
Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

Mechanical Systems and Signal Processing 25 (2011) 1227–1247
0888-32

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/jnlabr/ymssp
Modal testing of nonlinear vibrating structures based on nonlinear
normal modes: Experimental demonstration
M. Peeters �, G. Kerschen, J.C. Golinval

Structural Dynamics Research Group, Department of Aerospace and Mechanical Engineering, University of Li�ege, 1 Chemin des Chevreuils (B52/3), B-4000 Li�ege,

Belgium
a r t i c l e i n f o

Article history:

Received 15 July 2010

Received in revised form

29 October 2010

Accepted 10 November 2010
Available online 18 November 2010

Keywords:

Nonlinear dynamics

Nonlinear normal modes

Modal analysis

Force appropriation

Time–frequency analysis
70/$ - see front matter & 2010 Elsevier Ltd. A

016/j.ymssp.2010.11.006

responding author. Tel.: +32 4 3664854; fax:

ail addresses: m.peeters@ulg.ac.be (M. Peeters
a b s t r a c t

Realizing that nonlinearity is a frequent occurrence in engineering structures and that

linear experimental modal analysis (EMA) is of limited usefulness in this context, the

present paper is an attempt to develop nonlinear EMA by targeting the extraction of

nonlinear normal modes (NNMs) from time series of nonlinear mechanical systems.

Based on a nonlinear extension of phase resonance testing, the proposed methodology

excites the structure to isolate a single NNM during the experiments. Thanks to the

invariance principle, the energy dependence of that nonlinear mode (i.e., the NNM modal

curves and their oscillation frequencies) can be extracted from the resulting free decay

response using time–frequency analysis. This paper is devoted to the experimental

demonstration and robustness of this procedure. To this end, an experimental cantilever

beam with a geometrical nonlinearity is considered, and the ability of the proposed

methodology to extract its NNMs from the measured responses is assessed.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Even if we are entering the age of virtual prototyping, experimental modal analysis (EMA) still play a key role, because it
helps the structural dynamicist to reconcile numerical predictions with experimental investigations. For linear structures,
phase resonance testing, also known as force appropriation, has been used for decades, particularly in the aerospace industry
(e.g., for ground vibration testing of aircrafts [1] and modal survey of satellites [2,3]). It consists in exciting the normal modes
of interest one at a time using multi-point sine excitation at the corresponding natural frequency [4]. Phase separation
techniques, which excite several modes at once using either broadband or swept-sine excitation, are now commonplace
for EMA.

In view of the frequent occurrence of nonlinearity in engineering applications, a large body of literature addresses
dynamic testing and identification of nonlinear vibrating structures, as reported in [5]. A new contribution in this context is
that of Vakakis and co-workers [6–8]. There are, however, very few attempts to develop practical modal testing of nonlinear
structures. In this context, a nonlinear modal identification approach based on the single nonlinear resonant mode concept
[9,10] and on a first-order frequency-domain approximation was proposed and applied in [11–14]. The forced frequency
responses are expressed as a combination of a resonant nonlinear mode response and of linear contributions from the
remaining modes. By a curve-fitting procedure, the amplitude-dependent nonlinear modal parameters may be identified
from experimental responses close to the resonance. The nonlinear resonant decay (NLRD) method [15] applies a burst of a
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sine wave at the undamped natural frequency of a linear mode and enables small groups of modes coupled by nonlinear
forces to be excited. A nonlinear curve fit in modal space is then carried out using the restoring force surface method.

There exist two routes for extending phase resonance testing to nonlinear structures. In the force appropriation of
nonlinear systems (FANS) method [16], a multi-exciter force pattern that includes higher harmonic terms is used to
counteract nonlinear coupling terms. By preventing any response other than the linear normal mode (LNM) of interest, this
procedure excites the modes of the underlying linear structure. A second approach proposed in [17] also relies on a multi-
point excitation with multi-harmonic components but, unlike the FANS approach, the goal is to isolate a single nonlinear
normal mode (NNM), which offers a solid and rigorous mathematical tool for analyzing nonlinear oscillations. Thanks to the
invariance principle, the frequency–energy dependence of that NNM (i.e., the modal curves and their oscillation frequencies)
can be identified from the resulting free decay response using time–frequency analysis.

The present paper is devoted to the experimental demonstration of this latter methodology. To this end, an experimental
nonlinear structure consisting of a cantilever beam with a geometrical nonlinearity is considered, and the ability of the
proposed methodology to extract its NNMs from the measured responses is assessed. When used in conjunction with the
numerical computation of the NNMs introduced in [18] for theoretical modal analysis, the approach described herein leads to
an integrated methodology for modal analysis of nonlinear vibrating structures. This methodology can certainly be a solid
basis for model updating and identification of nonlinear structures.

This paper is organized as follows. In the next section, the theoretical framework of NNMs is briefly reviewed. A numerical
algorithm for NNM computation from nonlinear structural models is mentioned. In Section 3, the proposed methodology for
EMA is described, and an indicator for NNM force appropriation is introduced. The experimental set-up considered here is
presented in Section 4. Finally, the methodology is applied to the test structure in Section 5, and the NNM identification is
carried out.

2. Nonlinear normal modes (NNMs)

2.1. Framework and definition

NNMs offer a solid and rigorous mathematical tool for analyzing nonlinear oscillations, yet they have a clear conceptual
relation to the classical linear normal modes (LNMs). Another appealing feature of NNMs is that they are capable of handling
strong structural nonlinearity. A detailed description of NNMs and of their fundamental properties (e.g., frequency–energy
dependence, bifurcations and stability) is presented in [19,20]. The definition of an NNM is briefly recalled in this section.

The free response of discrete conservative mechanical systems with n degrees of freedom (DOFs) is considered, assuming
that continuous systems (e.g., beams, shells or plates) have been spatially discretized using, for example, the finite element
method. The general equations of motion are

M €xðtÞþKxðtÞþfnlfxðtÞg ¼ 0 ð1Þ

where M is the mass matrix; K is the stiffness matrix; x, _x and €x are the displacement, velocity and acceleration vectors,
respectively; fnl is the nonlinear restoring force vector, including stiffness terms only.

An extension of Rosenberg’s definition of an NNM [21–23] is considered throughout this paper. An NNM motion is defined
as a (non-necessarily synchronous) periodic motion of the undamped mechanical system (1).

This extended NNM definition may appear restrictive in case of nonconservative systems. In the presence of weak
to moderate viscous damping, as shown in [17,20] and experimentally confirmed in this study, the damped dynamics can
be interpreted based on the topological structure of the NNMs of the underlying conservative system. For large damping,
it is important to note that the type of nonlinear behavior that is observed (e.g., hardening or softening) may be modified as
shown in [24].

2.2. Numerical algorithm for NNM computation

The approach followed here for theoretical modal analysis targets the numerical computation of undamped NNMs of
nonlinear structural finite element models governed by (1). The numerical method relies on two main techniques, namely a
shooting procedure and a method for the continuation of periodic solutions. The numerical algorithm is detailed in [18].
The NNMs are then obtained accurately, even in strongly nonlinear regimes, and in a fairly automatic manner.

One typical dynamical feature of nonlinear systems is the frequency–energy dependence of their oscillations. As a result,
the modal curves and frequencies of NNMs depend on the total energy in the system. Due to this dependence, the
representation of NNMs in a frequency–energy plot (FEP) is particularly meaningful. An NNM motion is represented by a point
in the FEP, which is drawn at the fundamental frequency of the periodic motion and at the conserved total energy during the
motion, which is the sum of the potential and kinetic energies. A branch, represented by a solid line, is a family of NNM
motions possessing the same qualitative features.

For illustration, the conservative 2DOF system with a cubic stiffness depicted in Fig. 1 is considered. The underlying linear
system possesses two (in-phase and out-of-phase) LNMs. The FEP, computed using the numerical algorithm, is represented in
Fig. 2. NNM motions in the configuration space (i.e., the modal curves) are inset. The backbone of the plot is formed by two
branches, which represent in-phase (S11+) and out-of-phase (S11�) synchronous NNMs. The indices in the notations are
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Fig. 1. Schematic representation of the 2DOF system example.
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used to mention that the two masses vibrate with the same dominant frequency. These fundamental NNMs are the direct
nonlinear extension of the corresponding LNMs. The frequency of both the in-phase and out-of-phase NNMs increases with
the energy level, which reveals the hardening characteristic of the cubic stiffness nonlinearity in the system. Additional
branches corresponding to internally resonant NNMs, as opposed to fundamental NNMs, bifurcate from the backbone at
higher energy as evidenced in [20]. However, these modal interactions occurring through internal resonances are beyond the
scope of the present study. More complex systems can be considered without difficulty [18].

3. Experimental methodology for NNM identification

Because modal superposition is no longer valid, the methodology introduced in [17] for EMA of nonlinear structures is
realized through a nonlinear phase resonance method (also called force appropriation), which relies on the extension of the
phase lag quadrature criterion to nonlinear systems. Specifically, if the forced response across the structure is a monophase
periodic motion in quadrature with the excitation, an NNM vibrates in isolation. Once the NNM appropriation is achieved,
the complete frequency–energy dependence of the nonlinear mode can be identified during the free decay response
according to the NNM invariance principle. Eventually, an experimental FEP for one specific NNM can be obtained, and the
procedure can be applied for all NNMs of interest.

This approach can be regarded as forced vibration testing where the appropriate force is applied as a burst excitation for
inducing single-NNM decay response. As illustrated in Fig. 3, the NNM extraction is carried out in two steps: NNM force
appropriation and NNM free decay. A detailed description of the overall methodology is given in [17]. The philosophy of the
procedure and the related fundamental properties are briefly reviewed in this section. In addition, the use of an indicator for
NNM appropriation is introduced.

To relate the NNMs of the underlying undamped system to the results extracted from the experimental data, the
procedure assumes moderately damped systems possessing elastic nonlinearities. The governing equations of motion of
nonlinear structures under consideration are

M €xðtÞþC _xðtÞþKxðtÞþfnlfxðtÞg ¼ pðtÞ ð2Þ

where pðtÞ is the external excitation and C is the viscous damping matrix. When an ‘NNM’ is referred to in this paper, it stands
for the NNM of the underlying conservative (no damping and no external force) system (1), i.e., the undamped NNM,
according to the previous extended definition.
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3.1. NNM force appropriation

During this first step (Fig. 3), the method consists in using exciters at different locations in order to induce single-NNM
behavior at a specific energy level. To this end, an extension of force appropriation to nonlinear systems is developed.

3.1.1. Indicator for NNM force appropriation

As shown in [17], the phase lag quadrature criterion, valid for linear systems, can be generalized to nonlinear systems. As a
result, a nonlinear structure vibrates according to a single NNM of the underlying conservative system if the response
(in terms of displacements or accelerations) across the structure is a monophase periodic motion with a phase lag of 901 with
respect to the excitation. It expresses that the applied excitation compensates for the damping forces. Specifically, the phase
lag of nonlinear signals (i.e., generally including multi-harmonic components) is defined with respect to each harmonic, and
the nonlinear monophase response xðtÞ

xðtÞ ¼
X1
k ¼ 1

XkcosðkotÞ ð3Þ

is in quadrature with the excitation pðtÞ if

pðtÞ ¼
X1
k ¼ 1

PksinðkotÞ ð4Þ

i.e., if the force and the response can be written as a sine and cosine series, respectively.
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For linear structures, the phase resonance criterion is frequently checked by means of the mode indicator function (MIF) to
evaluate the quality of modal appropriation [4]. This indicator can be extended to assess the quality of a tuned NNM motion of
nonlinear systems by taking into account the different harmonic components in the measured response.

The general periodic response of nonlinear systems can be expressed as a complex Fourier series

xðtÞ ¼
X

k

ReðZkeikotÞ ð5Þ

where Zk is the complex Fourier coefficient vector of the kth harmonic. Following the MIF philosophy, the quality of NNM
appropriation for the kth harmonic is given by

Dk ¼
ReðZkÞ

�ReðZkÞ

Z�kZk
ð6Þ

where star denotes the conjugate transpose of the vector. This scalar expression returns a value between zero and unity
depending on the degree to which the kth harmonic components of the responses deviate from being in quadrature with the
applied force. Assuming a sine series excitation (4), a value of unity indicates a perfect phase quadrature of the corresponding
harmonic. The NNM appropriation may therefore be assessed by examining separately this indicator for all harmonics in the
response. A global confidence indicator of NNM appropriation is introduced herein by considering the N significant harmonic
components in the measured responses

D¼
1

N

XN

k ¼ 1

Dk ¼
1

N

XN

k ¼ 1

ReðZkÞ
�ReðZkÞ

Z�kZk
ð7Þ

This NNM appropriation indicator is related to the purity of the appropriated response: a value of unity indicates a perfect NNM
isolation.

3.1.2. Experimental realization of NNM force appropriation

No direct method exists to determine the appropriate excitation of a given NNM. Such an excitation has to be derived
through successive approximations based on the indicator (7). For nonlinear structures, in addition to the spatial distribution
of the multi-point excitation, the amplitude distribution of harmonic terms has also to be tuned in theory. In fact, the
frequency–energy dependence of nonlinear systems prevents the direct separation of space and time in the governing
equations of motion, which may complicate the experimental realization of force appropriation from a theoretical viewpoint.

However, for structures with relatively well-separated modes, an imperfect force appropriation resorting to a single-point
mono-harmonic excitation (i.e., using a single shaker with no harmonics of the fundamental frequency) may be sufficient for
satisfactory NNM isolation [17]. Assuming that the forced response at resonance can be reached (i.e., no unstable, quasi-
periodic and chaotic motions), a constructive procedure for NNM force appropriation therefore consists in performing a
stepped sine excitation until the phase lag criterion is verified. Specifically, the excitation frequency is gradually incremented
to follow the change of the forced frequency responses until the NNM appropriation indicator is fulfilled. Realizing that
nonlinear systems may possess multiple coexisting stable solutions with their own domains of attraction, this process needs
to adapt the frequency increments carefully to avoid jumping to another branch of periodic solutions.

3.2. NNM free decay identification

Once an NNM motion at a specific energy level is isolated by means of force appropriation, the second step in Fig. 3 consists
in turning off the excitation to obtain the resulting free damped response. As shown in [17], for moderate damping, this free
decay response remains close to the undamped NNM, which is an invariant of the conservative dynamics (i.e., if the motion is
initiated on one specific NNM, the remaining NNMs remain quiescent for all time), when energy decreases. The energy
dependence of the NNM is then extracted from this single-NNM free damped response. The modal curves are obtained
directly from the time series. They are determined by representing the time series in the configuration space for one
oscillation around specific time instants, associated with different energy levels. Time–frequency analysis is considered to
obtain the NNM oscillation frequency.

4. Experimental set-up

4.1. Description of the experimental fixture

Targeting the experimental application of the proposed methodology, a set-up composed of a cantilever beam with a thin
beam at its end is considered throughout this paper. This experimental structure is represented in Fig. 4, and the related
geometrical and mechanical properties are listed in Table 1. The nonlinear behavior comes from the geometrical stiffening
effect of the thin beam. This benchmark is similar to the structure used during the European action COST F3 [25] for nonlinear
system identification. In particular, its nonlinear behavior was identified and modeled in [26,27].

In order to avoid the effect of gravity, the thin beam is positioned vertically with its neutral axis parallel to ground, and the
structure is excited in a horizontal plane by means of an electrodynamic shaker (Figs. 4 and 5). The structural response is



Table 1
Geometrical and mechanical properties of the nonlinear beam

Length (m) Width (m) Thickness (m) Material

Main beam 0.7 0.014 0.014 Steel

Thin beam part 0.04 0.014 0.0005 Steel

Thin beam

1 2 3 4 5 6 7

Fig. 4. Experimental set-up (top view)

Fig. 5. Close-up of the thin beam of the experimental set-up. Top plot: top view. Bottom plot: front view.
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measured using seven accelerometers which span the main beam regularly, and a displacement sensor (laser vibrometer) is
located at the end of the beam, i.e., at position 7. The exciter is connected to the structure by means of a rod at the end of which
a force transducer is mounted. As a result, the phase lag of the forced responses with respect to the measured applied
excitation may be determined during testing.

4.2. Preliminary experimental characterization

Prior to nonlinear modal analysis, a preliminary analysis consisting in the experimental investigation of the dynamics of
the test structure is performed. This first step is necessary to characterize the nonlinear behavior of the structure in order to
apply the proposed methodology for NNM extraction.

4.2.1. Nonlinear characterization

To highlight its nonlinear behavior, the structure is forced by means of the shaker at position 2 (see Fig. 4) using white-
noise excitation band-limited in the 0–500 Hz range. Fig. 6 shows two frequency response functions (FRFs) measured at low
and high force levels. At low excitation level, the test structure responds linearly while the large deflection of the thin beam at
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high level induces geometrically nonlinear effects. As shown in Fig. 6, distortions appear in the FRF at high excitation level
which significantly differs from the FRF measured at low level. It is confirmed by the close-up where the resonant frequencies
clearly increases with the forcing amplitude, which reveals the hardening characteristic of the geometrical nonlinearity. The
first mode is the most affected by the nonlinear effect over the energy range of interest. The FRF close to the second mode is
moderately altered while the third mode is practically unaffected by the nonlinearity.
4.2.2. Modal analysis of the underlying linear structure

Traditional modal analysis of the test structure considered as linear may therefore be carried out at very low level of
excitation. The identification of modal parameters of the underlying linear structure then provides valuable insight into the
structure for the extraction of NNMs at higher energy levels (i.e., in the nonlinear range of motion). In particular, the
preliminary knowledge of linear natural frequencies allows to initiate the stepped sine procedure for NNM force
appropriation. In addition, the linear modal shapes may be useful to determine suitable shaker locations.

To this end, hammer impact testing is performed at low excitation level on the test structure alone, i.e., without the
presence of the exciter system. This prevents possible perturbations of the original test structure due to the presence of the
exciter (i.e., shaker–structure interactions). The linear modal properties are estimated using Ibrahim time domain method
[28], which is a phase separation approach commonly used for linear modal analysis. The three LNMs obtained in the
0–500 Hz range are given in Fig. 7. The associated linear modal damping ratios are lower than 0:1%, which highlights the weak
damping of the structure.
5. Experimental demonstration of NNM identification

In the present section, the experimental extraction of NNMs of the test structure is considered using the aforementioned
methodology. As mentioned previously, the use of a single shaker may be suitable for NNM appropriation of such a structure
with well-separated modes. This imperfect force appropriation approach combined with a stepped sine excitation procedure
is considered herein, and it is shown that the NNMs of the test structure are isolated satisfactorily.
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5.1. Experimental extraction of the first NNM

5.1.1. NNM force appropriation using stepped sine excitation

To minimize shaker–structure interaction, the shaker is placed near the clamped end of the main beam. For the first mode, the
exciter is located at position 2 (see Fig. 4). The generated force is a single-sine (i.e., mono-harmonic) excitation of tunable frequency.

Based on the knowledge of the underlying linear properties, the stepped sine excitation procedure may be initiated using
the natural frequency of the LNM as excitation frequency. In view of the hardening nonlinear behavior observed previously, it
is gradually increased to follow the forced response branch of interest until resonance. At each step, if the excitation
frequency increment leads to a sudden change in the measured responses (i.e., discontinuity in the amplitude and phase of
the motion) indicating a jump to another coexisting stable solution, the procedure is then restarted, and the last increment is
decreased to remain on the initial branch of forced responses. This procedure is stopped when sufficiently good NNM
appropriation is achieved. To this end, the indicator introduced previously is continuously monitored during the process.

It is worth noticing that the shaker amplification does not operate at constant current source, but the generated voltage is
rather fixed during the experiments. As a result, the amplitude and phase of the actual force introduced by the exciter may
fluctuate during the stepped sine procedure. It is of little importance since the applied force is measured during experimental
testing, which enables to determine the phase lag between the responses and the excitation, this latter being relevant herein.

The measured steady-state forced responses are illustrated in Fig. 8. The maximum amplitude of the displacement at the main
beam tip is depicted as a function of the excitation frequency. The fundamental complex Fourier coefficients (i.e., corresponding to
the forcing frequency) of the measured acceleration responses along the structure are also given in phase scatter diagrams.
Initially, quite large increments of the excitation frequency are suitable. Close to resonance, smaller variations are required to
remain on the frequency response branch of interest. Another branch of stable periodic motions coexists near the resonance, and
the basin of attraction of the initial forced responses gets smaller as the frequency increases. From a practical viewpoint, the NNM
appropriation is then realizable by carefully changing the frequency of the generated excitation. For instance, increments of 0.1 Hz
are finally necessary during the stepped sine procedure to prevent jump phenomenon.

The scatter plots display the evolution of the phase of the forced responses with respect to the sine excitation which is
along the vertical axis (purely imaginary excitation). The motion across the structure is synchronous, and the phase lag
changes with the excitation frequency to come close to 901. It is confirmed by the evolution of the NNM appropriation
indicator depicted in Fig. 9 which tends to 1. The proposed indicator, calculated from the measured accelerations across the
structure, is initially evaluated for each of the significant harmonics included in the responses (i.e., for the fundamental, third
and fifth harmonics). The global NNM purity indicator combining all these harmonics is also displayed in this figure. Only odd
harmonics are considered herein, even harmonic components of the responses being negligible (see Fig. 10). In particular, the
evolution observed for the fundamental frequency indicator is in agreement with the change noticed by the scatter diagrams.
On the other hand, multiple quadratures of the harmonic components occur prior to the one of the fundamental frequency
terms. It is evidenced by the existence of several unit values of the indicator for the harmonics of the fundamental frequency,
which explains that the evolution of the global NNM indicator is not a monotonically increasing function. Eventually, the
forced response obtained for the final excitation frequency of 39.91 Hz corresponds to a value of the indicator very close to 1
for all harmonics. The global NNM appropriation indicator is thus equal to 0.99. This very satisfactory value reveals that the
structure practically vibrates synchronously with a phase lag of 901 with respect to the harmonic excitation. For each
measured response along the beam, a phase lag of 891 is actually observed for each harmonic.

As a result, the first undamped NNM is experimentally isolated at a specific energy level with good approximation. The
measured time series of this resulting forced response are represented in Fig. 10. The displacement amplitude of the response
at the main beam end is about 1.2 mm. The nonlinearity is then activated, and harmonic components of the excitation
frequency appear in the response as clearly noticed by the power spectral density (PSD) shown in Fig. 10. The NNM modal
curve, expressing the motion in a two-dimensional projection of the configuration space, is given in Fig. 11 in terms of
accelerations. This figure also represents the NNM modal shape composed of the maximum amplitudes of the accelerations
for all measurement locations along the structure. The modal shape is a snapshot of the NNM motion at a specific time instant
corresponding to the maximum amplitude of the response.
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5.1.2. NNM free decay identification

Now that the structure vibrates according to the first NNM at a specific energy level, the gain of the exciter amplifier is turned
off to initiate NNM free decay. The resulting response is illustrated in Fig. 12 where the time series of the measured displacement at
the beam end is depicted. The dashed line corresponds to the time instant when the shaker is stopped, i.e., the boundary between
the steady-state forced response (NNM force appropriation step) and the free damped motion (NNM free decay step).

In practice, the applied excitation does not immediately drop to zero at the turn-off instant. Nevertheless, the excitation
rapidly reduces and can be assumed as negligible. It confirms that the influence of the presence of the exciter device on the
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free decay of the initial test structure of interest may be viewed as moderate. Finally, in view of the weak damping of the
structure and thanks to the invariance principle, the induced free damped response is expected to follow the first undamped
NNM when energy decreases with time.

The continuous wavelet transform (CWT) is computed to track the frequency content of the measured single-NNM free
decay response as energy decreases. For illustration, the time–frequency dependence given by the CWT of the displacement
measured at the beam tip is represented in Fig. 13. The temporal evolution of the instantaneous fundamental frequency is
determined from the maximum ridge of the transform. The frequency–energy dependence of the first NNM is then extracted
from the measured time series. This dependence can be clearly highlighted by substituting the response amplitude for time.
The identified frequency as a function of the amplitude (envelope) of the displacement at the end of the main beam is
illustrated in Fig. 14. In Section 6.3, the total energy present in the system is estimated, and the experimental FEP is fully
reconstructed from these measured data.

The modal curves of the first NNM are directly extracted from the measured time series around specific time instants,
related to different energy levels. The first NNM at five distinct response levels corresponding to the squares in Fig. 14 is
displayed in Fig. 15. This plot presents the identified modal curves and the associated modal shapes.

Figs. 14 and 15 clearly reveal that the first NNM and its oscillation frequency are strongly affected by nonlinearity for
increasing energy levels. The frequency increases with the energy level which confirms the hardening characteristic of the
structure. The NNM motions have also a marked energy dependence. At high energy, the modal curves distinctly deviate from
a straight line, which reveals the higher harmonic contents (mostly the third harmonic) in the response. It is particularly
pronounced given that the motion is represented in terms of accelerations. The modal shape is also altered as shown in Fig. 15.
At low energy, the NNM thus comes close to the first LNM identified previously. In particular, the modal curve tends to a
straight line in the configuration space and the NNM frequency corresponds to the natural frequency of the first linear mode.
5.2. Experimental extraction of the second NNM

5.2.1. NNM force appropriation using stepped sine excitation

In view of its deformation shape, the second mode is more sensitive to the presence of the exciter device in proximity to its
antinode of vibration. It was evidenced by experimental investigations. The shaker is consequently positioned closer to the
clamped end of the main beam (namely at location 1) for the extraction of the second NNM.
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Fig. 10. Appropriated forced response of the first NNM of the test structure (o¼ 39:91 Hz). Left plots: measured time series. Right plots: power spectral

density. From top to bottom: accelerations at position 3, position 5, position 7 and displacement at the tip of the beam, i.e., at position 7.

−60 −40 −20 0 20 40 60
−80
−60
−40
−20

0
20
40
60
80

1 2 3 4 5 6 7
0

20

40

60

80

Acc. at position 3 (m/s2)

A
cc

. a
t p

os
iti

on
 7

 (m
/s

2 )

A
cc

el
er

at
io

n 
(m

/s
2 )

Sensor position

Fig. 11. Appropriated forced response of the first NNM of the test structure (o¼ 39:91 Hz). Left plot: Modal curve in a two-dimensional projection of the

configuration space in terms of measured accelerations. Right plot: Modal shape composed of the amplitudes of the measured accelerations along the

main beam.

M. Peeters et al. / Mechanical Systems and Signal Processing 25 (2011) 1227–1247 1237



0 2 4 6 8 10 12 14
−2

−1

0

1

2 x 10−3

D
is

pl
. 7

 (m
)

Time (s)

NNM force
appropriation

NNM free decay

Fig. 12. Free decay identification of the first NNM of the test structure. Measured free response initiated from the appropriated forced response

(o¼ 39:91 Hz). Time series of the displacement at the tip of the beam, i.e., at position 7. The dashed line corresponds to the turn-off time instant of the shaker,

i.e., the boundary between NNM force appropriation and NNM free decay.

0 2 4 6 8 10 12 14
25

30

35

40

45

Fr
eq

ue
nc

y 
(H

z)

Time (s)

NNM force
appropriation

NNM free decay

Fig. 13. Wavelet transform of the measured free decay of the first NNM of the test structure initiated from the appropriated forced response (o¼ 39:91 Hz).

Temporal evolution of the instantaneous frequency of the displacement at the tip of the beam, i.e., at position 7. The solid line corresponds to the maximum

ridge of the transform.

0 0.2 0.4 0.6 0.8 1 1.2
x 10−3

25

30

35

40

45

Fr
eq

ue
nc

y 
(H

z)

Amplitude of the displacement (m)

Fig. 14. Frequency of the first NNM of the test structure, identified from the measured free decay using the CWT, as a function of the amplitude displacement

at the main beam tip (i.e., at position 7). The solid line corresponds to the maximum ridge of the transform.

M. Peeters et al. / Mechanical Systems and Signal Processing 25 (2011) 1227–12471238
Similarly, the NNM force appropriation of the second mode is carried out by means of stepped sine excitation. Starting
from the natural frequency of the second linear mode, the excitation frequency is next gradually increased. In Fig. 16, the
measured steady-state periodic responses resulting from this forced vibration testing are represented by means of the
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amplitude displacement at the tip of the main beam. The fundamental frequency components of the forced frequency
responses are also given in scatter plots. The corresponding evolution of the NNM appropriation indicator is illustrated in
Fig. 17. Similar results as for the force appropriation of the first NNM are observed. Regarding the practical realization, the
frequency of the excitation must nevertheless be adapted more carefully, which indicates narrower domain of attraction of
the forced responses close to the second resonance. The NNM force appropriation is then performed for an excitation
frequency of 144.02 Hz that corresponds to a global NNM indicator of 0.99. At each measurement location, the phase lag of the
responses with respect to the excitation is thus about 891 for all harmonics. Accordingly, the second NNM practically vibrates
in isolation. The measured modal curve and modal shape are displayed in Fig. 18.

From the considered location of the shaker, the magnitude of the induced response of the test structure is limited by the
maximum force that can be generated by the exciter. For this higher-frequency mode, the displacement amplitude at the tip
of the main beam that is reached during NNM force appropriation is then around 0.6 mm. However, as shown below (see
Section 6.3), the corresponding energy level of isolation is of the same order of magnitude than for the force appropriation of
the first NNM. So, for this energy level of interest, the second mode seems to be moderately affected by nonlinearity. The
oscillation frequency of the isolated NNM motion is slightly altered in comparison with the natural frequency of the second
linear mode: the frequency increases by only 1 Hz due to the hardening effect of the geometrical nonlinearity. In addition, the
NNM modal shape does not almost differ from the corresponding linear mode. The isolated modal curve is practically a
straight line in the configuration space, which illustrates the insignificance of higher harmonic components in the motion.

5.2.2. NNM free decay identification

As for the first NNM, the generated appropriate excitation is stopped by turning off the gain of the amplifier. Hence, the
measurement of the single-NNM free damped response enables to identify the energy dependence of the second NNM. Fig. 19
shows the oscillation frequency identified from the time series using the CWT as a function of the displacement at the main
beam end. The modal curves and the corresponding modal shapes extracted for five different energy levels (marked by
squares in Fig. 19) are depicted in Fig. 20.

It clearly illustrates the weak energy-dependence observed for the second NNM. The frequency and the modal curves are
slightly affected by nonlinearity over the energy range under consideration.

Finally, the experimental extraction of the third NNM was not investigated in view of its quasi-independence on the energy
present in the system. As previously evidenced by the FRF measurements at low and high levels, the third mode is almost unaffected
by the nonlinearity for the considered energy range: the modal shape and the frequency remain unchanged from the LNM.

The previous results are corroborated in the next section which deals with the validation of these experimental results by
means of the finite element model of the structure.

6. Finite element modeling and experimental validation

As mentioned previously, the proposed methodology for nonlinear EMA lies on moderate damping assumption, in which
case the NNMs identified from experimental responses can be related to the NNMs of the underlying conservative system. In
this section, a conservative finite element model of the test structure is considered. The theoretical modal analysis of the
structure is carried out using the numerical algorithm developed for NNM computation. The computed theoretical NNMs
may therefore be compared with the NNMs experimentally extracted using the modal testing methodology. From a practical
viewpoint, this overall procedure combining the theoretical and experimental modal analyses may be used in the context of
model validation of nonlinear structures. In this study, it is performed to assess the ability of the proposed methodology to
extract the NNMs from experimental measurements. To this end, a reliable finite element model of the structure is
independently identified.
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6.1. Theoretical model of the test structure

The theoretical undamped model of the nonlinear test structure is obtained based on a finite element approach. The
governing equations of motion are then

M €xðtÞþKxðtÞþfnlfxðtÞg ¼ 0 ð8Þ

The underlying linear system (i.e., the mass and stiffness matrices M and K) is identified through the linear modal analysis
performed at low energy level. The nonlinear behavior (i.e., the nonlinear restoring force fnl) is next introduced in the model
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by resorting to a nonlinear system identification method. It is worth pointing out that the finite element model considered
here corresponds to the system studied in [17] regarding the numerical demonstration of the proposed methodology in
which the parameters are now updated from experimental data.
6.1.1. Finite element model of the underlying linear structure

The finite element model of the test structure is illustrated in Fig. 21. The main beam and thin beam are modeled using
14 and 3 two-dimensional Euler–Bernoulli beam elements, respectively. An additional linear rotational stiffness is used to
model the junction between the two beams. Based on the linear modal parameters extracted in Section 4.2.2 by means of
linear modal testing at very low level, the updating of the model provides an estimation of the rotational stiffness term at the
junction.
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6.1.2. Identification of nonlinearity

As performed in [26], the conditioned reverse path method is applied to identify the nonlinear behavior of the test structure. To
this end, the structure is forced using white-noise band excitation limited in the 0–500 Hz range. It shows that the nonlinear
behavior of the thin beam can be modeled using a grounded cubic spring at the junction of the main and the thin beams:

f ðxÞ ¼ knljxj
3signðxÞ ð9Þ

This cubic term takes the geometrical stiffening effect of the thin part into account. The estimated value of the nonlinear coefficient
knl is 8:5� 109 N=m3.
6.2. Comparison between experimental and theoretical NNMs

The undamped NNMs of the finite element model of the structure are computed using the numerical algorithm mentioned
previously [18]. In this section, these theoretical NNMs are compared to the NNMs extracted from the experimental
measurements.

For the first NNM, the dependence of its frequency on the amplitude of the displacement at the main beam tip is plotted in
Fig. 22. The experimental evolution was identified previously from the ridge of the CWT of the free decay. The frequency of the
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theoretical NNM closely matches the experimental one with a relative error lower than 1.25%. This error reaches its
maximum value shortly after stopping the exciter. It could result from the imperfect realization of the free decay phase
because of the presence of the exciter. Due to the existing coupling between the shaker and the structure, the applied
excitation is not initially negligible which may lead to a parasitic deviation from the actual single-NNM free decay. In other
words, the test structure of interest might be altered by interacting with the shaker system during the free decay step.
However, this observed difference remains fully satisfactory and is rapidly reduced as evidenced in Fig. 22.

The experimental modal curves and modal shapes of this first NNM extracted from the NNM free decay at five different
energy levels (marked by squares in Fig. 22) are depicted in Fig. 23. The left plots represent the modal curves in a two-
dimensional projection of the configuration space while the right plots depict the modal shapes of the main beam. For
comparison, the corresponding modal features of the theoretical NNM at the same five amplitude levels (marked by circles in
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Fig. 22) are also superimposed. From this figure, it is observed that the first NNM of the finite element model is in good
agreement with the experimental one for the complete energy range of interest.

Fig. 24 shows the comparison between the experimental and theoretical frequencies of the second NNM. For this weakly
energy-dependent NNM, the observed deviation is insignificant. Indeed, the maximum relative error is about 0.3% and
corresponds to the initial difference in frequency resulting from the linear model updating, i.e., the error between the second
normal mode of the updated underlying linear system and the experimental one extracted at low energy. The error on the
frequency of the second NNM is therefore satisfactory.

The modal curves and the modal shapes of this second NNM for three amplitude levels (marked in Fig. 24) are compared in
Fig. 25. It shows that the experimental and theoretical NNMs match very well throughout the different energy levels.
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In conclusion, these results confirm that the proposed methodology is capable of reliably extracting the energy
dependence of NNMs of the test structure from experimental measurements. Both a strongly and a weakly energy-dependent
NNM have been identified.

6.3. Reconstructed frequency–energy plot (FEP)

From a physical viewpoint, it could be convenient to reconstruct the FEP of NNMs of the test structure from the obtained
experimental results. This representation facilitates the interpretation of the dynamics. In particular, although the response
amplitude of the structure (e.g., the displacement at the tip of the main beam) provides a natural insight into the qualitative
change of energy in the system for a specific NNM, it cannot be used to compare the energy levels related to distinct NNMs.
To this end, it is therefore necessary to determine the total energy (i.e., the sum of the kinetic and potential energies) present
in the structure from the experimental measurements.

Considering the general system (8), the expressions for the kinetic and potential energies are provided by

T ¼ 1
2
_x�M _x ð10Þ

and

V ¼ 1
2x�KxþVnlðxÞ ð11Þ

respectively, where star denotes the transpose operation. In addition to the linear contribution, the potential energy is
composed of the nonlinear termVnlðxÞ, which represents the strain energy associated to the nonlinear stiffness nonlinearities.
The energy in the system, which is time dependent, may thus be estimated from the time response of the structure through
the finite element model. Nevertheless, the response is only available at the measurement locations considered during the
experiments.

Following the philosophy of model reduction techniques [29], the total energy can then be expressed in terms of the
measured responses only. The equations of motions (8) of the conservative structural model can be partitioned as

MRR MRC

MCR MCC

" #
€xR

€xC

" #
þ

KRR KRC

KCR KCC

" #
xR

xC

" #
þ

fR,nlðxRÞ

0

� �
¼

0

0

� �
ð12Þ

where xR and xC are the vectors of the remaining and condensed DOFs, respectively. Keeping the nonlinear DOFs in the
remaining coordinates, the equations of motion associated to the condensed DOFs are linear as evidenced by equation (12) in
which the condensed part of the nonlinear restoring force fC,nl is zero. The finite element model can then be reduced using
linear static condensation, commonly known as Guyan reduction method. This static condensation technique consists in
neglecting the dynamic part of the condensed coordinates xC and thence expressing the global DOFs in terms of the remaining
ones as follows:

x¼
xR

xC

" #
¼ RxR ð13Þ

where R is the static reduction matrix given by

R¼
I

�K�1
CC KCR

" #
ð14Þ

The reduced kinetic and potential energies are thus expressed as

T ¼ 1
2
_x�RM _xR ð15Þ

V ¼ 1
2x�RKxRþVnlðxRÞ ð16Þ

with the nR � nR reduced structural matrices

M ¼R�MR

K ¼ R�KR ð17Þ

The expression for the nonlinear deformation energy Vnl is unchanged since it initially depends only on the nonlinear DOFs
which belongs to the remaining coordinates.

In order to estimate the energy from the available measurements, the remaining DOFs chosen here are the nodal
coordinates corresponding to the measurement locations across the structure. Hence, an estimation of the total energy can be
determined using the expressions (15) and (16). Obviously, the quality of this estimation therefore depends on the number
and the positions of measured responses.

Targeting a general approach, the total energy is estimated by evaluating the kinetic energy at the time instants when the
displacements pass through zero, i.e., when the potential energy vanishes. Since the kinetic energy depends only on the
parameters of the underlying linear system, that prevents resorting to the nonlinear parameters which are generally
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Fig. 26. Frequency–energy plot of the NNMs of the nonlinear beam. Left plot: experimental FEP reconstructed from the NNM identification results using the
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unknown a priori in practice. On the other hand, the underlying linear model can be identified, prior to nonlinear modal
testing under consideration in this study, by means of traditional linear modal analysis performed at low energy level (i.e.,
when the nonlinearities are of sufficiently low amplitude). Furthermore, the mass properties are generally better assessed
and subject to less uncertainty than the stiffness properties. A good approximation of the model mass matrix could even be
built based only on the geometrical and mechanical properties of the experimental set-up. The resulting estimation of the
energy, determined from all the experimental measurements and the reduced mass matrix, is referred to as the reconstructed
energy of the system. Its degree of confidence therefore depends on the quality of the reduced mass matrix that is considered.

For the considered test structure, the established finite element model is condensed by keeping the translational DOFs at
the positions of the seven accelerometers which span the main beam. Based on this structural model, the displacement of the
main beam end is the only nonlinear DOF and is then kept in the reduction. Since the evaluation of the kinetic energy requires
the velocities, the time responses measured in terms of acceleration are then numerically integrated.

The instantaneous energy in the system during the NNM free decay of the nonlinear modal testing is then evaluated from
the experimental measurements. The experimental FEP is reconstructed through the CWT by substituting the estimated
instantaneous energy for time. The maximum ridge of the transform therefore provides the experimental backbone of the
NNM expressing its frequency–energy dependence. The reconstructed experimental FEP of the first and second NNMs is
depicted in Fig. 26. The experimental modal shapes extracted previously for different energy levels are also superimposed in
the plot. For comparison, the theoretical FEP numerically computed from the finite element model is also displayed in this
figure. It again shows the good agreement between the theoretical and experimental NNMs.

Finally, the quality of the energy estimation can be assessed from the finite element model. It is observed that the reduced
energy is very close to the actual energy present in the system. For the first two NNMs, the theoretical FEPs given in terms of
the actual energy or the reduced energy cannot be distinguished. It confirms that the reconstructed energy gives an excellent
quantitative insight into the total energy in the structure.
7. Conclusion and future work

This paper deals with the experimental demonstration of the nonlinear phase resonance methodology proposed for EMA
of nonlinear vibrating structures. To this end, a set-up composed of a nonlinear beam with geometrical nonlinearity was
considered. Based on a nonlinear extension of the phase quadrature criterion, an indicator was introduced for assessing the
quality of NNM force appropriation. The experimental realization of NNM force appropriation was completed by means of a
stepped sine procedure using a single exciter at a single frequency. Finally, the energy dependence of NNM was properly
identified from the measured single-NNM free decay response, which indicates the robustness of the procedure.
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This two-step methodology, which can be applied to strongly nonlinear structures, therefore promises to progress toward
practical nonlinear EMA. In particular, this approach may be directly and fully integrated into the strategy currently followed
for standard ground vibration testing of aircrafts. In fact, besides traditional linear modal analysis performed using phase
separation methods, it is common to resort to classical force appropriation for some particular modes. In case of modes
affected by nonlinearity, the proposed nonlinear phase resonance may therefore be realized, which extends the strategy to
nonlinear structures. Through the combination of EMA with theoretical modal analysis, finite element model updating and
validation of nonlinear structures are also within reach.

More complex structures (e.g., structures possessing close modes or spatially distributed nonlinearities) will be addressed
in future research. To this end, the development of a more general constructive procedure for NNM force appropriation,
resorting to several shakers with harmonics of the fundamental frequency, could be necessary to ensure the robustness of the
methodology. An assumption considered throughout this paper is that the damped dynamics can be interpreted based on the
NNMs of the underlying conservative system. This issue deserves more attention and will be investigated in further studies.
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[29] M. Géradin, D. Rixen, Mechanical Vibrations: Theory and Application to Structural Dynamics, Wiley, Chichester, 1994.


	Modal testing of nonlinear vibrating structures based on nonlinear normal modes: Experimental demonstration
	Introduction
	Nonlinear normal modes (NNMs)
	Framework and definition
	Numerical algorithm for NNM computation

	Experimental methodology for NNM identification
	NNM force appropriation
	Indicator for NNM force appropriation
	Experimental realization of NNM force appropriation

	NNM free decay identification

	Experimental set-up
	Description of the experimental fixture
	Preliminary experimental characterization
	Nonlinear characterization
	Modal analysis of the underlying linear structure


	Experimental demonstration of NNM identification
	Experimental extraction of the first NNM
	NNM force appropriation using stepped sine excitation
	NNM free decay identification

	Experimental extraction of the second NNM
	NNM force appropriation using stepped sine excitation
	NNM free decay identification


	Finite element modeling and experimental validation
	Theoretical model of the test structure
	Finite element model of the underlying linear structure
	Identification of nonlinearity

	Comparison between experimental and theoretical NNMs
	Reconstructed frequency-energy plot (FEP)

	Conclusion and future work
	References




