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Abstract. In [8], P. Lecomte conjectured the existence of a natural
and projectively equivariant quantization. In [1], M. Bordemann proved
this existence using the framework of Thomas-Whitehead connections.
In [9], we gave a new proof of the same theorem thanks to the Cartan
connections. After these works, there was no explicit formula for the
quantization. In this paper, we give this formula using the formula in
terms of Cartan connections given in [9]. This explicit formula consti-
tutes the generalization to any order of the formulae at second and third
orders soon published by Bouarroudj in [2] and [3].
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1. Introduction

A quantization can be defined as a linear bijection from the space S(M) of
symmetric contravariant tensor fields on a manifold M (also called the space
of Symbols) to the space D 1

2
(M) of differential operators acting between

half-densities.
It is known that there is no natural quantization procedure. In other

words, the spaces of symbols and of differential operators are not isomorphic
as representations of Diff(M).

The idea of equivariant quantization, introduced by P. Lecomte and V.
Ovsienko in [7] is to reduce the group of local diffeomorphisms in the fol-
lowing way.

They considered the case of the projective group PGL(m + 1,R) act-
ing locally on the manifold M = Rm by linear fractional transformations.
They showed that the spaces of symbols and of differential operators are
canonically isomorphic as representations of PGL(m + 1,R) (or its Lie al-
gebra sl(m+ 1,R)). In other words, they showed that there exists a unique
projectively equivariant quantization. In [5], the authors generalized this re-
sult to the spaces Dλµ(Rm) of differential operators acting between λ- and
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µ-densities and to their associated graded spaces Sδ. They showed the ex-
istence and uniqueness of a projectively equivariant quantization, provided
the shift value δ = µ− λ does not belong to a set of critical values.

The problem of the sl(m + 1,R)-equivariant quantization on Rm has a
counterpart on an arbitrary manifold M . In [8], P. Lecomte conjectured
the existence of a quantization procedure depending on a torsion-free con-
nection, that would be natural (in all arguments) and that would be left
invariant by a projective change of connection.

After the proof of the existence of such a Natural and equivariant quanti-
zation given by M. Bordemann in [1], we analysed in [9] the problem of this
existence using Cartan connections. We obtained an explicit formula for the
quantization map in terms of the normal Cartan connection associated to a
projective equivalence class of torsion free-linear connections. This formula
is nothing but the formula for the flat case given in [5] up to replacements
of the partial derivatives by the invariant differentiation.

The goal of this paper is to obtain an explicit formula on M for the natural
and projectively equivariant quantization. In order to do this, we develop
the operators ∇ωl and Divω

l
intervening in the formula given in [9] in terms

of operators on M . This task can be realized using tools exposed in [4].
The paper is organized as follows. In the first section, we recall the

fundamental notions necessary to understand the article. In the second
part, we calculate the deformation tensor, the most important ingredient
intervening in the developments of ∇ωl and Divω

l
. In the third section, we

give an algorithm that allows to compute these developments thanks to a
general algorithm given in [4]. Finally, in the last part, we calculate the
explicit developments of ∇ωl and Divω

l
and we derive the explicit formula.

We show that this formula generalizes the formulae at second and third
orders soon published by Bouarroudj in [2] and [3].

2. Fundamental tools

For the sake of completeness, we briefly recall in this section the main
notions and results of [9]. Throughout this note, we denote by M a smooth,
Hausdorff and second countable manifold of dimension m.

2.1. Tensor densities. The vector bundle of tensor densities Fλ(M)→M
is a line bundle associated to the linear frame bundle :

Fλ(M) = P 1M ×ρ ∆λ(Rm),

where the representation ρ of the group GL(m,R) on the one-dimensional
vector space ∆λ(Rm) is given by

ρ(A)e = |detA|−λe, ∀A ∈ GL(m,R), ∀e ∈ ∆λ(Rm).

As usual, we denote by Fλ(M) the space of smooth sections of this bundle.
This is the space C∞(P 1M,∆λ(Rm))GL(m,R) of functions f such that

f(uA) = ρ(A−1)f(u) ∀u ∈ P 1M, ∀A ∈ GL(m,R).
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2.2. Differential operators and symbols. We denote by Dλ,µ(M) the
space of differential operators from Fλ(M) to Fµ(M). The space Dλ,µ is
filtered by the order of differential operators. We denote by Dkλ,µ the space
of differential operators of order at most k. The space of symbols is then the
associated graded space of Dλ,µ.

We denote by Slδ(Rm) the vector space SlRm⊗∆δ(Rm). There is a natural
representation ρ of GL(m,R) on this space (the representation of GL(m,R)
on symmetric tensors is the natural one). We then denote by Slδ(M) → M
the vector bundle

P 1M ×ρ Slδ(Rm)→M,

and by S lδ(M) the space of smooth sections of Slδ(M) → M , that is, the
space C∞(P 1M,Slδ(Rm))GL(m,R).

Then if δ = µ − λ the principal symbol operator σ : Dlλ,µ(M) → S lδ(M)
commutes with the action of diffeomorphisms and is a bijection from the
quotient space Dlλ,µ(M)/Dl−1

λ,µ (M) to S lδ(M).

2.3. Projective equivalence of connections. We denote by CM the space
of torsion-free linear connections on M . Two such connections are Projec-
tively equivalent if there exists a one-form α on M such that their associated
covariant derivatives ∇ and ∇′ fulfill the relation

∇′XY = ∇XY + α(X)Y + α(Y )X.

2.4. Problem setting. A quantization on M is a linear bijection QM from
the space of symbols Sδ(M) to the space of differential operators Dλ,µ(M)
such that

σ(QM (S)) = S, ∀S ∈ Skδ (M), ∀k ∈ N.
A natural quantization is a quantization which depends on a torsion-free
connection and commutes with the action of diffeomorphisms (see [9] for a
more precise definition).

A quantizationQM is projectively equivariant if one hasQM (∇) = QM (∇′)
whenever ∇ and ∇′ are projectively equivalent torsion-free linear connec-
tions on M .

2.5. Projective structures and Cartan projective connections. These
tools were presented in detail in [9, Section 3]. We give here the most im-
portant ones for this paper to be self-contained.

We consider the group G = PGL(m+1,R). We denote by H the subgroup

H = {
(
A 0
ξ a

)
: A ∈ GL(m,R), ξ ∈ Rm∗, a 6= 0}/R0Id. (1)

The group H is the semi-direct product G0 oG1, where G0 is isomorphic to
GL(m,R) and G1 is isomorphic to Rm∗. The Lie algebra associated to H is
g0 ⊕ g1.

It is well-known that H can be seen as a subgroup of the group of 2-jets
G2
m.
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A Projective structure on M is then a reduction of the second order frame
bundle P 2M to the group H.
The following result ([6, p. 147]) is the starting point of our method :

Proposition 1 (Kobayashi-Nagano). There is a natural one to one cor-
respondence between the projective equivalence classes of torsion-free linear
connections on M and the projective structures on M .

We now recall the definition of a projective Cartan connection :

Definition 1. Let P → M be a principal H-bundle. A projective Cartan
connection on P is a sl(m+ 1,R)- valued 1-form ω such that

• There holds R∗aω = Ad(a−1)ω, ∀a ∈ H,
• One has ω(k∗) = k ∀k ∈ h = g0 ⊕ g1,
• For all u ∈ P , ωu : TuP → sl(m+ 1,R) is a linear bijection.

In general, if ω is a Cartan connection defined on a H-principal bundle
P , then its curvature Ω is defined as usual by

Ω = dω +
1
2

[ω, ω]. (2)

We can define from Ω a function κ ∈ C∞(P, g∗−1 ⊗ g∗−1 ⊗ g) by :

κ(u)(X,Y ) := Ω(u)(ω−1(X), ω−1(Y )).

The Normal Cartan connection has the following property (see [6, p. 136]):∑
i

κijil = 0 ∀j,∀l.

Now, the following result ([6, p. 135]) gives the relationship between
projective structures and Cartan connections :

Proposition 2. A unique normal Cartan projective connection is associated
to every projective structure P . This association is natural.

The connection associated to a projective structure P is called the normal
projective connection of the projective structure.

2.6. Lift of equivariant functions. If (V, ρ) is a representation of GL(m,R),
then we can define from it a representation (V, ρ′) of H (see [9] section 3).
If P is a projective structure on M , the natural projection P 2M → P 1M
induces a projection p : P → P 1M and we have a well-known result:

Proposition 3. If (V, ρ) is a representation of GL(m,R), then the map

p∗ : C∞(P 1M,V )→ C∞(P, V ) : f 7→ f ◦ p
defines a bijection from C∞(P 1M,V )GL(m,R) to C∞(P, V )H .

Subsequently, we will use the representation ρ′∗ of the Lie algebra of H
on V . If we recall that this algebra is isomorphic to gl(m,R)⊕Rm∗ then we
have

ρ′∗(A, ξ) = ρ∗(A), ∀A ∈ gl(m,R), ξ ∈ Rm∗. (3)
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Recall that if f ∈ C∞(P, V )H then one has

Lh∗f(u)+ρ′∗(h)f(u) = 0, ∀h ∈ gl(m,R)⊕Rm∗ ⊂ sl(m+1,R),∀u ∈ P. (4)

2.7. The first explicit formula. First, we give the definitions of operators
used subsequently :

Definition 2. Let (V, ρ) be a representation of H. If f ∈ C∞(P, V ), then
∇ωkf ∈ C∞(P,⊗kRm∗ ⊗ V ) is defined by

∇ωkf(u)(X1, . . . , Xk) = Lω−1(Xk) ◦ . . . ◦ Lω−1(X1)f(u).

If we symmetrize this operation, we obtain the

Definition 3. If f ∈ C∞(P, V ), then ∇ωks f ∈ C∞(P, SkRm∗⊗V ) is defined
by :

∇ωks f(u)(X1, . . . , Xk) =
1
k!

∑
ν∈Sk

∇ωkf(u)(Xν1 , . . . , Xνk).

If (e1, . . . , em) is the canonical basis of Rm and if (ε1, . . . , εm) is the dual
basis corresponding in Rm∗, the divergence operator is defined then by :

Divω : C∞(P, Skδ (Rm))→ C∞(P, Sk−1
δ (Rm)) : S 7→

m∑
j=1

∇ωejS(εj).

If γ ∈ C∞(P 1M,∆λ(Rm)⊗SlRm∗), one defines the symmetrized covariant
derivative of γ, ∇sγ ∈ C∞(P 1M,∆λ(Rm)⊗ Sl+1Rm∗), by :

(∇sγ)(X1, . . . , Xl+1) =
1

(l + 1)!

∑
ν

(∇Xν(1)γ)(Xν(2), . . . , Xν(l+1)).

Recall now the definition of the numbers γ2k−l :

γ2k−l =
m+ 2k − l − (m+ 1)δ

m+ 1
.

A value of δ is critical if there are k, l ∈ N such that 1 ≤ l ≤ k and γ2k−l = 0.
Finally, we can recall the formula giving the natural and projectively

equivariant quantization in terms of the normal Cartan connection (see [9],
theorem 11) :

Theorem 4. If δ is not critical, then the collection of maps
QM : CM × Sδ(M)→ Dλ,µ(M) defined by

QM (∇, S)(f) = p∗
−1

(
k∑
l=0

Ck,l〈Divω
l
p∗S,∇ωk−ls p∗f〉), ∀S ∈ Skδ (M) (5)

defines a projectively invariant natural quantization if

Ck,l =
(λ+ k−1

m+1) · · · (λ+ k−l
m+1)

γ2k−1 · · · γ2k−l

(
k
l

)
,∀l ≥ 1, Ck,0 = 1.
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3. The deformation tensor

An Ehresmann connection γ on P 1M belonging to a projective struc-
ture P induces a GL(m,R)-equivariant section σ of P → P 1M (see [6]
page 147). This correspondence establishes a bijection between the set of
the connections belonging to the projective structure P and the set of the
GL(m,R)-equivariant sections of P → P 1M .

If σ is the section corresponding to a connection γ, one can define a map
τ : P → g1 in the following way :

u = σ(p(u)). exp(τ(u)).

If γ is a connection on P 1M corresponding to a section σ and if ω is the
normal Cartan connection corresponding to the projective class of γ, one
has the following result (see [4] page 43) :

Proposition 5. There is a unique Cartan connection γ̃ = ω−1 ⊕ ω0 ⊕ γ̃1

such as γ̃1|(Tσ(TP 1M)) = 0.

This Cartan connection is called the Cartan connection induced by γ.

The normal Cartan connection ω and the Cartan connection γ̃ induced
by γ differ only by their components in g1. Moreover, as the difference ω− γ̃
vanishes on vertical vector fields, there is a function Γ ∈ C∞(P, g∗−1 ⊗ g1)
such as

ω = γ̃ − Γ ◦ ω−1.

This function is H-equivariant and represents then a tensor of type
(

0
2

)
on M ; it is called the deformation tensor (see [4] page 45). This function
has the following property (see [4] lemma 3.10) :

(κ̃0 − κ0)(u)(X,Y ) = [X,Γ(u).Y ] + [Γ(u).X, Y ] (6)

if u ∈ P , X,Y ∈ g−1 and if κ̃0 and κ0 are the functions induced respec-
tively by the curvatures of γ̃ and of ω.

One can compute the deformation tensor in the projective case exactly
in the same way as it is calculated in the conformal case at page 63 of [4].
First we fix a basis ei in g−1, eij in g0, εi in g1. We have then

Γ(u)(ei) =
∑
j

Γ(u)jiεj ,

κ0(u)(ei, ej) =
∑
k,l

κ0(u)klije
l
k

and
κ̃0(u)(ei, ej) =

∑
k,l

κ̃0(u)klije
l
k.
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One obtains then using the equality (6) the following relations :

(κ0 − κ̃0)lklj = Γjk −mΓkj ; (7)

(κ0 − κ̃0)kkij = (m+ 1)(Γji − Γij). (8)

On one hand, the functions (κ0)lklj and (κ0)kkij vanish by normality of
ω. On the other hand, the functions (κ̃0)klij are the components of the
equivariant function on P that represents the curvature tensor corresponding
to the connection γ. A straightforward computation allows then to obtain
the expression of the deformation tensor from the relations (7) and (8) :

Γjk =
Rickj
1−m

+
m trRjk

(m+ 1)(m− 1)
, (9)

where Ric and trR represent the equivariant functions on P corresponding
respectively to the Ricci tensor and to the trace of the curvature.

4. Developments of ∇ωl and Divω
l

In order to obtain an explicit formula for the quantization, we need to
know the developments of the operators ∇ωl and Divω

l
in terms of operators

on M . We first recall the developments of [4].
Let γ be an Ehresmann connection on P 1M corresponding to a covariant

derivative ∇ and belonging to a projective structure P . We denote by ω the
normal Cartan connection on P .

Let (V, ρ) be a representation of GL(m,R) inducing a representation
(V, ρ∗) of gl(m,R). If we denote by ρ

(l)
∗ the canonical representation on

⊗lg∗−1 ⊗ V and if s ∈ C∞(P 1M,V )GL(m,R), then F ls := ∇ωl(p∗s)− p∗(∇ls)
is given by the following induction :

F 0s(u) = 0

F ls(u)(X1, . . . , Xl) = ρ
(l−1)
∗ ([Xl, τ(u)])(F l−1s(u))(X1, . . . , Xl−1)

+Sτ (F l−1s(u))(X1, . . . , Xl−1)

+S∇(F l−1s(u))(X1, . . . , Xl−1)

+SΓ(F l−1s(u))(X1, . . . , Xl−1)

+ρ(l−1)
∗ ([Xl, τ(u)])(p∗(∇l−1s)(u))(X1, . . . , Xl−1).

This expression expands into a sum of terms of the form

aρ
(t1)
∗ (β1) . . . ρ(ti)

∗ (βi)p∗∇js
where a is a scalar coefficient, the βl are iterated brackets involving some
arguments Xl, the iterated invariant differentials ∇rΓ evaluated on some
arguments Xl, and τ . Exactly the first tj arguments X1, . . . , Xtj are evalu-

ated after the action of ρ(tj)
∗ (βj), the other ones appearing on the right are
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evaluated before. The individual transformations in Sτ , S∇ and SΓ act as
follows :

(1) The action of Sτ replaces each summand aρ
(t1)
∗ (β1) . . . ρ(ti)

∗ (βi)p∗∇j
by a sum with just one term for each occurrence of τ where this τ
is replaced by [τ, [τ,Xl]] and the coefficient a is multiplied by −1

2 .
(2) The transformation S∇ replaces each summand in F l−1 by a sum

with just one term for each occurrence of Γ and its differentials,
where these arguments are replaced by their covariant derivatives
∇Xl , and with one additional term where∇js is replaced by∇Xl(∇js).

(3) The transformation SΓ replaces each summand by a sum with just
one term for each occurrence of τ where this τ is replaced by Γ(u).Xl.

In fact, this algorithm becomes easily linear in the following way :

Proposition 6. The development of ∇ωl(p∗s)(X1, . . . , Xl) is obtained as
follows :

∇ωl(p∗s)(X1, . . . , Xl) = ρ
(l−1)
∗ ([Xl, τ ])(∇ωl−1

(p∗s))(X1, . . . , Xl−1)

+Sτ (∇ωl−1
(p∗s))(X1, . . . , Xl−1)

+S∇(∇ωl−1
(p∗s))(X1, . . . , Xl−1)

+SΓ(∇ωl−1
(p∗s))(X1, . . . , Xl−1).

Proposition 7. If f ∈ C∞(P 1M,∆λ(Rm))GL(m,R), then ∇ωl(p∗f)(X, . . . ,X)
is a linear combination of terms of the form

(⊗n−1τ ⊗ p∗(⊗nl−2∇l−2Γ⊗ . . .⊗⊗n0Γ⊗∇qf))(X, . . . ,X).

If we denote by T (n−1, . . . , nl−2, q) such a term, then (∇ωT (n−1, . . . , nl−2, q))(X)
is equal to

(−λ(m+ 1)− 2l + n−1)T (n−1 + 1, . . . , nl−2, q) + T (n−1, . . . , nl−2, q + 1)

+
l−2∑
j=−1

njT (n−1, . . . , nj − 1, nj+1 + 1, . . . , nl−2, q).

Proof. One sees indeed easily that the application of the first part of the
algorithm gives

(−λ(m+ 1)− 2l)T (n−1 + 1, . . . , nl−2, q).

The second part gives

n−1T (n−1 + 1, . . . , nl−2, q).

The third part contributes to

T (n−1, . . . , nl−2, q + 1) +
l−2∑
j=0

njT (n−1, . . . , nj − 1, nj+1 + 1, . . . , nl−2, q).
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The fourth gives

n−1T (n−1 − 1, n0 + 1, . . . , nl−2, q).

�

From now, we will denote by r the following multiple of the tensor Ric :

r(X,Y ) :=
1

2(1−m)
(Ric(X,Y ) + Ric(Y,X)).

One deduces easily from the proposition 7 the following corollary :

Proposition 8. If f ∈ C∞(P 1M,∆λ(Rm))GL(m,R), ∇ω
l

s (p∗f) is a linear
combination of terms of the form

τn−1 ∨ p∗((∇l−2
s r)nl−2 ∨ . . . ∨ rn0 ∨∇qsf).

If we denote by T (n−1, . . . , nl−2, q) such a term, then ∇ωT (n−1, . . . , nl−2, q)
is equal to

(−λ(m+ 1)− 2l + n−1)T (n−1 + 1, . . . , nl−2, q) + T (n−1, . . . , nl−2, q + 1)

+
l−2∑
j=−1

njT (n−1, . . . , nj − 1, nj+1 + 1, . . . , nl−2, q).

Proof. First we remark that the symmetric part of Γ is reduced to r by
antisymmetry of the tensor trR. It suffices then to remark that if
∇ωl(p∗f)(X, . . . ,X) is equal to a linear combination of terms of the form

(⊗n−1τ ⊗ p∗(⊗nl−2∇l−2Γ⊗ . . .⊗⊗n0Γ⊗∇qf))(X, . . . ,X),

then ∇ωls (p∗f) is equal to the corresponding linear combination of the terms
of the form

τn−1 ∨ p∗((∇l−2
s r)nl−2 ∨ . . . ∨ rn0 ∨∇qsf).

Indeed, the two last tensors are then equal because they are both symmetric
and that they are equal when they are evaluated on X l. �

Remark that the action of the algorithm on the generic term of the de-
velopment of ∇ωls (p∗f) can be summarized. Indeed, this action gives first

(−λ(m+ 1)− 2l + n−1)T (n−1 + 1, . . . , nl−2, q).

It gives next
n−1T (n−1 − 1, n0 + 1, . . . , nl−2, q).

Finally, it makes act the covariant derivative ∇s on

(∇l−2
s r)nl−2 ∨ . . . ∨ rn0 ∨∇qsf.
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Proposition 9. If S ∈ C∞(P 1M,∆δRm⊗SkRm)GL(m,R), then Divω
l
(p∗S)

is a linear combination of terms of the form

〈τn−1 ∨ p∗((∇k−2
s r)nk−2 ∨ . . . ∨ rn0), p∗(DivqS)〉.

If we denote by T (n−1, . . . , nl−2, q) such a term, then DivωT (n−1, . . . , nl−2, q)
is equal to

(γ2(k−l)−1(m+ 1) + n−1)T (n−1 + 1, . . . , nl−2, q) + T (n−1, . . . , nl−2, q + 1)

+
l−2∑
j=−1

njT (n−1, . . . , nj − 1, nj+1 + 1, . . . , nl−2, q).

Proof. We have to compute

(∇ωl+1
(p∗S)(ei1 , . . . , eil+1

))(εi1 , . . . , εil+1).

As the first part of the development of

∇ωl+1
(p∗S)(ei1 , . . . , eil+1

)

according to the algorithm is

(ρ(l)
∗ ([eil+1

, τ(u)])∇ωl(p∗S)(u))(ei1 , . . . , eil),

we must first calculate

[(ρ(l)
∗ ([eil+1

, τ(u)])∇ωl(p∗S)(u))(ei1 , . . . , eil)](ε
i1 , . . . , εil+1).

This latter expression is equal to

[ρ∗([eil+1
, τ(u)])(∇ωl(p∗S)(u)(ei1 , . . . , eil))](ε

i1 , . . . , εil+1)

−
l∑

j=1

(∇ωl(p∗S)(u)(ei1 , . . . , [eil+1
, τ(u)]eij , . . . , eil))(ε

i1 , . . . , εil+1),

i.e. to

[ρ′∗([eil+1
, τ(u)])(∇ωl(p∗S)(u)(ei1 , . . . , eil)(ε

i1 , . . . , εil))](εil+1)

+
l∑

j=1

(∇ωl(p∗S)(u)(ei1 , . . . , eil))(ε
i1 , . . . , εij [eil+1

, τ(u)], . . . , εil+1)

−
l∑

j=1

(∇ωl(p∗S)(u)(ei1 , . . . , [eil+1
, τ(u)]eij , . . . , eil))(ε

i1 , . . . , εil+1),

if ρ′ denotes the action of GL(m,R) on symbols of degree k− l. The second
and third lines of the previous expression give respectively 2l and −2l terms
in which n−1 is replaced by n−1 + 1. Their contributions vanish. One sees
easily that the first line gives

γ2(k−l)−1(m+ 1)T (n−1 + 1, . . . , nl−2, q).

One can see that the substitutions intervening in the third last parts of
the algorithm “commute” with the valuations in εi1 , . . . , εil thanks to the
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general form of ∇ωl(p∗S)(X1, . . . , Xl). Indeed, one can show easily that
∇ωl(p∗S)(X1, . . . , Xl) is a linear combination of terms constructed in the
following way. One applies first p∗(∇qS) on some Xi and one contracts the
result several times with τ . One contracts then the obtained symbol with
tensors of degree 1 obtained contracting some p∗(∇tΓ) with t+ 1 arguments
Xi. One multiplies symmetrically the result by others Xi. Finally, one
multiplies the result by numbers obtained applying τ on some Xi and some
p∗(∇tΓ) on t+ 2 arguments Xi.

One sees then that the second part of the algorithm gives n−1 terms where
n−1 becomes n−1 + 1. One sees too that the third part contributes to

T (n−1, . . . , nl−2, q + 1) +
l−2∑
j=0

njT (n−1, . . . , nj − 1, nj+1 + 1, . . . , nl−2, q).

The fourth gives

n−1T (n−1 − 1, n0 + 1, . . . , nl−2, q).

�

Remark that the action of the algorithm on the generic term of the de-
velopment of Divω

l
(p∗S) can be summarized. Indeed, this action gives first

(γ2(k−l)−1(m+ 1) + n−1)T (n−1 + 1, . . . , nl−2, q).

It gives next
n−1T (n−1 − 1, n0 + 1, . . . , nl−2, q).

Finally, it makes act the divergence Div on

〈(∇k−2
s r)nk−2 ∨ . . . ∨ rn0 , DivqS〉.

5. The main result

Because of the previous propositions, the quantization can be written as
a linear combination of terms of the form

〈〈τn−1 ∨ p∗((∇k−2
s r)nk−2 ∨ . . . ∨ rn0), p∗(DivqS)〉, p∗(∇lsf)〉.

In this expression, it suffices to consider the terms for which n−1 = 0. Indeed,
suppose that the expression

k∑
j=0

〈aj , τ j〉 (10)

in which the functions aj are H-equivariant is H-equivariant. First note
that Lh∗τ = h for all h ∈ g1 (see [4], page 48). The fact that the application
of Lh∗ to (10) gives 0 for all h ∈ g1 implies that

k∑
j=1

〈jaj , τ j−1〉
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is equal to zero, hence H-equivariant. Repeating the process, one finds
finally that ak = 0. One deduces then progressively that the functions aj
are equal to zero for j equal to 1, . . . , k.

In the sequel, we will need two operators that we will call T1 and T2.

If T is a tensor of type
(

0
j

)
with values in the λ-densities, then

T1T = (−λ(m+ 1)− j)(j + 1)r ∨ T.

If S is a symbol of degree j, then

T2S = ((m+ 1)γ2k−1 − k + j)(k − j + 1)i(r)S.

The following results give the explicit developments of ∇ωls (p∗f) and of
Divω

l
(p∗S) :

Proposition 10. The term of degree t in τ in the development of ∇ωls (p∗f)
is equal to(

l
t

) t∏
j=1

(−λ(m+ 1)− l + j)p∗(πl−t(
l−t∑
j=0

(∇s + T1)j)f),

where πl−t denotes the projection on the operators of degree l− t (the degree
of ∇s is 1 whereas the degree of T1 is 2). We set

∏t
j=1(−λ(m+ 1)− l + j)

equal to 1 if t = 0.

Proof. In order to simplify the notations, denote by β the number −λ(m+1).
The formula is true if l and t are equal to 0. Suppose that the formula is
satisfied for all t until the order l−1. If l− t ≥ 2 and if t ≥ 2, then the term
of degree t in τ at the order l is equal using the induction procedure to :

(t+ 1)
(
l − 1
t+ 1

) t+1∏
j=1

(β − l + 1 + j)p∗(r ∨ πl−t−2(
l−t−2∑
j=0

(∇s + T1)j)f)

+
(
l − 1
t

) t∏
j=1

(β − l + 1 + j)p∗(∇s(πl−t−1(
l−t−1∑
j=0

(∇s + T1)j))f)

+
(
l − 1
t− 1

)
(
t−1∏
j=1

(β − l + 1 + j))(β − 2l + t+ 1)

p∗(πl−t(
l−t∑
j=0

(∇s + T1)j)f).

Note that

(β − l + t+ 2)(l − t− 1)r ∨ πl−t−2(
l−t−2∑
j=0

(∇s + T1)j)
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is equal to

πl−t(T1(
l−t−2∑
j=0

(∇s + T1)j)).

The sum of the three terms above is then equal to a multiple of

p∗(πl−t(
l−t∑
j=0

(∇s + T1)j)f),

this multiple being equal to
t∏

j=2

(β − l + j)(
(
l − 1
t

)
(β − l + t+ 1) +

(
l − 1
t− 1

)
(β − 2l + t+ 1)),

i.e. to
t∏

j=2

(β − l + j)

((β − l + 1)(
(
l − 1
t

)
+
(
l − 1
t− 1

)
) + t

(
l − 1
t

)
+ (t− l)

(
l − 1
t− 1

)
).

We conclude using the formula of the Pascal’s triangle.

We deal with the cases l − t ≥ 2 & t < 2, l − t < 2 & t ≥ 2 and
l − t < 2 & t < 2 in a same way. �

Proposition 11. The term of degree t in τ in the development of Divω
l
(p∗S)

is equal to(
l
t

) t∏
j=1

(γ2k−1(m+ 1)− l + j)p∗(πt−l(
l−t∑
j=0

(Div + T2)j)S),

where πt−l denotes the projection on the operators of degree t− l (the degree
of Div is −1 whereas the degree of T2 is −2). We set the product∏t
j=1(γ2k−1(m+ 1)− l + j) equal to 1 if t = 0.

Proof. The proof is completely similar to the one of the previous proposition.
�

We can remark that the formula of the previous proposition is very similar
to the equation (6.15) of [1], p.28, this equation giving the tensors intervening
in the lift of the symbol S.

We can now write the explicit formula giving the natural projectively
equivariant quantization of [9] :

Theorem 12. The quantization QM of [9] is given by the following
formula :

QM (∇, S)(f) =
k∑
l=0

Ck,l〈πl(
l∑

j=0

(Div + T2)j)S, πk−l(
k−l∑
j=0

(∇s + T1)j)f〉.
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One can easily derive from this formula the formula at the third order
given by Bouarroudj in [3]. Indeed, if we denote by D, T , ∂T the operators
∇s, r∨ and (∇sr)∨ (resp. Div, i(r) and i(∇sr)) and if we denote by β the
number −λ(m+ 1) (resp. γ5(m+ 1)), one obtains :

π1(
1∑
j=0

(D + T )j) = D, π2(
2∑
j=0

(D + T )j) = D2 + βT,

π3(
3∑
j=0

(D + T )j) = D3 + βDT + 2(β − 1)TD = D3 + (3β − 2)TD + β(∂T ).

We can then write the formula at the third order :

〈S, (∇3
s − (3(m+ 1)λ+ 2)r ∨∇s − λ(m+ 1)(∇sr))f〉

+C3,1〈DivS, (∇2
s − λ(m+ 1)r)f〉+ C3,2〈(Div2 + γ5(m+ 1)i(r))S,∇sf〉

+C3,3〈(Div3 + (3γ5(m+ 1)− 2)i(r)Div + γ5(m+ 1)i(∇sr))S, f〉.
At the second order, the formula is simply :

〈S, (∇2
s−λ(m+1)r)f〉+C2,1〈DivS,∇sf〉+C2,2〈(Div2 +γ3(m+1)i(r))S, f〉.
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