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Abstract  
 

Synthetic lamellar silica and hybrid lamellar silicas have been prepared by liquid crystal  templating, template extraction and 

silanization. The samples have been characterized by thermogravimetric analysis (TGA), carbon analysis, spectroscopy, X-Ray 

diffraction (XRD) and nitrogen adsorption. The XRD analyses have shown that the lamellar periodic stacking is preserved for all 

samples. The quantity and type of organic molecules at the silica surface have been evaluated by carbon analysis, TGA and 

spectroscopy. The covalent grafting of the solvent used for extraction of the initial surfactant has been highlighted by these 

analyses. The nitrogen adsorption analyses have revealed three categories of pores and two types of samples. The initial lamellar 

silica exhibits a very low specific surface area and plate-like type of pores. The second type of samples is made up of the hybrid 

samples and the initial substrate from whom the surfactant has been extracted. These samples show a significantly higher specific 

surface area with interlamellar spaces corresponding to narrow slit -like mesopores around 4 nm. The  nitrogen adsorption data 

analysis has highlighted the presence of micropores within the silica sheets. The difference of specific surface is due to pore 

blocking by the surfactant impeding the access to nitrogen into interlamellar spaces and by the silanes covering the pores once the 

surface modified. The presence of micro and mesopores combined to a high BET specific surface of 612 m²/g make these lamellar  

silicas interesting materials for catalysis applications. 

 

Keywords: hybrid, silica, lamellar, adsorption, porosity. 

Abreviations: TEOS : Tetraethoxysilane, XRD: X-Ray diffraction, GPTMS: 2-glycidoxypropyltrimethoxysilane, PEOTMS: 2-

[methoxy(polyethyleneoxy)propyl)]trimethoxysilane, NMR: Nuclear Magnetic Resonance, TGA: Thermogravimetric analysis, 

DSC: Differential Scanning Calorimetry 

1. Introduction 

Since the synthesis of first mesoporous molecular sieves by the scientist from Mobil Oil Research and Development [1], the 

synthesis of inorganic - organic hybrid materials with ordered nanostructure has attracted a lot of attention amongst material 

science and technology. These materials show indeed a strong potential for use as nanofillers and catalysts [2, 3]. Pores can be 

classified in three categories according to their size: micropores smaller than 2 nm, mesopores between 2 and 50 nm and 

macropores larger than 50 nm [4]. Since molecule adsorption is related to the pore size in heterogeneous catalysis, a lot of efforts 

have been made in the development of mesoporous solids as these can host larger molecules than the conventional microporous 

zeolites [1]. The presence of mesopores combined to micropores can also allow faster diffusion into micropores. In gas oil 

cracking activity, the presence of mesoporous region in microporous zeolites shows an increase in the catalysis performance [5]. 

Some layered lamellar materials, like natural clays, are interesting materials because they have pores in the high limits of 

microporosity together with mesopores formed by the arrangement of the layers. Such materials can have many applications in 

acid or redox catalysis [6-10]. Thanks to their surface silanols, it has also been shown that silica-based material can be converted 

into interesting catalysts used for ethylene polymerization [11]. We have shown in our previous study that liquid crystal 

templating can be used together with silanization to synthesize different organized lamellar hybrid silicas with interlayer distance 

in the order of 2 – 4 nm [12].  As layered material from which surface can be easily modified by reaction with their surface 

silanols, these layered silica can be of great interest in catalysis. The lamellar morphology, the platelet stacking organiza tion, the 

type and quantity of organic molecules between silica sheets and the type of bonding of these molecules has been already 

discussed for the different lamellar hybrid silica we synthesized [12]. In this article, nitrogen adsorption-desorption measurements 
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have been performed on those lamellar silicas in order to investigate surface and pore structure. The results are discussed a nd 

analysed following different models in order to determine the specific surface area, the pore size and the microporous and 

mesoporous properties of the materials. 

2. Experimental  

2.1. Synthesis 

The lamellar silica substrate is obtained by liquid crystal templating in acidic  solution according to the procedure and conditions 

previously described [13]. A mixture of dimethyldialkylammonium chloride (Arquad 2HT-75, from Akzonobel) is softly melted 

and then added under vigorous stirring to an HCl solution of concentration 1.8 mol/l at 50°C. The mixture is allowed to 

equilibrate at 50°C during one hour in order to reach a complete organization of the template molecules into an ordered lamellar 

mesophase. The precursor of the silica, tetraethylorthosilicate, is then added under stirring to the previous mixture. The 

Si:Surfactant ratio was adjusted to 8,9. The mixture is left to react at 50°C for 24 h. A solid phase is formed and preserves the 

symmetry of the surfactant mesophase used as template. The solid is filtered off, washed with de-ionised water and air-dried. In 

this study, the reactant mixture was prepared from 5,8 g of surfactant. This sample is further refer red to as ―As-Synth‖ silica. The 

modification of the As-Synth silica surface is achieved by silanization grafting-onto method. Isopropanol has been chosen as 

solvent for silanization to allow the extraction of the surfactant during the functionalization. The procedure and conditions were 

adapted from our previous study [12]. In the present study, we have worked with one gram of As-Synth silica and 100 mL of 

isopropanol.  We have used 90 and 21 mmol of silane 2-glycidoxypropyltrimethoxysilane (further referred to as ―GPTMS‖) and 2-

[methoxy(polyethyleneoxy)propyl)]trimethoxysilane (further referred to as ‖PEOTMS‖) respectively to prepare the silanized 

lamellar silicas that are further referred to as ―GPM‖ and ―PEO‖. The lamellar silica sample without surfactant is prepared by 

refluxing 1g of the As-Synth silica during 24h in 100 mL of isopropanol. This silica is further referred to as ―Surf-Free‖.  

         

2.2. Characterizations 

The X-ray diffraction analyses were performed in a Siemens 5000 diffractometer working with Cu Kα radiation and Ni filter. 

Uncertainties for the thickness of the tactoids calculated from Scherrer equation have been arbitrary rounded to 10 % of the 

thickness value. TGA and DSC were carried out in a Netzsch STA449C thermobalance. Around 15 mg of the sample were placed 

in a platinum crucible and heated at a rate of 10 °C/min up to 800 °C in a dynamic air atmosphere. Several measurements have 
been made for every sample to ensure the reproducibility of the analysis. Carbon analyses were performed with a LECO CS-200 

Carbon and Sulfur Analyzer. Samples were grinded in a mortar and two to three analyses were carried out by sample to ensure the 

reproducibility of the results. Uncertainties in Table 1 have been calculated in the following way. For a variable U function of three 

other variables (x,y,z), the uncertainties ΔU can be calculated using the following equation :   
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the derivative of U in respect to x and Δx the uncertainties on x. We have applied this general formula to calculate the 

uncertainties taking into account the uncertainty on the volume of silane added with a syringe ΔV, the uncertainty on the molecular 

weight of the silane PEOTMS (the number of ethyleneoxide units of this silane is comprised between 6 and 9 units, indicated by ABCR) 

and the uncertainty on the evaluation of the weight loss by TGA after silanization. The latter was arbitrary rounded off to 0.5 wt %. 
Nitrogen adsorption-desorption isotherms were analysed with a Tri-Star 3000 (Micromeritics Co.) in the whole partial pressure 

range at 77K. Samples were degassed at 120 °C during 20 hours before analysis. Uncertainties on the BET surface areas where 

estimated by the Tristar Software of the equipment. As similar values of specific surface are determined by the others methods, 

the BET uncertainties were taken as references for the uncertainties on specific surface determined with the other models. The 13C 

cross-polarization (CP) magic-angle spinning (MAS) and the 29Si MAS spectra were recorded with 4 mm zirconia rotors spinning 

at 7kHz on a Bruker Avance DSX 400WB spectrometer (B0 = 9.04 T) working at Larmor frequencies of 100.6 MHz and 79.5 

MHz respectively. The 13C and 29Si chemical shifts were referenced relative to the peaks of TMS. The 13CP NMR spectra were 

recorded under high-power proton decoupling (83 kHz) with a recycle delay time of 4 s and a contact time of 2 ms. Quantitative 
29Si MAS-NMR spectra were obtained by performing one-pulse experiments with a 90 pulse of 5.5 s. Quantitativity was checked 

by varying the recycle delay time and an optimal value was found at 480 s. Typically, 500 transients were used for NMR 

analyses. Infrared spectra were taken for 1 mg of the sample dispersed and pressed in a pellet with 200 mg of KBr. Analyses were 

performed with a Perkin Elmer Spectrum One apparatus.   
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3. Results 

3.1. Reaction scheme. 

The samples are prepared by liquid crystal templating and silanization, as illustrated on Fig.1. The As-Synth silica substrate 

obtained is made-up of dialkyldimethylammonium chloride molecules arranged in double layer between the silica sheets. The 

surfactant molecules are linked as ions pair (R4N+Cl-) to the surface silanols by hydrogen bonding. When the sample is silanized 

with GPTMS or PEOTMS silane, the surfactant is easily extracted and the silanes get covalently bonded to the surface silanols. 

When no silane is used and the As-Synth silica is refluxed in isopropanol, the surfactant gets simply extracted.  

 

3.2.  TGA DSC and carbon analyses 

 The TGA-DSC curves of the As-Synth, GPM and PEO hybrid silica are similar to the ones presented in our previous article. 

The TGA-DSC curve of the Surf-Free sample is shown on the Fig. 2. Like the silanized samples GPM and PEO, the Surf Free 

sample exhibits a sharp exothermic peak related to a weight loss above 200°C, characteristic of the combustion of an organic 

molecule.   

 The quantity of organic molecules Qorg of each sample is determined by means of the Equation 1 and elementary carbon 

analyses. The results are shown in Table 1.    

 

  

Equation 1 

Table 1. Determination of the quantity of organic content in the silica samples, determined by elementary analysis and by means of Equation 1. 

Sample 

code 

Carbon wt 

% 

Number of carbons per organic 

molecule 

Quantity of organic molecule / g of sample (mmol/g) 

As-Synth 39,9  0,5 34  1 0,98   0,03  

PEO 15,0  0,5 19  1,5 0,66   0,06 

GPM 12,3   0,4 6   0 1,7    0,06 

Surf-Free 6,8    0,1 3   0 1,88    0,03 

 

3.3. Spectroscopy 

 The following analyses of the Surf-Free sample (not shown here) have been carried out in order to check the nature of the 

organic molecules related to the weight loss as revealed by TGA analysis. First, 13C NMR shows only two peaks that have a 

chemical shift identical to the one of the isopropanol carbons (23 and 66 ppm). No signs of eventual surfactant residues can be 

seen in the 13C NMR analysis. Secondly, 29Si NMR shows a decrease of the silanols Q3 signal, indicating that a condensation 

reaction occurred with the surface silanols. Finally, the infra-red analysis of the Surf-Free sample shows peaks at 2940 and 2980 

cm-1 associated with the C-H vibration of isopropanol, and the intensity of the surfactant C-H vibrations at 2851 and 2920 cm-1 is 

closed to zero for this sample. If the Surf-Free powder is dried at 100°C under vacuum, the results remain unchanged. This 

indicates that isopropanol has been grafted on the silica surface. Actually, the As-Synth silica is washed after synthesis until the 

pH has reached a 5 – 6 value. It is very much likely that some remaining acid promotes the isopropanol grafting by condensation 

to the silanols of the surface during surfactant extraction in the Surf-Free sample.  

 

3.4. XRD 

 The XRD pattern of the As-Synth silica (Fig. 3) exhibits two sharp peaks characteristic of the first and second diffraction order 

of the lamellar structure, which  correspond to a d-spacing of 39 Å in the pristine lamellar stacking. The XRD patterns of the 

silica after surfactant extraction or after silanization exhibit one peak which indicates that the periodic structure of the platelet 

stacking is maintained. This is due to the grafting of the silanes in the case of GPM and PEO and to the grafting of isopropanol in 

the case of Surf-Free, which prevent the collapsing of the lamellae. It has been shown previously that the periodic lamellar 

structure was indeed preserved after surfactant extraction for the GPM sample but not for the PEO sample prepared with the 

addition of 5.9 mmol of PEOTMS silane [12]. In the present study, the same procedure and conditions were used. However, the 

quantity of initial materials used to prepare the As-synth silica in this study was lower and the sample PEO analysed here has been 

prepared with a higher amount of silane added (21 mmol). Reproducibility of the previous and current results was checked and it 

seems that the quantity of initial material and silane may be critical factors to the final periodic structure of the platelets. It was 

also verified that this does not affect the other results, including the pores and nitrogen adsorption characteristics as des cribed in 

this article.  
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 From the XRD diffraction peak of the silica, the thickness of the tactoïds (the organized aggregates of lamellar sheets) can be 

estimated by using the Scherrer equation [14]. The value of this thickness is shown for the different samples in Table 2. The 

presence of the silica diffraction peak indicates that the periodic stacking of the silica sheets is preserved after surfactant 

extraction and/or silanization. However, it can be observed that these modification of the initial lamellar substrate decreases the 

thickness and therefore the number of sheets periodically layered in the tactoids.  

 

Table 2. Thickness of the tactoids estimated by the Scherrer equation.  

 As-synth PEO GPM Surf-Free 

Thickness of the tactoids 35  4 nm 26  3 nm 20  2 nm 19  2 nm 

 

3.5. Nitrogen adsorption-desorption 

 The nitrogen adsorption – desorption isotherms of the samples are shown on Fig.4. The sample without surfactant (Surf-Free) 

shows the higher level of nitrogen adsorption, followed by the silanized samples GPM and PEO, while the As-Synth sample 

adsorbs a very low amount of nitrogen.  The isotherms can be classified as type IV in accordance with IUPAC classification [4, 

15]. The hysteresis loop is associated to capillary condensation in mesopores. The samples can be classified in two groups 

regarding to the type of hysteresis. The initial silica substrate is characterized by a type H3 hysteresis characteristic of plate-like 

particles. The others samples have a type H4 hysteresis often associated with narrow-slit like pores but, as notified in the IUPAC 

recommendations for reporting physisorption data, the H4 type loop also has a Type I isotherm character indicative of 

microporosity.  

 Specific surface areas (SSA) calculated from isotherms using the BET equation [13] are given in  Table 3. For all samples, the 

fitting has been made for P/P0 between 0.1 and 0.3, the coefficient of determination is higher than 0.9995 and the parameter C 

values are higher than 20, assuring reliable values of the specific surface (according to IUPAC recommendations [15]). The SSA 

values decrease as follows: (Surf-Free) > (GPM) > (PEO) >>>> (As-Synth). The order is identical to the order of volume adsorbed 

for the isotherms as discussed previously.  

Table 3. Results obtained from BET model for nitrogen adsorption. 

 As-Synth PEO GPM Surf-Free 

Specific surface area 
(accessible) (m²/g) 

8,5  0,1 122,9   0,8 375,4  0,8 612,3   1,3 

 

 The Barret-Joyner-Hallenda (BJH) method can be used to calculate the pore size distribution[16]. Fig.5A shows the cumulative 

pore volume distribution for the studied samples and Fig.5B shows the corresponding differential plots. The cumulative pore 

volume distribution is linked to the volume occupied by pores as a function of their size and the differential pore volume 

distribution is linked to the number of pores with a given size. For the As-Synth sample, the differential volume distribution shows 

a broad band around 8-9 nm while the cumulative volume adsorbed starts to decrease for pores larger than 8 -9 nm. This indicates 

that for the initial As-Synth silica substrate, a considerable part of the nitrogen volume is adsorbed by pores with 8 -9 nm size. On 

the other hand, for the other samples, both cumulative and differential pore volume distribution decrease for pores smaller than 2 -

3 nm with a significant number of pores smaller than 4 nm adsorbing a great quantity of nitrogen.  

 

 The specific surface calculated by BET (SBET = SSA) is the total surface of the sample including all types of pores, i.e. 

micropores, mesopores and macropores. Then: 

SSA = SBET = Smicropores + Smesopores + Smacropores 

However, the nitrogen adsorption analyses do not allow macropores measurement which can only be calculated by means of Hg 

porosimetry. Therefore in this case, it turns out that:  

SBET = Smicropores + Smesopores 

Because BHJ method has been developed for mesoporous materials [15, 16], the comparison between the specific surface 

calculated by BET (SBET) and the adsorption cumulative area of pores calculated by BHJ (S mesopores = SBJH) can highlight the 

mesoporous or microporous tendency of the material. If SBET > SBJH then the solid shows microporosity. If SBET  SBJH then the 

solid is essentially mesoporous. The results of surface area calculated by both methods are shown in 4. From these results, it can 

be concluded that microporosity is significant for GPM and Surf-Free, these also being the materials with the highest specific 

surface.  
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Table 4.  Comparative specific surface calculated by means of BET and BJH model 

 As-Synth PEO GPM Surf-Free 

SS BET (m²/g) 8,5  0,1 122,9   0,8 375,4  0,8 612,3   1,35 

BJH adsorption cumulative area 
(m²/g) 

9,6  0,1 135,4  0,8 250,2  0,8 479,5  1,3 

 

 Moreover, in the Fig.5B, one can notice that the differential pore volume adsorbed remains important for pores smaller than 2 

nm for both hybrids and Surf-Free. This behaviour indicates the presence of microporosity in these materials.  

 

 The microporous properties of the materials can be assessed by the method proposed by Kruk - Jaroniec -Sayari (KJS method). 

This method is similar to the V -alpha method proposed by Sing but uses a different reference sample. The micropore volume and 

external surface area have been estimated with this method and the results are listed in 5. The micropore volume of the As-Synth 

sample is very low and its external surface area is closed to the BET specific surface. There is therefore no sign of microporosity 

observed for this sample. The external surface area as well as the difference between this surface area and the BET SSA increases 

in the same order than observed before for the different samples. The micropore volume increases when the surfactant is replaced 

by the silanes and is maximum for the non-silanated sample without surfactant, exhibiting the highest specific surface area.  

 

Table 5. Micropore volume and specific surface area calculated with the KJS method. 

 As-Synth PEO GPM Surf-Free 

External surface area (m²/g): 8,3  0,1 104,5  0,8 329,3  0,8 509,2  1,25 

Micropore Volume (cm³/g): 1,1 10-4  0,063 0,023 0,05 

4. Discussion  

  Four lamellar inorganic silica samples with different organic molecules between the platelets have been prepared. The As-Synth 

silica has a quaternary ammonium surfactant bearing two long alkyl chains linked to the surface by hydrogen bonding. The GPM 

and PEO silicas have different silanes covalently attached to the platelet surface. Finally, in the Surf-Free silica, the initial 

surfactant template has been extracted and isopropanol has been covalently grafted to the lamellae surface. The XRD analyses 

show that the platelet periodic stacking is preserved for all samples. The samples before and after silanization or surfactant 

extraction exhibit great differences of specific surface area or SBET as it has been shown by nitrogen adsorption. It has been shown 

previously that the lamellar morphology and size of the platelets were similar for all samples [12]. The great difference of specific 

surface area between these samples can therefore only be explained by the opportunity for nitrogen to access the interlamella r 

spaces and the presence of pores at the lamellae surface. The difference of specific surface and micropore volume for GPM and 

PEO samples indicates that this access depends on the molecules present on the silica surface. The results and trends highlighted  

by nitrogen adsorption analyses are listed in Table 6. Clearly, all the samples exhibit mesopores as noticed with the type 4 

isotherm. The samples can however be divided in two categories depending on the types of hysteresis and the pore size 

distribution: the As-Synth sample has very low specific surface area, plate-like particles type hysteresis loop and mesopores 

smaller than 8 - 9 nm. After surfactant extraction or silanization combined to surfactant extraction, the samples exhibit specific 

surface area twelve to seventy times higher than the As-Synth sample and narrow-slit like pore hysteresis with pore sizes lower 

than 4 nm.  The very high specific surface area of the Surf-Free sample shows here the main advantage of surfactant extraction in 

isopropanol compared to the extraction by combustion, which lead to very low specific area material due to the collapsing of the 

lamellae stacking [17]. In addition, the analysis of the data has revealed the presence of micropores after surface modificat ion or 

surfactant extraction. The volume occupied by the micropores indeed increases along with the specif ic surface area of these 

samples. Three categories of pore size have been therefore noticed in the samples: micropores, mesopores between 2 – 5 nm and 

some mesopores around 8 – 9 nm for the As-Synth sample.   
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Table 6.  Results and trends highlighted by nitrogen adsorption analyses. ―Micro‖ and ―Meso‖ means that                                                                     

microporous and mesoporous trends have been respectively highlighted by the analysis. 

 As-Synth PEO GPM Surf-Free 

Isotherm type : II : Meso II : Meso II : Meso II : Meso 

Hysteresis type : IV : plate-like III : narrow-slit like III : narrow-slit like III : narrow-slit like 

BET Ss (m²/g) : 8,5 122,9 375,4 612,3 

V – alpha : Non porous Micro Micro Micro 

Comparison  

BJH – BET:  

 

Meso 

 

Meso 

 

Micro 

 

Micro 

Micropore volume (cm³/g):  1,1 10-4  0,063 0,023 0,05 

Pore distribution :  Pores < 
[8-9] nm 

Pores 
< 4 nm 

Pores 
< 4 nm 

Pores 
< 4 nm 

 

 It has been indicated in previous article that the thickness of the silica sheets is approximately 1 nm [13], therefore significantly 

lower than the mesopore sizes highlighted in the present study. Taking this into account, the structure and organization of t he 

silica sheets may be explained in the following way and as suggested on Fig. 6. In the As-Synth initial substrate, the lamellae are 

well packed and organized as seen by XRD, with the surfactant well organized in the all -trans form between the silica sheets [17, 

18], therefore the nitrogen is only adsorbed on the external surface of the silica stacking. The high anisotropy of the silica sheets 

prepared here can explain the plate-like particles hysteresis observed for this sample. After silanization for GPM and PEO 

samples, or after surfactant extraction for Surf-Free sample, these well-organized molecules are removed or replaced by the 

corresponding silane. At this point, nitrogen can be adsorbed between the silica sheets and the specific surface area accessi ble to 

nitrogen greatly increases. The narrow-slit like pores between 2-4 nm put forward by isotherm analyses are attributed to the pores 

between the silica lamellae. Finally, the micropores noticed should be located inside the silica lamellae: they are probably 

resulting from TEOS condensation during As-Synth preparation. The specific surface area as well as the micropore volume are the 

highest for the Surf-Free sample. These parameters are also higher for GPTMS than for PEOTMS grafting. This indicates the 

coverage of micropores by silanes and also suggests that the surface covered by PEOTMS is greater than  GPTMS, which is in 

agreement with the respective size of the silanes.  

 

 As mentioned in the introduction, layered lamellar material can be interesting materials for catalysis applications, especial ly if 

they exhibit great specific surface area [6]. It is therefore interesting to compare the BET surface area of the present silicas to the 

specific surface of the other lamellar materials described in the literature. By exchanging the initial calcium ion of a natu ral 

montmorrillonite, Lee et al have measured a maximum BET specific surface of 173,5 m²/g [19]. The BET specific surface of a 

potassium montmorrillonite studied by Elm’Chaouri et al was 125 m²/g [20].  Lamellar mesostructured silica was also synthesized 

by templating with a maximum BET surface area of 674 m²/g after calcinations [21]. A combined lamellar and wormhole-like 

mesostructured silica with a maximum of 630 m²/g was prepared by Fujimoto et al [22]. Liquid crystal templating was also used 

by Kluson et al to prepare lamellar sheets of titania, exhibiting a BET surface of 320 m²/g [23]. The values of BET specific 

surface area obtained in the present study are therefore very high compared to natural lamellar clays and they are similar to  the 

best mesostructured lamellar silica found in the litterature. In our previous study, similar BET specific surface were obtained by 

calcination of the As-Synth silica [13], but the surfactant extraction method presented here requires less energy and a combined 

silanization can be performed simultaneously to surfactant extraction if desired. These silica particles also offer the advantage of 

combining meso and microporosity, which make them interesting materials for catalysis application. Their anisotropy and the 

possible surface adjustment by silanization make them also appropriate fillers for nanocomposites.  

5. Conclusions 

 Synthetic lamellar silica and lamellar hybrid silica were prepared and characterized by different methods including nitrogen 

adsorption. The ordered layering of the silica sheets is preserved for all samples, with the initial surfactant and after surfactant 

extraction and/or silanization. The specific surface increases significantly after surfactant extraction and/or silanization. The 

models used to analyse the data have highlighted signs of microporosity for the high specific surface samples. In  order to e xplain 

the results, a representation of the porous structure of the samples has been proposed. They can be classified in two categories: the 

initial well-ordered lamellar silica exhibits very low specific surface area and the samples resulting from this latter sample 

modification show high specific surface area. The results suggest that nitrogen cannot access interlamellar spaces in the As-Synth 

sample. Three types of pores were revealed for the different materials: a few mesopores around 8 -9 nm are located between the 

well-ordered stacks of particles,  narrow slit-like mesopores smaller than 4 nm can be assigned to the interlamellar spaces, and 

micropores are located in the silica lamellae. The silane chains actually cover the micropores after surface modification. The 

values of BET specific surface area are very high compared to natural lamellar clays and they are similar to the best 

mesostructured lamellar silica found in the litterature. Moreover, the lamellar silica prepared combine micro and mesopores, 

which make them interesting materials for further catalysis application.  
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Fig. 1. Reaction scheme of samples preparation : 
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Fig. 2. Combustion of an organic molecule revealed by TGA (solid line) and DSC (dashed line) 

analysis of the Surf-Free silica : 

 
 

Fig. 3. A) X-Ray diffraction patterns of the silica before silanization (As-Synth); B) X-Ray diffraction 

patterns of the silica after silanization with GPTMS (GPM) and PEOTMS (PEO), and of the silica 

after surfactant extraction (Surf-Free) : 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Nitrogen adsorption – desorption isotherms curves, with zoom on the As-Synth curve at low 

volume adsorbed : 
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Fig. 5. A) Cumulative pore size distribution. B) Differential pore size distribution : 

 
 

 

Fig. 6. Suggested representation of the lamellar silica structure for As-Synth sample (surfactant chain 

painted in grey and silica in black). The arrows indicate the pores highlighted by nitrogen adsorption 

analyses. Fig. 6A: plate-like stacks of silica lamellae with pores around 8 – 9 nm between the stacks. 

Fig. 6B: Silica lamellae forming narrow-slit like pores between 2-5 nm when the surfactant is 

extracted. Fig.6C: Silica lamellae made up of micropores smaller than 2 nm. 
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