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We present a local density approximation (LDA) for one-dimensional (1D) systems interacting via
the soft-Coulomb interaction based on quantum Monte-Carlo calculations. Results for the ground-
state energies and ionization potentials of finite 1D systems show excellent agreement with exact
calculations, obtained by exploiting the mapping of an N -electron system in d dimensions, onto a
single electron in N×d dimensions properly symmetrized by the Young diagrams. We conclude that
1D LDA is of the same quality as its three-dimensional (3D) counterpart, and we infer conclusions
about 3D LDA. The linear and non-linear time-dependent responses of 1D model systems using
LDA, exact exchange, and the exact solution are investigated and show very good agreement in
both cases, except for the well known problem of missing double excitations. Consequently, the 3D
LDA is expected to be of good quality beyond linear response. In addition, the 1D LDA should
prove useful in modeling the interaction of atoms with strong laser fields, where this specific 1D
model is often used.

PACS numbers: 31.15.ee, 32.10.Hq, 32.30.Jc

Over the last years the theoretical description of op-
tical properties of complex many-electron systems, from
molecules, to nanostructures and extended systems, has
re-flourished due to the efficient implementation of time-
dependent density-functional theory (TDDFT) [1, 2].
The good performance shown by the adiabatic local
density approximation (ALDA) for many finite sys-
tems has limited the development of exchange-correlation
(xc) functionals with a more elaborate time-dependence,
which is clearly in its infancy compared to static DFT.
However recently many important deficiencies, especially
of the adiabatic approximation, have been identified [3–
12].

Ultrafast time-resolved optical spectroscopy has re-
vealed new classes of physical, chemical, and biologi-
cal reactions, in which directed, deterministic motions
of atoms have a key role. The advent of free electron
lasers with attosecond resolution increases the capabili-
ties of present femtosecond pump-probe experiments, al-
lowing for a study of the dynamics of non-equilibrium
electronic systems in real time. In addition, systems of
all sizes can be investigated, from the atomic scale to the
most extended molecules (e.g. DNA, proteins and their
complexes) and solids. Despite those tremendous exper-
imental advances, the theoretical description of a real
molecular system subject to ultrashort, intense, and/or
high-frequency lasers is still in a fledgeling state. Several
problems need to be addressed, ranging from the non-

perturbative nature of the physical processes involved
to the simultaneous description of the (interacting) elec-
tronic and nuclear degrees of freedom. Therefore, it is
of paramount relevance to have a theoretical framework
which allows for a non-perturbative description of elec-
trons, and at the same time is able to tackle electron-
ion dynamics in the excited-state. TDDFT seems to be
the suitable framework to move the realm of density-
functional methods beyond the linear regime to describe
the aformentioned processes. One important advantage
is the combined electron and ion dynamics provided by
TDDFT [2].

Many physical processes rely on the knowledge of non-
linear response functions. Therefore, it is very timely to
provide a systematic study addressing the performance
of present functionals in the non-linear regime. To assess
the quality of a functional we need to have appropriate
data for comparison. Obtaining accurate experimental
data in the non-linear regime can be very difficult for real
systems, due to various limitations, e.g. solvent effects
or additional approximations going into the interpreta-
tion of the collected data [13, 14]. These problems can
be avoided by using exactly solvable models which then
allow for a direct comparison between the exact spetrum
and an approximate one. Unfortunately, an exact propa-
gation of even small three-dimensional systems is compu-
tationally very demanding, and needs further simplifica-
tion. One possibility is the reduction of dimensionality,
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i.e. the use of one-dimensional (1D) models, where the
exact diagonalization is feasible as long as the number
of electrons is sufficiently small. In the present paper we
work with systems of interacting electrons in 1D. Hav-
ing the exact solution allows us to test orbital dependent
functionals such as exact exchange (EXX) which can be
easily transferred to different dimensions. A local den-
sity approximation (LDA) is achieved, as in the 3D case,
by quantum Monte-Carlo (QMC) studies of the homo-
geneous reference, and parametrizing the corresponding
correlation energy.
The present work, besides adding fundamental infor-

mation concerning the relevance of spatial and tempo-
ral non-locality in the xc functional, also provides a
proper LDA parametrization for electrons interacting
via the soft-Coulomb interaction in 1D systems. This
model description is widely used in the context of high-
intensity lasers, where above-threshold ionization and
high-harmonic generation play an important role [15–18].
Also, 1D two-electron systems are employed to gain in-
sight into exact properties of the xc potential and kernel
in static and time-dependent density functional theory,
since these systems can easily be solved exactly [19–21].
The 1D Hamiltonian for N particles moving in a gen-

eral external potential vext reads

H =
N
∑

j=1

[

−
1

2

d2

dx2
j

+ vext(xj)

]

+
1

2

N
∑

j,k=1
j 6=k

vint(xj , xk), (1)

where vint describes the electron-electron interaction. In
order to avoid the singularity of the Coulomb interaction
we employ the soft-Coulomb potential

vsoft−C(x1, x2) =
q1q2

√

a2 + (x1 − x2)2
(2)

instead. Here, q1 and q2 describe the charges of the par-
ticles while a is the usual softening parameter (atomic
units e = m = h̄ = 1 are used throughout this paper).
We use a = 1 for all our calculations. Mathematically,
it is straightforward to show that the Hamiltonian (1) is
equivalent to a single particle in N dimensions, moving
in an external potential consisting of all the contributions
from vext and vint. The corresponding Schrödinger equa-
tion can, hence, be solved by any code which is able to
treat non-interacting particles in the correct number of
dimensions in an arbitrary external potential. Due to the
Hamiltonian being symmetric under particle interchange,
xj ↔ xk, the solutions of the Schrödinger equation can
be chosen as symmetric or antisymmetric under such an
exchange. For the simplest case of two interacting elec-
trons both the symmetric and antisymmetric solutions
are valid, corresponding to the singlet and triplet spin
configurations, respectively. However, for more than two
electrons one needs to separately ensure that the spatial
wave function is a solution to the N -electron problem.

For example, a totally symmetric spatial wave function
is a correct solution for a single particle in N dimensions,
however, for N > 2 there is no corresponding spin func-
tion such that the total wave function has the required
antisymmetry to be a solution of the N fermion problem
in 1D. We solve this problem by symmetrizing the solu-
tions according to all possible fermionic Young diagrams
for the given particle number N [22]. The solution of
higher dimensional problems within these symmetry re-
strictions has been implemented into the OCTOPUS com-
puter program [23, 24]. Usually, the lowest energy solu-
tion is found to be purely symmetric and is discarded for
N > 2. With increasing number of electrons we also ob-
serve an increasing number of states which do not satisfy
the fermionic symmetry requirements.

As a result of reducing the number of dimensions, we
need to use an appropriate functional for performing the
DFT calculations. While any orbital functional can eas-
ily be transferred between dimensions, those function-
als based on specific systems need to be recalculated.
This affects the most common functional, i. e. the lo-
cal density approximation, available only for the normal
Coulomb interaction in two and three dimensions [25, 26],
an effective Coulomb interaction of a harmonically con-
fined wire [27, 28], and some other ad-hoc 1D models [29–
31]. In this work, we present and use a parametrization
of the 1D LDA obtained from quantum Monte-Carlo sim-
ulations, which are exact in 1D, using the soft-Coulomb
interaction in Eq. 2. We assess the quality of the approx-
imation in calculating ground-state properties as well as
the linear response for various 1D model systems. We
then proceed to calculate the nonlinear response and
compare the exact one with the ALDA and adiabatic
exact-exchange (AEXX) spectra.

The correlation energy of the LDA is parametrized in
terms of rs and the spin polarization ζ = (N↑ − N↓)/N
in the form

ǫc(rs, ζ) = ǫc(rs, ζ = 0)+ ζ2 [ǫc(rs, ζ = 1)− ǫc(rs, ζ = 0)]
(3)

with

ǫc(rs, ζ = 0, 1) = −
1

2

rs + Er2s
A+Brs + Cr2s +Dr3s

× ln(1 + αrs + βrms ), (4)

which proved to be very accurate in the parametrization
for other 1D systems with a different long-range interac-
tion [27]. Note that the additional factor of 1/2 is due the
use of Hartree atomic units, as everywhere else in the pa-
per. To obtain the exact high-density result, known from
the random phase approximation [28], i.e.

ǫc(rs → 0, ζ = 0) = −4/(π4a2) r2s , (5)

ǫc(rs → 0, ζ = 1) = −1/(2π4a2) r2s (6)
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a = 1.0

ζ = 0 ζ = 1

A 18.40(29) 5.24(79)

B 0.0 0.0

C 7.501(39) 1.568(230)

D 0.10185(5) 0.1286(150)

E 0.012827(10) 0.00320(74)

α 1.511(24) 0.0538(82)

β 0.258(6) 1.56(1.31) · 10−5

m 4.424(25) 2.958(99)

av. error 6.7 · 10−5 3.3 · 10−5

TABLE I: Values of the LDA correlation energy parametriza-
tion in Eq. 4 for the most widely used case a = 1. The
parametrization is reported for both unpolarized (ζ = 0) and
fully polarized (ζ = 1) systems. The error on the last digits
is given in parenthesis, while the average error (in Hartree) in
the full density range is given in the last row.

Etotal IP

Exact LDA SLDA Exact (S)LDA ǫ
(S)LDA
HOMO

H -0.67 -0.60 -0.65 0.67 0.65 -0.41

He -2.24 -2.20 0.75 0.75 -0.48

Li -4.21 -4.16 -4.18 0.31 0.33 -0.18

Be -6.78 -6.76 0.33 0.35 -0.16

He+ -1.48 -1.41 -1.45 1.48 1.45 -1.18

Li+ -3.90 -3.85 1.56 1.55 -1.24

Be+ -6.45 -6.39 -6.41 0.83 0.85 -0.63

Li2+ -2.34 -2.25 -2.30 2.34 2.30 -2.00

Be2+ -5.62 -5.56 2.41 2.38 -2.06

Be3+ -3.21 -3.13 -3.18 3.21 3.18 -2.86

TABLE II: Total energies and ionization potentials for one-
dimensional atoms and ions from exact and (spin-)LDA cal-
culations as well as the eigenvalues of the highest occupied
Kohn-Sham orbital. All numbers are given in Hartree.

to leading order in rs, we fix the ratio α/A to be equal
to 8/(π4a2) and 1/(π4a2) for ζ = 0 and ζ = 1, respec-
tively. In both cases the exponent m is limited to values
larger than 1. As a result, the number of independent
parameters in the function (4) is reduced to 7. In ad-
dition, for a = 1 the denominator can be simplified by
setting B = 0.0. The optimal values of the parameters
for a = 1 are reported in Tab. I, and implemented in the
OCTOPUS program [23, 24]. For more details on the 1D
QMC methodology and the parametrization procedure
we refer to Refs. 27, 28.

As a first test, we calculated the ground-state energies
of small atomic systems, for example, a 1D helium atom
with q = 2 in Eq. (2) and two electrons which interact via
the soft Coulomb interaction. The ground state energies
and ionization potentials from the exact and unpolarized
LDA calculations are given in Tab. II. We include all
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FIG. 1: Binding energy per atom of the one-dimenstional
hydrogen molecule as a function of the distance between the
two ions, exact and LDA calculations for the singlet ground
state and the first triplet state.

possible systems with one, two, three and four electrons
in our test. For open-shell systems, we additionally per-
formed a spin-DFT (SLDA) calculation, where the xc en-
ergy was spin dependent according to Eq. (3). All atomic
calculations were performed in a box ranging from -8 to
8 bohr with a spacing of 0.2 bohr, which ensures the to-
tal energy to be converged to the accuracy stated in the
table.
As we can see, the LDA total energies for the neu-

tral and positively charged systems agree very well with
the exact results. As expected, the spin-resolved calcu-
lations further improve the agreement for the open-shell
systems. As a result, the ionization potentials, calcu-
lated as the difference of the total energies of the N and
the N − 1 electron systems, from the (S)LDA and the
exact calculations agree almost perfectly. The largest

Kohn-Sham eigenvalue ǫ
(S)LDA

HOMO only partially accounts
for the total ionization potential, i.e. the 1D LDA vi-
olates this known property of the exact functional [32].
The good agreement for the positively charged systems is
not reproduced for negatively charged ones. For the small
systems investigated here, LDA does not bind an extra
electron, i.e. the highest occupied KS orbital has a pos-
itive eigenenergy, while the exact calculation shows that
the negatively charged systems are indeed stable giving
total energies of −0.73 Ha, −2.35 Ha and −4.17 Ha for
H−, He−, and Li−, respectively. A comparison with the
total energies of the neutral systems shows that in the ex-
act calculation the additional electron is only very lightly
bound in 1D. It is no surprise that the LDA, with its usual
wrong asymptotic behavior of the exchange-correlation
potential, does not yield stable negatively charged ions.
As a second test of the new functional we calculate

the dissociation curve of the 1D hydrogen molecule. For
these calculations we increased the size of the simulation
box to range from -20 to 20 bohr in order to achieve con-
vergence also for the stretched molecule. Fig. 1 shows the
binding energy per atom as a function of the distance be-
tween the two ions. As one can see, the known pathology
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FIG. 2: Linear (top) and non-linear (bottom) spectra of Be2+

comparing the exact and the 1D LDA calculation. The inset
in the bottom figure shows a zoom into the region from 2.7
to 3.0 Ha.

ω1 ω2 ω3 ω4 ω5 ω6 ω7 Ω1 Ω2 Ω3

LDA 1.10 1.74 1.90 1.96 2.00 - - 0.22 0.40 -

EXX 1.13 1.82 2.08 2.20 2.27 2.30 2.32 0.26 0.43 0.52

exact 1.12 1.81 2.08 2.19 2.26 2.29 2.32 0.28 0.42 0.54

TABLE III: Excitation energies from linear and non-linear
response of the 1D Be2+ atom corresponding to the spectra
in Fig. 2. Excitations from linear response are denoted as ω

while those from the non-linear spectrum are denoted with Ω.
All numbers are given in Hartree.

of 3D LDA is reproduced also in 1D. The singlet state
yields a good description around the equilibrium distance
of 1.6 bohr with the binding energy being slightly over-
estimated by LDA. However, the bond breaking is not
described correctly due to the strong static correlation
at large distances. The LDA calculation for the triplet
state yields very good agreement over the whole range of
distances corroborating the general experience of LDA
performing better for more polarized systems.

After having shown that the 1D LDA behaves very

much like its 3D counterpart for ground-state calcula-
tions, we turn our attention to TDDFT where we use it as
an adiabatic approximation to the exact time-dependent
exchange-correlation potential. The propagations were
performed in a box ranging from -150 to 150 bohr with
absorbing boundary conditions [23] and a grid spacing of
0.2 bohr for a total propagation time of 103 a.u.

In Fig. 2 we compare the spectra calculated in a linear
and non-linear regime from the exact and the LDA cal-
culations for a Be2+ system, i.e. a positive charge with
q = 4 and 2 interacting electrons in a singlet configura-
tion. In the linear regime a kick of 10−4 Ha/bohr was em-
ployed at t = 0 which was then increased to 0.01 Ha/bohr
to obtain the non-linear response. The values of the ex-
citation energies can be found in Tab. III. In linear re-
sponse, we see five peaks in the LDA spectrum which
compare well with the first five excitations in the exact
case. As expected, the agreement is better for lower ly-
ing excitations and gets worse the closer we get to the
continuum. As a guide for the eye we included the KS
HOMO energy of the LDA calculation and the exact ion-
ization potential. The onset of the continuum itself ap-
pears at too low energies in the LDA calculation missing
two more clearly visible peaks in the exact spectrum. In
other words, the LDA fails to reproduce the proper Ryd-
berg series, a behavior well known from 3D calculations.
For comparison we also included the results from an EXX
calculation which shows a slightly better agreement than
LDA for the first three excitations but, more importantly,
reproduces the Rydberg series due to the correct asymp-
totic behavior of the corresponding exchange potential.
The quality of the EXX results also implies that correla-
tion is of secondary importance in the system for a = 1.
The non-linear spectrum shows the same excitations as
the linear spectrum and three additional peaks for the
exact and the EXX calculation and two additional peaks
in the LDA spectrum. Their energies are also listed in
Tab. III. Due to the spatial symmetry of the system all
even order responses are zero and the first non-vanishing
higher-order response is of third order. The Ω1 = 0.28 Ha
corresponds to an excitation from the second to the third
excited state, where the transition from the ground to the
second excited state is dipole forbidden and, hence, can
only be reached in a two-photon process. The other two
frequencies, Ω2 = 0.42 Ha and Ω3 = 0.54 Ha, correspond
to the transitions from first to second and second to fifth
excited state, respectively. Again, both the EXX and the
LDA calculations yield a good description of the low ly-
ing excitations, only the third peak cannot be resolved
in the LDA spectrum.

One feature of the exact spectrum that is missing from
both the LDA and the EXX spectra is the small dip at
2.8 Ha, see inset in Fig. 2. It results from a Fano res-
onance [33, 34], i.e. the decay of an excited state into
continuum states. It is missing from both approximate
spectra due to the double-excitation character of the in-
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volved excited state. Double excitations can only be de-
scribed in TDDFT if a frequency-dependent xc kernel
is employed [5]. Any adiabatic approximation, however,
leads to a frequency independent kernel. Hence, double
excitations, as well as any resulting features, are miss-
ing from both the ALDA and the AEXX calculations.
Apart from the well-known shortcomings of not including
double-excitations and not giving the correct Rydberg se-
ries, the 1D ALDA reproduces both the linear and the
non-linear exact spectra quite well.
We have introduced a one-dimensional LDA suitable

for the description of systems interacting via the com-
monly used soft-Coulomb interaction. We have shown
that the one-dimensional functional is of the same qual-
ity as its three-dimensional counterpart in the calcula-
tion of ground-state energies of atomic systems and the
dissociation of small molecules. Also, the linear spectra
show the same quality known from 3D calculations with
low energy excitations being well described while Ryd-
berg and double excitations are missing. Generally, for
the 1D LDA one can expect the same success and failure
in applications that are known from 3D calculations, i.e.
the quality of the LDA results appears to be independent
of the dimensionality. We emphasize that the 1D LDA
yields a good description not only in linear response but
also in the non-linear case. Consequently, one can expect
3D LDA calculations to perform well for the calculation
of non-linear response, where the experimental data is
often difficult to interpret. The quality of the LDA for
softening parameters a 6= 1 will be investigated in the
future. Choosing values smaller than one is of special
interest as this corresponds to an increasing correlation
in the system.
The reduced dimensionality of the model systems

treated in this work allows for a direct solution of the
interacting problem for small number of particles. The
comparison between the DFT and an exact calculation
allows for an assessment of the quality of approximations
beyond what is possible in three-dimensional systems.
One-dimensional model systems can provide useful in-
sight which hopefully will allow for the construction of
new functionals in the future.
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