \mathrm{C} 1$ are listed in Table 5 (Panel A), as well as tentative assignments. From these observations the normal modes and the corresponding averaged wave numbers are $h c \omega_{6}=72 \pm 7 \mathrm{meV}(580 \pm 50) \mathrm{cm}^{-1}, h c \omega_{5}=100 \pm 4 \mathrm{meV}\left(806 \pm 30 \mathrm{~cm}^{-1}\right)$ and $h c \omega$ $=128 \pm 4 \mathrm{meV}\left(1032 \pm 30 \mathrm{~cm}^{-1}\right)$. The predicted wave numbers are $\omega_{6}=550 \mathrm{~cm}^{-1}$ and $\omega_{5}=677 \mathrm{~cm}^{-1}$. For the third mode $\omega_{4}=952 \mathrm{~cm}^{-1}$ and $\omega_{3}=1033 \mathrm{~cm}^{-1}$ could be used for comparison. The ratios, as defined by $\rho=$ $\left(\omega_{\mathrm{H}} / \omega_{\mathrm{D}}\right)_{i}$, based on the ab initio calculated wave numbers are $\rho_{3}=1.350, \rho_{4}=1.363, \rho_{5}=1.298$ and $\rho_{6}=1.053$. The same ratios obtained from experiment are $\rho=1.28 \pm 0.06, \rho_{5}=0.99 \pm 0.06$ and $\rho_{6}=1.04 \pm 0.16$. The largest discrepancy is noticed for ρ_{5}. In the present case also a further analysis could improve the first values based on the examination of only one transition. It could also be helpful to decide whether v_{3} or v_{4} is involved in this spectrum. Theoretical considerations (see Section 4) argue in favor of the v_{3} normal mode. However, the excitation of the unidentified v normal mode up to $v=4$ (see Table 5 (Panel B)) would suggest that it is JahnTeller non-active. This would favor its assignment to v_{4} (the CH_{3}-umbrella mode).

5.2. The $n s a_{l}\left(a_{l}^{\prime}\right)$, $n p a_{l}\left(a_{l}^{\prime}\right)$, npe $\left(e^{\prime}\right)$ and $n d\left(d^{\prime}\right)$ series $(n>3)$

Table 4 (Panel B) shows a classification and assignments of the fine structure above the 8.8 eV photon energy. The results of the present work can only be compared with the earlier results reported by Truch et al. [4]. As can be seen from Table 4 (Panel B), comparing the columns 3 and 7, a better agreement is found with these experimental results: the discrepancy is of about $50 \mathrm{~cm}^{-1}$ (about 6 meV), randomly distributed.

Based on the known convergence limits resulting from photoelectron spectroscopy experiments [6] effective principal quantum numbers have been allocated to each vibronic transition. These have been determined earlier for the 0-0 Rydberg transitions [2]. As shown in Table 4 (Panel B), column 4, the calculated effective principal quantum numbers using these data are nearly constant over one state. The variations are mostly of the order of a few thousandth. This parameter has been demonstrated to be sensitive enough to be used as one argument to ascribe the feature as pertaining to one vibrational progression of the same Rydberg transition [1]. Most of the lines have been assigned by this method. Just a few lines could not be classified (see end of Table 4 (Panel B)).

With the help of this hypothesis, one observes the excitation of only three vibrational modes as defined
in Section 4, i.e. v, v_{5} and v_{6}. The v_{5} and v_{6} modes involve respectively the $\left(\mathrm{CH}_{3}\right.$ rocking $+\mathrm{C}-\mathrm{Cl}$ stretching $)$ and the CH_{3} bending motions. The v_{4} mode corresponds to the symmetric, Jahn-Teller inactive, CH_{3}-umbrella mode, whereas the v_{3} mode is described by the antisymmetric H 2 CH 2 bending motion. Averaging over all the values available from the present observations listed in Table 4 (Panel B), values of hc $\omega_{6}=77 \pm 7 \mathrm{meV}\left(621 \pm 60 \mathrm{~cm}^{-}\right.$ $\left.{ }^{1}\right), h c \omega_{5}=104 \pm 7 \mathrm{meV}\left(839 \pm 60 \mathrm{~cm}^{-1}\right)$ and $h c \omega=162 \pm 3 \mathrm{meV}\left(1307 \pm 20 \mathrm{~cm}^{-1}\right)$. These values are in fairly good agreement with those deduced from the data listed in Table 4 (Panel A). Though being in the error limits the wave number associated to v_{5} is slightly larger, i.e. $104 \mathrm{meV}\left(839 \mathrm{~cm}^{-1}\right)$ instead of 99 meV . The present value is closer to the ab initio predicted $879 \mathrm{~cm}^{-1}$. Formally, the assignment of the $h c \omega=162 \mathrm{meV}$ to v_{3} or v_{4} remains open.

Table 5 (Panel B) displays the energy positions and assignments of the structures observed in $\mathrm{CD}_{3} \mathrm{C} 1$. At the end of Table 5 (Panel B) we gathered the isolated peaks observed above 10.5 eV photon energy and not assigned to $0-0$ Rydberg transitions. Tentative assignments, with several reasonable but not all combinations, are reported in column 4.

Assignments were attempted and essentially based on the invariability of energy intervals between lines, within about $5-10 \mathrm{meV}$ (i.e. about twice the error limit). On the basis of the observed intensities and the strong variations of the line width many structures were assigned to different excitations. The values of the wave numbers deduced from all the direct observations and their combinations are averaged for the three observed vibrational excitations. The average over $30-60$ observations leads to values of $h c \omega_{6}=66 \pm 5 \mathrm{meV}(532 \pm 40 \mathrm{~cm}$ $\left.{ }^{1}\right), h c \omega_{5}=81 \pm 4 \mathrm{meV}\left(653 \pm 30 \mathrm{~cm}^{-1}\right)$ and $h c \omega=124 \pm 4 \mathrm{meV}\left(1000 \pm 30 \mathrm{~cm}^{-1}\right)$. Compared to the values determined from the $2 \mathrm{e} \rightarrow 3 \mathrm{~s}$ transitions (see Table 4) all three wave numbers are corrected downwards, particularly the $h c \omega_{5}$ which was estimated at 99 meV . The comparison with the ab initio calculated values is fairly good, i.e. $\omega_{6}=550 \mathrm{~cm}^{-1}, \omega_{5}=677 \mathrm{~cm}^{-1}$ whereas $\omega_{3}=1033 \mathrm{~cm}^{-1}$ and $\omega_{4}=952 \mathrm{~cm}^{-1}$. A stronger argument favoring the present values is the isotope shift measured by the ratio ρ. As mentioned earlier its value was $0.99 \pm$ 0.06 instead of 1.298 predicted by ab initio calculations. Con-trarily, the new ratio value of $\rho_{5}=1.28 \pm 0.15$ compares fairly well with that predicted value. The two other experimental isotopic ratios $\rho_{6}=1.17 \pm 0.13$ and ρ $=1.31 \pm 0.07$ have to be compared with the theoretical values (see Section 4) of $\rho_{6}=1.053$ and $\rho_{3}=1.350$ and $\rho_{4}=1.362$. From the present analysis, comparing the experimental values, with their respective errors, and the calculated values of ω_{3} and ω_{4}, it is difficult to make an unambiguous assignment to the wave number of $1000 \pm$ $30 \mathrm{~cm}^{-1}$.

6. Conclusions

After the analysis of the vacuum UV spectrum of $\mathrm{CH}_{3} \mathrm{C} 1$ and $\mathrm{CD}_{3} \mathrm{C} 1$ in terms of Rydberg series (see preceeding paper part I), the observed abundant fine structure has been investigated in the present contribution. It has been analyzed in terms of short vibrational progressions. To help in their assignment, for both molecules the geometry and the vibrational wave numbers of all normal modes of the neutral molecule and the cation ground electronic states were calculated by ab initio quantum mechanical methods. The Jahn-Teller distortion upon ionization has also been considered and calculated. The fairly good agreement between experimental and predicted wave numbers, as well as the isotope effect, allowed us to assign the observed progressions to three vibrational modes. Two of them can be identified unambiguously as $v_{5}\left(\omega_{5}=653 \pm 30 \mathrm{~cm}^{-1}\right)\left(\mathrm{CH}_{3}\right.$ rocking +C Cl stretching) and $v_{6}\left(\omega_{6}=532 \pm 40 \mathrm{~cm}^{-1}\right)\left(\mathrm{CH}_{3}\right.$ bending). The assignment of the third vibration with $\omega=1000 \pm$ $30 \mathrm{~cm}^{-1}$ to v_{3} (predicted at $1033 \mathrm{~cm}^{-1}$) or v_{4} (predicted at $952 \mathrm{~cm}^{-1}$) remains doubtful owing to the lack of experimental precision. Some arguments would favor the $v_{4} \mathrm{CH}_{3}$-umbrella mode excitation.

Acknowledgements

We are indebted to the University of Liège, the Freie Universität Berlin and the Bundesministe-rium für Forschung und Technologie for financial support. H.B. acknowledges the Fonds der Chem-ischen Industrie for financial support. R.L., B.L. and A.H. gratefully acknowledge the European Community for its support through its TMR programme (Contract EU-TMR-ERBFMGE-CT-970123). B.L. thanks the Fonds National de la Recherche Scientifique (Belgium) for a research associate position. This work has also been supported by the Direction de la Recherche Scientifique de la Communauté Française de Belgique through an Action de Recherche Concertée (ARC). D.D.'s contribution was supported by the Belgian Programme of Pôles d'Attraction Inter-universitaires (PAI no. P4/03) initiated by the Belgian state, the Prime Minister's Office, the Federal Office of Scientific, Technical and Cultural Affaires. We gratefully acknowledge the referees for their critical reading of the manuscript and the relevance of their suggestions. We also wish to thank the BESSY I staff for the outstanding maintenance of the equipment.

References

[1] R. Locht, B. Leyh, A. Hoxha, D. Dehareng, H.W. Jochims, H. Baumgartel, Chem. Phys. 257 (2000) 283.
[2] R. Locht, B. Leyh, A. Hoxha, H.W. Jochims, H. Baumgärtel, Chem. Phys. 272 (2001) 259
[3] S. Felps, P. Hochmann, P. Brint, S.P. McGlynn, J. Mol. Spectrosc. 59 (1976) 355.
[4] D.T. Truch, D.R. Salomon, D.A. Armstrong, J. Mol. Spectrosc. 78(1979)31.
[5] A. Hoxha, R. Locht, B. Leyh, K. Hottmann, H.W. Jochims, H. Baumgärtel, Chem. Phys. 260 (2000) 237.
[6] L. Karlsson, R. Jadrny, L. Mattsson, F.T. Chau, K. Siegbahn, Phys. Scripta 16 (1977) 225.
[7] J.W. Gauld, L. Radom, J. Phys. Chem. 98 (1994) 777.
[8] C.L. Lugez, D. Forney, M.E. Jacox, K.K. Ikura, J. Chem. Phys. 106 (1997) 489.
[9] M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T.A. Keith, G.A. Petersson, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham, V.G. Zakrzewski, J.V. Ortiz, J.B. Fores-man, J. Ciolowski, B.B. Stefanow, A. Nanayakkara, M. Challocombe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzalez, J.A. Pople, GAUSSIAN94 (Revision D.4), Gaussian Inc, Pittsburgh, PA, 1996.
[10] [a] MP2 = second order Møller-Plesset perturbation framework: C. Moller, M.S. Plesset, Phys. Rev. 46 (1934) 618; [b] R. Krishnan, J.A. Pople, Int. J. Quant. Chem. 14 (1978) 91.
[11] W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56 (1972) 2257.
[12] T. Clark, J. Chandrasekhar, G.W. Spitznagel, P.V.R. Schleyer, J. Comp. Chem. 4 (1983) 294.
[13] A.P. Scott, L. Radom, J. Phys. Chem. 100 (1996) 16502.
[14] G. Herzberg, Molecular Spectra and Molecular Structure. III. Electronic Spectra and Electronic Structure of Polyatomic Molecules, D. Van Nostrand Company, Princeton, NJ, 1967.
[15] G. Herzberg, Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules, D. Van Nostrand Company, New York, 1945.
[16] R.L. Martin, E.R. Davidson, Mol. Phys. 35 (1978) 1713.
[17] F. Duschinsky, Acta Physicochimica URSS 7 (1937) 551
[18] C.E. Moore, Atomic Energy Levels, vol. I, circ. 467, US Department of Commerce, N.B.S. Washington DC, 1949.

19] P. Jensen, S. Brodersen, G. Guelachvili, J. Mol. Spectrosc. 88 (1981) 378.
[20] E.R. Cohen, B.N. Taylor, J. Phys. Chem. Ref. Data 37 (1973) 663.

[^0]: ${ }^{1}$ Chercheur Qualifié FNRS (Belgium).

[^1]: The calculation level is MP2/6-31G**.

