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1 Introduction

In two-sector growth models, constant returns to scale technology applying to both sectors
implies long-term growth when the reproducible factors grow at the same rate.1 The
structure of these models is generally the same. One of the two sectors produces the
physical capital and the other sector produces an investment good that varies across
models. For example, this good may be human capital as in Lucas (1988), the number
of varieties of products as in Romer (1990) or the quality of products as in Aghion and
Howitt (1992). Both sectors may use the same inputs according to technologies that may
be different.

This paper considers a two-sector model with overlapping generations, in which the in-
vestment goods are physical and human capital. The production of the final good and
the accumulation of human capital both uses quantities of physical and human capital as
inputs in proportions that are assumed to be exogenous as in Rebelo (1991). In standard
models, the returns to scale are constant in the output and the education sectors and the
growth rates of both sectors are equal. The level of the steady state income growth rate
depends on the fractions of physical and human capital allocated to both sectors and the
income shares of both investment goods.

More general specifications of the production functions for the final good and human
capital have been considered in the literature in order to study situations with increasing
returns. Mulligan and Sala-I-Martin (1993) study combinations of non-constant returns
to scale technologies in a neoclassical growth model that are consistent with balanced
growth in the long run. It is even possible to obtain increasing returns to scale in both
production functions if a non-reproducible factor such as land or raw labor (or a com-
bination of the two) is added to the output technology for example, and remain in a
competitive framework. This is the modeling approach we adopt in this paper and apply
it to a growth model with overlapping generations living for two periods. we consider
a general specification for production functions in the sense that we use Cobb-Douglas
functional forms in which the income shares of inputs may not sum up to one. Our ob-
jective is to identify the technological conditions yielding the highest income growth rate.
After determining the balanced growth condition along the stationary path, we compare
the growth rates yielded by the possible combinations of non-constant returns to scale
technologies that verify it, and give the conditions leading to the fastest steady state
growth rate.

The paper is organized as follows. Section 2 defines the model. Section 3 determines the
balanced growth condition. Section 4 studies the growth rates along the balanced growth
path. Section 5 presents an example derived from the Uzawa-Lucas model. Finally,
section 6 concludes.

1See Barro and Sala-I-Martin (1995) for a general treatment of two-sector growth models
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2 The model

The model is an extension of the overlapping generations model of Allais (1947) and
Diamond (1965). The economy is closed and populated by overlapping generations, each
living for three periods. The generation in period t is populated by Nt households and
the total population grows at a constant rate n. When young, the households work,
consume and invest a part of their income in both physical human capital which are
rented and used by the firms in the next period. When old, they consume the return of
their savings and die. In addition, each household owns a piece of land and a share of
the firms. They thus receive land rents and profits. As there is no land market, they
transmit their property rights over land to their children when they are old. As a result,
only the working generation owns land. Each household is owner of the firms and receives
interest on the capital rental. The firms buy inputs and produce the same single good
in perfectly competitive markets. The single final good produced in this economy can
either be consumed by the adult and the old generations or accumulated by the young
households as capital for future production. The only consumption good is measured in
units of final output.

2.1 Production technology

At each period the representative firm at the aggregate level produces a single good
under a technology with constant or non-constant (social) returns to scale. There are
three factors of production: physical capital, human capital and land. We assume that
the production function of the representative firm is given by

Yt = A(vKt)
α(uHt)

γLµ, 0 6 α, γ, µ, u, v 6 1 (1)

where Yt is the output, Kt is physical capital, Ht the stock of human capital used by the
representative firm at time t, and A > 0 is a technological parameter. Physical capital is
assumed to be fully depreciated after one period. L is the land endowment of this economy,
which is assumed to be fixed over time and to enter the aggregate production function.2

Production uses a fraction v of physical capital and a fraction u of human capital. The
parameters α, γ and µ are the income shares or productivity elasticities of physical capital,
human capital and land respectively. Each of these parameters are assumed to be strictly
positive and strictly smaller than one. The problem of the firm is to maximize profits.
At time t, the firm inherits the stock of physical capital from the previous period and
has to decide upon the quantity of effective labor to hire. Therefore, an interior solution
corresponding to a maximum of profits exists if the production function is concave, i.e.,
if the returns to scale with respect to the reproducible factors are non increasing:

α + γ 6 1 (2)

2The fixed factor could also be, for instance, raw labor or a combination of land and raw labor.
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2.2 Human capital

Human capital is assumed to be a productive and a reproducible asset, whose accumu-
lation results from a technology that may be different from the one applying to physical
capital. Thus human capital may be an imperfect substitute for consumption. Like phys-
ical capital, it is assumed that human capital is homogenous. The production function
for the human capital accumulation is defined by

Ht+1 = B[(1 − v)Kt]
θ[(1 − u)Ht]

η, 0 6 θ, η 6 1, (3)

where B > 0 is a technological parameter, θ and η are the elasticities of human capital
accumulation with respect to the past stocks of physical and human capital respectively.
The returns to scale of human capital accumulation are decreasing if θ+η < 1, constant if
θ+η = 1, and increasing if θ+η > 1. The stock of human capital at time t+1 is assumed
to depend on the inherited stocks of physical and human capital, which are imperfect
substitutes. If the fraction of the human capital input were higher than 1− u, then there
would be a positive externality in the sector of the human capital production. In other
words, social returns in the sector of human capital accumulation would be higher than
private returns. We assume that human capital fully depreciates after one period. If
θ < α, the sector of human capital accumulation is relatively intensive in human capital
while the output sector is relatively intensive in physical capital. This is the case in Uzawa
(1965) and Lucas (1988) where θ = 0 and α > 0. An interior solution for an optimal
choice of saving is obtained if the private marginal return to investment in physical capital
is decreasing, i.e.:

θ 6 1 (4)

2.3 Preferences

The representative consumer maximizes a logarithmic utility function of the type

U(ct, dt+1) = ln ct + β ln dt+1 (5)

subject to the following budget constraint,

ct + st = wt

uHt

Nt

+
πtL

Nt

dt+1 = Rt+1st

Utility depends on consumption when young ct and on consumption when old dt+1. The
parameter β > 0 is the psychological discount factor. The adults supply inelastically one
unit of labor and earn wtuHt, where wt is the wage per unit of human capital and Ht

is the aggregate level of human capital. They also receive πtL/Nt as land rent. Their
income is allocated to consumption and saving, st, for future consumption. When old
agents spend all their saving and accrued interest on consumption. Rt+1 is the interest
factor.
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2.4 Profits

The maximization problem of the representative firm is defined by

{Kt, Ht} = arg max {A(vKt)
α(uHt)

γLµ − wtuHt − RtvKt − πtL} .

The representative firm maximizes its profits subject to the constraint of technology.
Therefore, these profits depend on the technology. When returns to scale (social returns)
are non-constant, profits are different from zero. In this case, we assume that (positive or
negative) profits are redistributed to land owners. Therefore, πt will represent the remu-
neration of the land factor and also the residual share in output (externality). Depending
on the technology, the externality can be positive, negative or null.

2.5 Optimal behaviors

The representative consumer-producer chooses optimally ct, dt+1 and Ht. As a repre-
sentative firm, he hires the human capital input, uHt, according to (1). The human
capital accumulates according to (2). As a representative consumer, he chooses ct, dt+1

and therefore, st, according to (4). Since profits reach a maximum by the concavity of
the production function, the production factors are paid at their marginal productivities.
Hence, the first order necessary conditions of the firm’s program (1) are:

Rt = αA(vKt)
α−1(uHt)

γLµ, (6)

wt = γA(vKt)
α(uHt)

γ−1Lµ, (7)

The young adult land owners receive the land rent equal to the marginal productivity of
this factor and the residual income share:

πt = (1 − α − γ)A(vKt)
α(uHt)

γLµ−1. (8)

The marginal productivity of land, ∂Y
∂L

, is positive. As for the residual income share,
πt−

∂Y
∂L

, it is negative when returns to scale are increasing (α+γ+µ > 1), it is positive when
they are decreasing (α+ γ +µ < 1) and it is null when they are constant (α+ γ +µ = 1).
The first order necessary conditions of the consumer’s program (4) are:

st =
β

1 + β

(

wt

uHt

Nt

+
πtL

Nt

)

. (9)

Saving is thus a function of the labor income and land rent.
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2.6 Equilibrium

The equilibrium on the good market at period t is given by the national accounting
identity:

Yt = Ntct + It, (10)

where Ntct is the aggregate consumption at period t. The aggregate investment It is
equal to the future physical capital stock Kt+1 since the current capital stock Kt fully
depreciates at the end of the current period. The equilibrium on the capital market derives
from (10) and yields:

Kt+1 = Ntst, (11)

where Ntst is the aggregate saving at period t.

Equilibrium requires that physical capital receive the same return in both sectors. The
same condition must apply for human capital. This leads to the following relation between
u and v:

α

γ

(

u

1 − u

)

=
θ

η

(

v

1 − v

)

. (12)

It can be shown that dv
du

> 0.

The dynamics will be analyzed in terms of three stationary variables: the physical-human
capital ratio kt+1, the growth factor of human capital xt+1 = Ht+1/Ht, and the growth
factor of the economy gt+1 = Yt+1/Yt. Equilibrium requires a stationary physical-human
capital ratio that can be derived from the equilibrium interest factor (equation 6):

kt ≡
Kt

H
γ

1−α

t

. (13)

The marginal productivity of the production factors can be rewritten as:

Rt = αAvα−1uγkα−1
t Lµ

wt = γAvαuγ−1kα
t H

γ
1−α

−1

t Lµ

πt = (1 − α − γ)Avαuγkα
t H

γ
1−α

t Lµ−1
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An equilibrium can now be characterized as follows: given initial conditions {K0, H0}
satisfying (11), an equilibrium is a vector of positive quantities (Kt, Ht, ct, dt, st, πt)t>0

and prices (Rt, wt)t>0 such that equations (1) to (13) hold. Equations (1) to (13) can be
reduced to a system of three non-linear difference equations of the first order, describing
the dynamics of the physical-human capital ratio kt, the growth factor of human capital
accumulation xt and the growth factor of the economy gt:

kt+1 =
β(1 − α)AvαuγLµ

(1 + β)B
γ

1−α (1 − v)
θγ

1−α (1 − u)
ηγ

1−α

k
α− θγ

1−α

t H
γ

1−α(1−η− θγ
1−α)

t (14)

xt+1 = B(1 − v)θkθ
t (1 − u)ηH

−1+η+ θγ
1−α

t (15)

gt+1 =
kα

t+1

kα
t

(xt+1)
γ

1−α (16)

Equation (14) gives the dynamics of the physical-human capital ratio, equation (15) the
growth factor of the human capital stock and equation (16) the growth factor of the
economy. The growth rate of the income per capita is

ρt+1 =
yt+1

yt

=
1

1 + n

Yt+1

Yt

=
gt+1

1 + n
, (17)

where yt is the income per capita at period t.

In the rest of the paper, we want to analyze growth paths of this economy using different
combinations of technology applied to both sectors of production.

3 Balanced growth condition

Equation (16) gives the growth factor of the economy and allows us to derive the balanced
growth condition.

Proposition 1 3

A two-sector OLG model with a fixed factor, exhibiting non-constant returns to scale
technologies, admits a balanced growth path for conditional values.

Proof:

A balanced growth path exists if and only if the growth factor of the economy gt+1 of
equation (16) is equal to a constant, which is the case if the growth factor of human
capital xt+1 of equation (15) is also equal to a constant. This requires that

3This proposition is owed to Mulligan and Sala-I-Martin (1993).
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θγ + η(1 − α) − 1 + α

1 − α
= 0

i.e.,

γ

1 − α
=

1 − η

θ
. (18)

Equation (18) allows for three cases:

i) α + γ < 1 and θ + η > 1;

ii) α + γ = 1 and θ + η = 1;

iii) α + γ > 1 and θ + η < 1.

Case iii) is ruled out by assumption (2) since an interior solution for the optimizing firm
requires that private returns to reproducible factors (K and H) must be lower or equal to
one. Therefore, the balanced growth condition (18) allows for two possible growth regimes:
case 1), in which there are increasing returns to scale in production and human capital
accumulation; and case 2), in which production exhibit increasing returns to scale and
human capital accumulation exhibits constant returns to scale. Interestingly, condition
(18) can be interpreted in terms of growth rates of the reproducible factors. In fact, along
the balanced growth path,

Yt+1

Yt

=

(

Kt+1

Kt

)α (

Ht+1

Ht

)γ

.

Since the capital stock K is equal to aggregate saving, i.e. a fraction of the output Y ,
then along the balanced growth path, the income growth factor is equal to the growth
factor of the physical capital. This implies,

gt+1 = (xt+1)
γ

1−α . (19)

If γ < 1−α, i.e., if returns to scale to reproducible factors in the production function are
decreasing, the growth rate of human capital accumulation is higher than the growth rate
of the economy and lower otherwise.4 In the sector of the production of human capital,
the growth rate of the human capital stock must be constant along the balanced growth
path and yields

4It could be possible to have increasing returns to scale (social returns) to reproducible factors in the
production function (α + γ > 1) in a setting with knowledge spillovers that firms could not internal-
ize. Therefore, private returns to reproducible factors would be constant while social returns would be
increasing. In our setting, firms internalize all returns.
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(

Ht+1

Ht

)1−η

=

(

Kt+1

Kt

)θ

.

Since the capital stock K is equal to aggregate saving, i.e., a fraction of the output Y ,
then, along the balanced growth path,

gt+1 = (xt+1)
1−η

θ . (20)

Equality (20) is not necessarily the same as equality (19). The condition for a balanced
growth path (18) states that the growth rates of physical capital and human capital must
be identical in the output and human capital production sectors.

3.1 Two balanced growth regimes

The balanced growth condition (18) allows to consider two growth regimes for an economy
with land and human capital. The first corresponds to increasing returns to scale in both
production and human capital accumulation. In the second regime, returns to scale are
increasing in production and constant in human capital accumulation.

3.1.1 Regime 1: increasing returns to scale in production and human capital
accumulation

In this growth regime, we consider an OLG model with land exhibiting increasing returns
to scale in output and human capital technologies. The production technology of the firm
is defined by:

Yt = A(vKt)
α(uHt)

γLµ,

where the elasticities of the reproducible factors α + γ < 1 and µ > 0. However, the sum
of the factor elasticities α + γ + µ can be higher than 1, which yields increasing returns
to scale in production. Human capital accumulates according to

Ht+1 = B[(1 − v)Kt]
θ[(1 − u)Ht]

η, 0 < θ < 1.

where it is assumed that θ + η > 1. The returns to scale of human capital accumulation
are thus increasing. Equilibrium requires a stationary physical-human capital ratio:

kt ≡
Kt

H
γ

1−α

t

.

Marginal productivities of production factors are as follows:
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Rt = αAvαuγkα−1
t Lµ

wt = γAvαuγkα
t H

γ
1−α

−1

t Lµ

πt = (1 − α − γ)Avαuγkα
t H

γ
1−α

t Lµ−1

The variables Rt, wt, πt are the equilibrium factor prices per unit of inputs Kt, Ht and L.
The system of three non-linear difference equations (14)-(16) admits a balanced growth
path if condition (18) is satisfied. Then, the system can be rewritten as

kt+1 =
β(1 − α)AvαuγLµ

(1 + β)B
γ

1−α (1 − v)
θγ

1−α (1 − u)
ηγ

1−α

kα−1+η
t (21)

xt+1 = B(1 − v)θ(1 − u)ηkθ
t (22)

gt+1 =
kα

t+1

kα
t

(xt+1)
γ

1−α (23)

Along the balanced growth path, the stock of physical capital per effective unit of labor
and the growth factor of the economy are constant:

k̄1 =

(

β(1 − α)AvαuγLµ

(1 + β)B
γ

1−α (1 − v)
θγ

1−α (1 − u)
ηγ

1−α

)
1

2−α−η

(24)

x̄1 = [B(1 − v)θ(1 − u)η]1−
θγ

(1−α)(2−α−η)

(

β(1 − α)AvαuγLµ

1 + β

)
θ

2−α−η

(25)

ḡ1 = (x1)
γ

1−α (26)

3.1.2 Regime 2: Increasing returns to scale in production and constant re-
turns to scale in human capital accumulation

In regime 2, we consider an OLG model with land, in which the sum of the elasticities of
the reproducible factors in the production technology and in human capital accumulation
sum up to one. The production technology of the firm is defined by:

Yt = A(vKt)
α(uHt)

1−αLµ,

where the elasticities of the reproducible factors α + γ = 1 and µ > 0. However, the sum
of the factor elasticities, α + γ + µ > 1, yields increasing returns to scale in production.
The accumulation technology for human capital is

9



Ht+1 = B[(1 − v)Kt]
θ[(1 − u)Ht]

1−θ, 0 < θ < 1.

where η = 1 − θ. The returns to scale of human capital accumulation are thus constant.
Equilibrium requires a stationary physical-human capital ratio:

kt ≡
Kt

H
γ

1−α

t

=
Kt

Ht

.

Marginal productivities of production factors are as follows:

Rt = αAvαu1−αkα−1
t Lµ

wt = (1 − α)Avαu1−αkα
t Lµ

πt = 0

The marginal productivity of land is positive but exactly offset by the negative residual
income share. Therefore, the return to land is null. The system of two non-linear difference
equations (14)-(16) becomes:

kt+1 =
β(1 − α)Avαu1−αLµ

(1 + β)B(1 − v)θ(1 − u)1−θ
kα−θ

t (27)

xt+1 = B(1 − v)θ(1 − u)1−θkθ
t (28)

gt+1 =
kα

t+1

kα
t

xt+1 (29)

Equations (28) and (29) show that the system (27)-(29) admits a balanced growth path
when k reaches the stationary state. Since the elasticities of the reproducible factors
sum up to one and the returns to human capital accumulation are constant (θ = 1 − η),
per capita income grows linearly. Along the balanced growth path, the stock of physical
capital and the growth rate of the economy are positive constants:

k̄2 =

(

β(1 − α)Avαu1−αLµ

(1 + β)B(1 − v)θ(1 − u)1−θ

)
1

1−α+θ

(30)

x̄2 = [B(1 − v)θ(1 − u)1−θ]1−
θ

1−α+θ

(

β(1 − α)Avαu1−αLµ

1 + β

)
θ

1−α+θ

(31)

ḡ2 = x̄2 (32)
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4 Analysis of the growth rates along the balanced

growth path

The parameters u and v and the presence of a fixed factor L in the production function
(1) allow for a rich set of technological combinations in this two-sector OLG model. The
parameters u and v characterize exogenously the relative intensity in inputs of the two
sectors. When one of the sectors represents the production of human capital it is generally
considered that this sector is relatively more intensive in human capital than in physical
capital. In other contexts, it is plausible to assume either u 6 v or u > v. When a
fixed factor is included in the model, it is possible to have non-constant returns to scale
technologies. The set of technological combinations is defined by equation (12). The
objective is now to identify the technological combination generating the highest growth
rate along the balanced growth path in both growth regimes and then compare them.

4.1 Condition for the maximum growth rate

The growth rates ḡ1 and ḡ2 are functions of u, v, α, β, θ and η. The condition for the
highest rate is given by the following proposition:

Proposition 2 In a two-sector OLG model with a fixed factor, the maximum growth rate
along the balanced growth path is reached when u = 1 − η and v = α.

Proof: see Appendix A.

Since θ = 1 − η in growth regime 2, the condition for the maximum growth rate is u = θ
and v = α. All other values for u andv lead to lower growth rates.

4.2 A comparison of growth rates between growth regime 1 and
growth regime 2

Once we know the condition for the highest growth rate in regimes 1 and 2, we can
compare them.

Proposition 3 In a two-sector OLG model with a fixed factor, ḡ1, the growth rate of
regime 1 (increasing returns to scale in production and human capital accumulation), is
higher than ḡ2, the growth rate of regime 2 (increasing returns to scale in production and
constant returns to scale in human capital accumulation), if and only if

B1−αAθLθµ <

(

[(1 − α)θ(1 − φθ)]1−α(β(1 − α)αα)θ

1 + β

)(

φθ

1 − φθ

)φθ[2(1−α)−φθ]

(33)
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Proof: see Appendix B.

The difference between the levels of ḡ1 and ḡ2 ultimately depends on the level of the
technological parameters in the production function, A, in the human capital sector, B,
and on the level of the fixed factor L. The lower the levels of these parameters, the more
likely the growth rate of regime 1 is the highest. If we normalize these parameters to one,
then ḡ1 > ḡ2.

5 An Example : the Uzawa-Lucas model

Let us now assume that θ = 0, which implies that v = 1. This is the framework of
Uzawa (1965) and Lucas (1988), in which the accumulation of human capital does not
use physical capital as an input. Unlike Lucas (1988), we will further assume that there
is no externality in the production of human capital. The production function becomes

Yt = AKα
t (uHt)

γLµ, (34)

and human capital accumulates according to

Ht+1 = B[(1 − u)Ht]
η. (35)

The balance growth condition for this model is η = 1. The system (14)-(16) becomes

kt+1 =
β(1 − α)AuγLµ

(1 + β)B
γ

1−α (1 − u)
γ

1−α

kα
t (36)

xt+1 = B(1 − u)kθ
t (37)

gt+1 =
kα

t+1

kα
t

(xt+1)
γ

1−α , (38)

where γ < 1 − α or γ = 1 − α. The two possible growth rates are

ḡ1 = [B(1 − u)]
γ

1−α (39)

ḡ2 = [B(1 − u)] (40)

Without ambiguity, ḡ2 > ḡ1. This is not surprising as the returns to scale in the human
capital sector cannot be increasing.
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6 Conclusion

This paper provides the technological conditions for the highest income growth rate in an
OLG model in which the returns to scale may be non constant in both the output and the
education sectors. This condition may apply to situations where increasing returns are
compatible with perfect competition. Our result shows that many levels of steady state
growth rates are possible depending on the allocations of investment goods to both sectors
and their income shares. This may contribute to accounting for the growth differentials
observed across countries and why some grow faster than others.

This paper follows Rebelo (1991) by assuming constant fractions v and u of physical and
human capital allocated to the two sectors. It is nonetheless possible to endogenize u and
v by considering, for instance, parental or private funding of education. They are simply
particular applications of our general setup.

13



References

Aghion, Philippe and Peter Howitt. 1992. “A Model of Growth through Creative De-
struction.” Econometrica 60 (2): 323–351.

Allais, Maurice. 1947. Economie et intérêt. Paris: Imprimerie Nationale.

Barro, Robert and Xavier Sala-I-Martin. 1995. Economic Growth. McGraw-Hill.

Diamond, Peter A. 1965. “National Debt in a Neoclassical Growth Model.” American
Economic Review 55 (5): 1126–1150 (Dec).

Lucas, Robert. 1988. “On the Mechanics of Economic Development.” Journal of Mon-
etary Economics 22 (1): 3–42.

Mulligan, Casey B. and Xavier Sala-I-Martin. 1993. “Transitional Dynamics in Two-
Sector Models of Endogenous Growth.” Quarterly Journal of Economics 108 (3):
737–773 (August).

Rebelo, Sergio. 1991. “Long-Run Policy Analysis and Long-Run Growth.” Journal of
Political Economy 99 (3): 500–521 (June).

Romer, Paul M. 1990. “Endogenous Technical Change.” Journal of Political Economy
98 (5): S71–102 (October).

Uzawa, Hirofumi. 1965. “Optimal Technical Change in an Aggregative Model of Eco-
nomic Growth.” International Economic Review 6 (1): 18–31.

14



A Proof of Proposition 1

Let us use the growth rate of regime 1 to prove proposition 2 without loss of generality.
This growth rate is:

ḡ1 = [B(1 − v)θ(1 − u)η]
γ

2−α−η

(

β(1 − α)AvαuγLµ

1 + β

)
1−η

2−α−η

(41)

Let us define γ = φ(1 − α) and θ = 1−η

φ
, where φ is a strictly positive constant which is

strictly less than one in growth regime 1 and equal to one in growth regime 2. Then ḡ1 is
a function of u, v, α, and η. Thus,

ḡ1 = [B(1 − v)
1−η

φ (1 − u)η]
φ(1−α)
2−α−η

(

β(1 − α)Avαuφ(1−α)Lµ

1 + β

)

1−η
2−α−η

(42)

The growth rate ḡ1 reaches a local maximum if the three following conditions are met:

i) the first derivatives with respect to u and v are equal to zero evaluated at the critical
point;

ii) the difference between the square of the cross partial derivatives and the product of
the second partial derivatives evaluated at the critical point is negative;

iii) the second partial derivative with respect to u is negative.

i) The first derivative of ḡ1 with respect to u:

∂ḡ1

∂u
= −

ηφ(1 − α)

2 − α − η
(1 − u)

ηφ(1−α)
2−α−η

−1[B(1 − v)
1−η

φ ]
φ(1−α)
2−α−η

(

β(1 − α)Avαuφ(1−α)Lµ

1 + β

)

1−η
2−α−η

+
φ(1 − α)(1 − η)

2 − α − η
u

φ(1−α)(1−η)
2−α−η

−1[B(1 − v)
1−η

φ (1 − u)η]
φ(1−α)
2−α−η

(

β(1 − α)AvαLµ

1 + β

)
1−η

2−α−η

(43)

i.e.,

∂ḡ1

∂u
= [B(1 − v)

1−η
φ ]

φ(1−α)
2−α−η

(

β(1 − α)AvαLµ

1 + β

)
1−η

2−α−η

{

φ(1 − α)

2 − α − η
u

φ(1−α)(1−η)
2−α−η (1 − u)

ηφ(1−α)
2−α−η

}(

1 − η

u
−

η

1 − u

)

(44)
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∂ḡ1

∂u
= 0 if and only if u

1−u
= 1−η

η
.

The first derivative of ḡ1 with respect to v:

∂ḡ1

∂v
= −

(1 − α)(1 − η)

2 − α − η
(1 − v)

(1−α)(1−η)
2−α−η

−1[B(1 − u)η]
φ(1−α)
2−α−η

(

β(1 − α)Avαuφ(1−α)Lµ

1 + β

)

1−η
2−α−η

+
α(1 − η)

2 − α − η
v

α(1−η)
2−α−η

−1[B(1 − v)
1−η

φ (1 − u)η]
φ(1−α)
2−α−η

(

β(1 − α)Auφ(1−α)Lµ

1 + β

)

1−η
2−α−η

(45)

i.e.,

∂ḡ1

∂v
= [B(1 − u)η]

φ(1−α)
2−α−η

(

β(1 − α)Auφ(1−α)Lµ

1 + β

)

1−η
2−α−η

{

1 − η

2 − α − η
v

α(1−η)
2−α−η (1 − v)

(1−α)(1−η)
2−α−η

}(

α

v
−

1 − α

1 − v

)

(46)

∂ḡ1

∂v
= 0 if and only if v

1−v
= α

1−α
.

ii) The second derivative of ḡ1 with respect to u:

∂2ḡ1

∂u2
=

(

ηφ(1 − α)

2 − α − η
− 1

)(

ηφ(1 − α)

2 − α − η

)

(1 − u)
ηφ(1−α)
2−α−η

−2

[B(1 − v)
1−η

φ ]
φ(1−α)
2−α−η

(

β(1 − α)Avαuφ(1−α)Lµ

1 + β

)

1−η
2−α−η

+

(

φ(1 − α)(1 − η)

2 − α − η
− 1

)(

φ(1 − α)(1 − η)

2 − α − η

)

u
φ(1−α)(1−η)

2−α−η
−2

[B(1 − v)
1−η

φ (1 − u)η]
φ(1−α)
2−α−η

(

β(1 − α)AvαLµ

1 + β

)
1−η

2−α−η

(47)

i.e.,

∂2ḡ1

∂u2
= [B(1 − v)

1−η
φ ]

φ(1−α)
2−α−η

(

β(1 − α)AvαLµ

1 + β

)
1−η

2−α−η

{

φ(1 − α)

(2 − α − η)2
u

φ(1−α)(1−η)
2−α−η (1 − u)

ηφ(1−α)
2−α−η

}

(

(1 − η)[φ(1 − α)(1 − η) − 2 + α + η]

u2
+

η[φ(1 − α)η − 2 + α + η]

(1 − u)2

)

(48)
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i.e.,

∂2ḡ1

∂u2
= [B(1 − v)

1−η
φ ]

φ(1−α)
2−α−η

(

β(1 − α)AvαLµ

1 + β

)
1−η

2−α−η

{

φ(1 − α)

(2 − α − η)2
u

φ(1−α)(1−η)
2−α−η (1 − u)

ηφ(1−α)
2−α−η

}

(49)

(

(1 − η)[−(1 − α)(1 − η)(1 − φ) − (1 − αη)]

u2
+

η[−(1 − α)(1 − φη) − (1 − η)]

(1 − u)2

)

Clearly, ∂2ḡ1

∂u2 < 0.

The second derivative of ḡ1 with respect to v:

∂2ḡ1

∂v2
=

(

(1 − α)(1 − η)

2 − α − η
− 1

)(

(1 − α)(1 − η)

2 − α − η

)

(1 − v)
(1−α)(1−η)

2−α−η
−2

[B(1 − u)η]
φ(1−α)
2−α−η

(

β(1 − α)Avαuφ(1−α)Lµ

1 + β

)

1−η
2−α−η

+

(

α(1 − η)

2 − α − η
− 1

)(

α(1 − η)

2 − α − η

)

v
α(1−η)
2−α−η

−2

[B(1 − v)
1−η

φ (1 − u)η]
φ(1−α)
2−α−η

(

β(1 − α)Auφ(1−α)Lµ

1 + β

)

1−η
2−α−η

(50)

i.e.,

∂2ḡ1

∂v2
= [B(1 − u)η]

φ(1−α)
2−α−η

(

β(1 − α)Auφ(1−α)Lµ

1 + β

)

1−η
2−α−η

{

1 − η

(2 − α − η)2
v

α(1−η)
2−α−η (1 − v)

(1−α)(1−η)
2−α−η

}

(

α[α(1 − η) − 2 + α + η]

v2
+

(1 − α)[(1 − α)(1 − η) − 2 + α + η]

(1 − v)2

)

(51)

i.e.,

∂2ḡ1

∂v2
= [B(1 − u)η]

φ(1−α)
2−α−η

(

β(1 − α)Auφ(1−α)Lµ

1 + β

)

1−η
2−α−η

{

1 − η

(2 − α − η)2
v

α(1−η)
2−α−η (1 − v)

(1−α)(1−η)
2−α−η

}

(

α[−(1 − η)(1 − α) − (1 − α)]

v2
+

(1 − α)[−η(1 − α) − (1 − η)]

(1 − v)2

)

(52)
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Clearly, ∂2ḡ1

∂v2 < 0.

The cross partial derivatives:

∂2ḡ1

∂u∂v
= [B(1 − v)

1−η
φ ]

φ(1−α)
2−α−η

(

β(1 − α)AvαLµ

1 + β

)
1−η

2−α−η

{

φ(1 − α)

2 − α − η
u

φ(1−α)(1−η)
2−α−η (1 − u)

ηφ(1−α)
2−α−η

}(

1 − η

u
−

η

1 − u

)

(

1 − η

2 − α − η

)(

−(1 − α)

1 − v
+

α

v

)

(53)

If v = α the last term in parentheses is equal to 0 then ∂2ḡ1

∂u∂v
= 0

∂2ḡ1

∂v∂u
= [B(1 − u)η]

φ(1−α)
2−α−η

(

β(1 − α)Auφ(1−α)Lµ

1 + β

)

1−η
2−α−η

{

1 − η

(2 − α − η)2
v

α(1−η)
2−α−η (1 − v)

(1−α)(1−η)
2−α−η

}

(

α[−(1 − α)(2 − η)]

v2
+

(1 − α)[αη − 1]

(1 − v)2

)

(

φ(1 − α)

2 − α − η

) (

−η

1 − u
+

1 − η

u

)

(54)

If u = 1 − η the last term in parentheses is equal to 0 then ∂2ḡ1

∂v∂u
= 0.

Let us denote

r ≡
∂2ḡ1

∂u2
(1 − η, α) < 0 (55)

s ≡
∂2ḡ1

∂u∂v
(1 − η, α) = 0 (56)

t ≡
∂2ḡ1

∂u2
(1 − η, α) < 0 (57)

After our calculations, we can conclude that

s2 − rt < 0 (58)

iii) Finally, our computations lead to

r < 0 (59)

Therefore, the function ḡ1(u, v) admits a maximum on the domain [0,1] at the point (u, v)
where u = 1−η and v = α which verifies condition (12). For growth regime 2, as θ = 1−η,
the condition becomes u = θ and v = α.
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B Proof of Proposition 2

The growth rate of regime 1, ḡ3, evaluated at the maximum (u = 1 − η, v = α) is:

ḡ1 = [B(1 − α)θ(1 − φθ)1−φθ]
φ(1−α)
1−α−φθ

(

β(1 − α)Aαα(φθ)φ(1−α)Lµ

1 + β

)

φθ
1−α−φθ

, (60)

where φ = γ

1−α
= 1−η

θ
. The growth rate of regime 2, ḡ3, evaluated at the maximum

(u = θ, v = α) is:

ḡ2 = [B(1 − α)θ(1 − θ)1−θ]
(1−α)
1−α−θ

(

β(1 − α)Aααθ(1−α)Lµ

1 + β

)

θ
1−α−θ

. (61)

The difference between (60) and (61) is that ḡ1 is a function of φ. In fact, φ = 1 in ḡ2

while φ < 1 in ḡ1. To prove that ḡ1 > ḡ2, it suffices to show that the derivative of ḡ1 with
respect to φ is negative.

Let us apply the logarithm to (60):

ln(ḡ1) =
φ(1 − α)

1 − α − φθ
ln(B) +

φθ(1 − α)

1 − α − φθ
ln(1 − α) +

φ(1 − φθ)(1 − α)

1 − α − φθ
ln(1 − φθ)

+
φθ

1 − α − φθ
ln

(

β(1 − α)Aαα(φθ)φ(1−α)Lµ

1 + β

)

. (62)

The derivative of ln(ḡ1) with respect φ is:

d ln(ḡ1)

dφ
=

1 − α

(1 − α − φθ)2
{(1 − α) ln(B) + θ(1 − α) ln(1 − α)

+ (1 − α) ln(1 − φθ) + [φθ(2(1 − α) − φθ)]{ln(φθ) − ln(1 − φθ)}

+ θ ln(β(1 − α)AααLµ) − θ ln(1 + β)} (63)
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To study the sign of (63), we first study the sign of one of its term: [2(1−α)−φθ]{ln(φθ)−
ln(1 − φθ)}. We can show that:

• if φθ > 1
2

then [2(1 − α) − φθ] < 0 and {ln(φθ) − ln(1 − φθ)} > 0, and the product
is negative;

• if φθ < 1
2

then [2(1 − α) − φθ] > 0 and {ln(φθ) − ln(1 − φθ)} < 0, and the product
is negative;

• if φθ = 1
2

then {ln(φθ) − ln(1 − φθ)} = 0 and the product is null;

Therefore, the term [2(1 − α) − φθ]{ln(φθ) − ln(1 − φθ)} is negative or null.

Finally, we can conclude that the sign of (63) depends on the level of B,A and Lµ:

• if B1−αAθLθµ >
(

[(1−α)θ(1−φθ)]1−α(β(1−α)αα)θ

1+β

)(

φθ

1−φθ

)φθ[2(1−α)−φθ]

then d ln(ḡ1)
dφ

> 0.

Thus ḡ1 < ḡ2.

• if B1−αAθLθµ <
(

[(1−α)θ(1−φθ)]1−α(β(1−α)αα)θ

1+β

)(

φθ

1−φθ

)φθ[2(1−α)−φθ]

then d ln(ḡ1)
dφ

< 0.

Thus ḡ1 > ḡ2.
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