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DECISION SUPPORT FOR IMPROVING PUBLIC TRANSPORT NETWORK 

VANRAES Niko – CORNÉLIS Bernard – DONNAY Jean-Paul 

Abstract 

On the question of accessibility in a public transport network, isochronous 
maps are the common rule.  Those maps are based on shortest distance algorithms 
run over simple or simplified networks.  This contribution aims at representing the 
actual spatial distribution of the public transport offer in order to improve the 
usefulness to the urban community and to predict the evolution of the network 
according to the expected development of the agglomeration.  The study combines 
the street (walking distance) and public transportation (buses) networks. The analyses 
rely on time-tables and road maps completed by the public transportation company 
(TEC). Moreover, it makes use of built-up areas derived from satellite imagery.  The  
processing requires raster- as well as vector-based procedures which have been 
achieved notably with the IDRISI software. Nevertheless the implementation of the 
decision rule relies on an original routine written by the authors.  The area of 
interest concerns a part of the agglomeration of Liège (Belgium), including two 
secondary poles, highlighting their relation with the centre of the city and with each 
other.  First the paper presents the typology of the public transport routes. Then the 
methodology elaborated for each transportation type is analysed; the shortest 
distance routes and their alternatives are extracted and combined within a raster 
process. The obtained results and their operationality are finally presented and the 
paper concludes with possible improvements of the methodology. 

1. INTRODUCTION 

For a few years public transportation is a question that has been much debated 
in urban management.  The increasing motor car traffic and its pressure on urban life 
have led urban decision-makers to pay attention to alternative solutions where public 
transport is inescapable (MET, 1996). Before improving the offer in public transport, 
it must be studied in its actual form in order to highlight its forces and weaknesses.  
This paper attempts to set out the real spatial distribution of the public transport offer.  
This offer is expressed as the time required to go from any point within the area of 
interest to a final destination (or from one selected origin to all the other locations in 
the area).  

Travelling implies a cost (CANCALON and GARGAILLO, 1991 ; ROY, 1991) 
which is a function of the travelling time. Therefore shortest time-cost route should 
have to be chosen according to the decision rule.  The search for the shortest 
time-cost route is justified by the travellers’ wish to minimise their travelling cost. 
Such routes can be found with different algorithms such as the Dijkstra’s algorithm 
(DIJKSTRA, 1959, in CANCALON and GARGAILLO, 1991; DONNAY, 1983a, 1983b; 
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ENGELEN and BRANS, 1980; ROY, 1991).  However, the full trips are not necessary 
made via these routes due to the nature of the public transport itself. 

In order to find the spatial distribution of the public transport offer, 
isochronous maps are often made (DUSSART, 1939 et 1959; AUGUSTE, 1977; BAUDOT 
et LALOUX, 1980; VANCRAEYNEST, 1986; KUMMERT et VANDERMOTTEN, 1975).  The 
length of the route takes in account the waiting time, connection time, etc. To make an 
isochronous map it is necessary to find the shortest time-cost route.  This is a central 
point of the problem because many authors consider only the fastest line.  Sometimes 
the features of many lines are aggregated. Speed is supposed to be identical for all the 
lines even though this is not always the case (id.).  Another problem is the extension 
of the walking time beyond the stops : should the distance be considered along the 
roads or in a straight line ?  Moreover, classic isochronous maps take a long time to 
draw up.  Furthermore, each new point necessitates the realisation of a new map 
(KUMMERT et VANDERMOTTEN, 1975).  On the other side, such maps are almost 
calculated over the whole day.  

This contribution defines first the features of public transport networks and 
establishes a typology of public transport routes. Afterwards, the methodology used 
for the two parts public transport journey is developed.  Finally, results obtained on a 
concrete case are discussed and possible improvements are presented. 

2. PUBLIC TRANSPORTATION NETWORKS 

2.1. Distinctive features of public transport networks 

A trip done with a private transport mode is almost realised with one vehicle.  
Besides the walking at the beginning and at the end of a public transport trip, 
connections are often necessary to reach the destination when using public transport.  
There can also be different services on the same link. For instance an express bus and 
a regular bus.  Travelling by public transport is not possible at any time (ROY, 1991).  
The travellers have to wait for the passage of the vehicles at the stop.  The fastest line 
is thus not always available.  Consequently, a public transport network is very 
different from networks such as the road network. 

2.2. Typology of the public transport routes 

When one think of a public transportation network he often thinks of a simple 
network such as can be seen on the subway maps of Paris or London. However, 
public transportation networks are frequently more complex.  The complexity 
generally increases when the vehicles are not attached to tracks. 
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If in dense city centres the routes remain simple this is not always the case in 
the suburbs.  Those areas are characterised with greater people dispersion and thus 
imply a more complex network.  As a consequence buses mostly serve such areas 
since they have more freedom in their routes. 

Diverse public transport networks have been analysed through the maps 
delivered by transport companies to their users.  A typology of the different 
configurations of the public transport routes has been realised [Figure 1] (Vanraes, 
1997).  This typology demonstrates the complexity of public transport networks. 

Figure 1. Typology of public transport routes (1 to 8) and combination of public transport routes (9 to 13). 
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Different routes of one bus linei: 1. Simple route – 2. Difference between the outward route and return 
route – 3. Terminal loop – 4. Variant at the terminus – 5. Variant in a part of the route – 6. Extension – 7. Lateral 
Extension – 8 Circular route. 

Combination of routes of two bus lines: 9. Different destinations – 10 Different origin and destination – 
11. Different part of the route – 12. Different part at the end of the routes – 13. “Rabattement” Line. 

2.3. Studied network 

The method was applied to a part of Liège, third urban area in Belgium with 
its 600.000 inhabitants.  The studied area is triangular shaped.  The top of this 
triangle is in the centre and the triangle stretches to the rural outskirts.  Two sides of 
the area of interest are limited by motorways.  Motorways are an obstacle for 
pedestrians since they can only be crossed at limited places. 

The network covering this area is made out of twenty-one bus lines.  Two 
major bus roads link the centre and two secondary poles of the urban area: Ans and 
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Rocourt.  High frequency lines follow those roads.  The two poles are only linked 
with two low frequency lines (one vehicle per hour). 

3. PUBLIC TRANSPORT TRIP 

A public transport trip can be split in different parts: 

- the walking trip to the public transport vehicle stop (bus stop, 
station) will be detailed further; 

- the waiting for the passage of the vehicle; 
- the journey in the vehicle from the origin stop to the destination 

stop; 
- eventually a connection will be necessary to gain the destination. 

3.1. The waiting time 

The waiting time, the journey and an eventual connection are specific to the 
public transport network itself.  Passage frequency, , at a stop is the quantity of 
vehicles passing at a stop in a given interval and period, T , is the time passing 
between two halts of a vehicle at a stop, the mean waiting time for a traveller, >0 = Global Route
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be: 2/Tw   with T [time interval]/.  If the time interval is equal to one hour 
the mean waiting time will be: /30w . 

The period used is a mean period, which means the time between two passages 
of a vehicle at a given stop is considered to be constant ( iTT  ).  If this is true for 

important bus routes which are regularly cadenced, it is not the case with less 
important lines.  However the mean period is often accepted as a good approximation 
but the network analyst must know that the precision will decrease with the 
irregularity of the periods especially when they are important.  In fact, even for 
important bus routes, the period does not remain constant the whole day. Different 
phases can be observed: peak phases, peak-off phases, evening phase, and so on 
(ORFEUIL J.-P. and TROULAY P., 1989 ).  The mean period measured over a whole 
day will not reflect the reality.  For instance, some lines have a short period in peak 
hours and a long period during the rest of the day (such as peak lines). A serious study 
should thus only be done over a precise phase. 

3.2. The journey in the vehicle 

The journey in the vehicle from the origin stop to the destination stop is 
available in the time schedules of public transport companies. Such timetables are not 
often complete in the sense that the information is not available for all the stops of a 
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bus line. In this case the passage time can be found with the distance separating two 
stops where the time is known. 

3.3. Connections 

When travelling by public transport one or more connections are often 
necessary to join the destination stop.  As a consequence, the travellers will be 
submitted to the frequency of the other lines. It is also estimated that at least two 
minutes are necessary to a make a connection (KUMMERT and VANDERMOTTEN, 
1975) : if the second vehicle arrives at the same time as the first one at the connection 
stop, it will be difficult for the users to make the connection because, for instance, the 
road must be crossed, the platforms are not on the same level, etc… 

So far, the global time for a journey from a starting stop to a destination stop 
can be expressed as: 

)
30

(2
1

i

c

Rctime   
 

With: 
c: the number of connections; 
: the frequency 
R: the time passed in the vehicle from the origin stop to the destination stop. 

3.4. Multiple services 

The difficulty of a public transportation network is that is often more than one 
line joins two stops.  Those lines can have different routes, number of stops, 
frequencies, route times.  To solve that problem, the contribution of each line joining 
the stops and respecting specific condition was taken into account. 

The mean waiting time for a vehicle is 
i

i/30  and the mean route time is a 

weighted mean 



i
i

i
ii R




. But those multiple service formulas can not be applied in 

each case.  The question, for instance, is “if a line takes thirty minutes to join the 
destination stop and an other line takes forty-five minutes to reach the same stop, will 
the traveller take indifferently the first vehicle passing at the stop independently of the 
line or will he chose a specific line regarding the route time?”.  This question can be 
expressed as: ”if the traveller misses the vehicle of the first line that takes thirty 
minutes to join his destination will he take the second line that takes forty-five 
minutes but passes at the stop before the next bus of the first line?”.  The answer is 
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considered positive if the vehicle of the second line arrives at the destination stop 
before the next vehicle of the first line”.  The decision rule will thus be “the multiple 
service can be calculated if R2 R1+W1” [Table 1].  This decision rule amounts to the 
same thing as saying the traveller tolerates a greater difference in the route times if the 
frequency of the connections between his origin and destination stop are weak.  This 
way of acting is logical if we remark that most public transport users don’t know the 
exact passage time of the vehicles but have an idea of the frequency and the time 
necessary to reach their destination stop. They chose their line(s) with these 
parameters 

Table 1. Multiple service examples in the studied network (units: decimal minutes) 

W1 W2 R1 R2 Total1 Total2 Line 1x2 R1+T1 R2<R1+T1
12 and 75/G-88 Centre - Ans 2.73 12.00 16 23 18.73 35.00 19.52 21.46 no
75/ et 75/G Centre - Waroux 30.00 30.00 18 30 48.00 60.00 39.00 78.00 yes
88 and 75/ Centre - Alleur 10.00 30.00 27 15 37.00 45.00 31.50 47.00 yes
70-70/ and 74 Centre - Rocourt 7.50 30.00 16 16 23.50 46.00 22.00 31.00 yes

Lines

 

3.5. Global route time 

If the global route time is measured in minutes and the interval is one hour, the 
global route time, Gt, will be: 

 



c

i
i

i
ii

t

R
cG

1

30
2




 

With the condition Ri  R(fastest line)+T(fastest line). 

4. FINDING THE SHORTEST ROUTE AND ITS ALTERNATIVES 

4.1. Stops, boarding points and nodes 

The nodes of our network were defined in function of the boarding points. 
Those points are located at the places where users get on/off the vehicles.  This point 
is physically a station or, for instance, the signpost with the name of the stop and the 
lines serving it.  A stop is thus made of one or more boarding points sometimes 
located at a non-negligible distance.  When digitising the network, nodes have been 
created. Different cases are possible and can be represented by the four following 
ways [Figure 2]: 
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1. The stop is made out of two boarding points (one for each direction of the 
line for instance). Those points are in front of each other. One node has been created. 

2. Sometimes a stop is only made out of one boarding point (when the 
stop is only served in one direction for instance). 

3. The boarding points for each direction are located at a 
non-negligible distance. In this case we created a node for each boarding 
point. 

Figure 2. Stops, boarding points and nodes 

Cases

1 2 3 4

Legend

Line Node Boarding point  

4. Stops where different lines cross are particular cases. The stop has 
then generally more than two boarding points. Links are only possible in 
the same node (links involving walking are not considered). One node is 
thus created. Remember that a time of two minutes was imposed to make a 
connection. 

4.2. Missions and sections 

A line can have different routes [Figure 3]. The public transport lines have 
been divided in what we call “missions”. A mission corresponds to one and only route 
covered by a bus line from an origin stop to a destination stop. 

 

Figure 3. Public transport line and missions. 
Example: one line compounded by four missions 

Figure 4. Missions and sections. For instance: two 
lines following the same road, the first line stops at 
stops A and C, the second line at stops A, B and C. 

The boarding points of stop B are at a non-negligible 
distance two nodes are thus defined 
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The attributes of the sections are the mission running on them, their origin 
node, their destination node and the time necessary for the mission to cover them. 
Sections are thus directive and can be stacked [Figure 4]. 

4.4. Database 

The network is integrated in the database by two tables : the node tables with 
their name and coordinates and the section table with their code, the mission covering 
them, the origin and destination nodes and the time necessary for the mission to cover 
them. The data necessary to calculate the waiting time is the frequency. A table with 
the missions and their frequency has thus been created. 

Figure 5. Database 

Nodes Sections Missions
name code code

coordinate x mission code frequency
coordinate y origin node

destination node
covering time  

The studied network is compounded with 183 nodes, 853 sections, 21 lines 
divided in 53 missions. 

4.5. Finding for the shortest route and its alternatives 

The search for the shortest route and its alternatives has been done with a 
Turbo Pascal program. The program can solve the following problems: 
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- search for the shortest way and its alternatives (responding 
to the multiple service condition) between a fixed origin and a fixed 
destination, an origin and all the destinations and a destination and all the 
origins; 

- the search can be done at three degrees of complexity : 
direct links, direct links and links with one connection, and direct links and 
links with one and two connections. The search times increases obviously 
with the complexity. 

The program uses two data files deriving from the database.  A file with the 
node and the missions passing on it and another file with the missions, their frequency 
and the node served with the aggregated time from the origin. 

When an origin and a destination node are submitted to the program, the 
program searches the missions serving the origin node and the destination node in the 
corresponding table.  If one or more missions are common to the origin and the 
destination it means that there are one or more direct links.  Between those links, the 
program checks if they respond to the multiple service condition.  Therefore each 
link is compared with the fastest link in terms of global route time.  When the search 
includes the search of links with one connection, the program searches in addition to 
the direct links the nodes common to the missions serving the origin and the 
destination.  The links are kept if the sum of their route time is inferior or equal to the 
global time of the fastest link.  When the search is pushed to two connections, the 
program searches, (in addition to the direct links and the links with one connection) 
for each node served by a mission passing at the origin another mission serving this 
node and a node covered by a mission passing at the destination. 

At the end of the search the program produces a file with all the kept links.  
This file contains the total route time, the sum of the mean waiting times, the global 
time of each mission used to reach the destination, the mean waiting time of each 
mission, the origin node, the destination node, the connection nodes and the missions 
compounding the link.  Such files can be very bulky.  This is due to the fact that, in 
the case of links with one junction, each mission serving the origin node and the 
connection node is considered. 

This file is used by another routine proceeding in several stages.  First, the 
program applies the multiple service to the links with the same origin and destination 
nodes.  The multiple service is thus calculated on each piece of the trip (for instance: 
origin node to connection node and connection node to destination node).  The 
multiple service condition is not necessary anymore because it was applied in the 
previous program.  At the term of this stage data is obtained for each link.  The 
results distinguish between connection nodes. Among those results, only the best one 
is kept (the fastest one) since it is difficult to implant a multiple service formula 
between direct links and links with connections.  At the last stage a time for each 
node is obtained in the case of a search between the entire nodes and an origin or a 
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destination node. This time is the mean global route time from the origin to the 
destination [Table 2]. 

Table 2. Extract of the result file 

Origin Name X Y Dest Name Con Name Time
1 Al Trappe 231.5507 153.3931 47 Saint-Lambert 143 Français 41
2 Arsenal A 233.2845 152.7424 47 Saint-Lambert 32 Principale 31
3 Limbourg 234.7392 150.3085 47 Saint-Lambert 0 0 11
4 Lohest 233.0917 152.6292 47 Saint-Lambert 0 0 24
5 Lonay Ecoles A 233.3722 150.4124 47 Saint-Lambert 74 XIV Verges 53
6 Lonay Ecoles B 233.2577 150.4438 47 Saint-Lambert 20 Nicolay 31
7 Lys 233.8151 149.7507 47 Saint-Lambert 147 Henri Baron 21
8 Maison de retraite A 229.9982 151.4485 47 Saint-Lambert 141 Fort de Loncin 47
9 Maison de retraite B 230.0310 151.4373 47 Saint-Lambert 0 0 21

10 Makro A 231.6581 152.1255 47 Saint-Lambert 134 Expansion 62

 

5. WALKING TRIP 

The first an last stage of a public transport trip is generally done on foot.  
Travellers take the shortest way to a road and then take the shortest way to the nearest 
stop or at least the most interesting starting stop for their trip.  The time needed for 
the trip depends from one person to another but 5 km/h is mostly used. 

So the roads must be defined, the shortest way to the nearest road and to the 
nearest stop.  The roads have been digitised from an IGNB map at 1:25000th scale.  
The stops were transformed into nodes  and were located and digitised on the same 
source map. 

The time necessary to go from each point of the studied area to the nearest 
stop can be added to the global route time necessary to reach the destination by public 
transport or on the contrary to the global route time from the origin stop to the nearest 
destination stop. With these results a map of the distribution of the public transport 
offer is obtained. To reach the objective The IDRISI software specialised in raster 
spatial analysis was used. 

To obtain the time necessary for this part of the public transport trip, the 
distance between the travellers origin (or destination) point to the nearest stop must be 
known.  To find this distance , the distance between the road pixels and the nearest 
stop, and then the distance between the other pixels and the road pixels were 
calculated. 

To calculate the distance between the road pixels and the node pixels the 
COSTGROW algorithm was used. This algorithm creates a distance/proximity 
surface where distance is measured as the least effort in moving over a friction 
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surface. The distance is measured in "grid cell equivalents". A grid cell equivalent of 
5 indicates the cost of moving through a grid cell when the friction equals 1. Diagonal 
moving increase the distance with 1.41 grid cell equivalents. We created a surface 
friction where the cost to move through a pixel road is 1 and –1 for all the other pixels 
making them impermeable. The spreading is only possible through the routes. This 
way, the time to go on foot to the nearest stop is the time necessary to walk through a 
pixel. In our case the size of a pixel is 3x3 meters. A pixel is thus crossed in 2.52 
seconds at a speed of 5 km/h. 

When the distance is known IDRISI offers the possibility to attach each pixel 
to the nearest target pixel. That means that each pixel has the value of the attribute of 
the target pixel. In this case, the attribute is the global route time. The result of this 
operation is added by the SCALAR OVERLAY / ADD operation. An image with the 
global route time plus the time on foot for the road pixels is finally obtained. 

A similar operation is realised for the other pixels of the area. But the target 
pixels are now all the road pixels. The result image can be multiplied with a classified 
build/non-build image. The resulting image gives then only the values for the build 
pixels. This is more interesting since those pixels are the origin or destination points 
of the travellers. The whole IDRISI processing is exposed in the figure below. 

Figure 6. IDRISI processing 
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6. RESULTS 

6.1. Cases 

This paragraph details two concrete cases applied to a part of the urban 
network of Liège.  The realised maps are “from all the points to a specific destination 
stop” maps.  The destination point of the first map is a big terminus stop in centre of 
the town.  The phase chosen is the morning peak phase.  The destination point of the 
second point is a stop in the centre of a secondary pole.  The phase for this map is the 
afternoon off-peak phase. 

When creating such maps some node must be removed.  Indeed, the nearest 
node does not always minimise the route time to the destination.  When two boarding 
point of a same stop are at a certain distance two nodes were created [Figure 2].  The 
nearest node can thus be a node that is served by missions going in the opposite way 
compared with the destination.  All the links were examined and such situations have 
been eliminated.  

6.2. Analysis of the map concerning a terminus stop in the centre 

The stop concerned is the Saint-Lambert Square.  This square is the heart of 
the urban public transport system of the urban area.  Most of the bus lines covering 
the studied area have their terminus on this square.  A lot of other lines not covering 
our area start from there or from other nearby places.  The accessibility of this square 
is thus fundamental. Since this place is in the downtown area, measuring the square 
accessibility is measuring the accessibility of the town centre. 

Two axes are clearly visible: the Liège-Rocourt axis and the Liège-Ans axis. 
Those axis are covered by many bus lines. Some of these lines have a great frequency.  
As consequence, the mean waiting times do not exceed seven minutes. The map 
shows clearly the radial disposition of the network. The secondary poles have a good 
link with the centre. 

6.3. Analysis of the map concerning a stop in a secondary pole 

In this case the stop concerned is the Astrid Square in the secondary but 
important pole Rocourt. This map highlights the consequence of a radial arrangement 
of the network.  The zones near the Liège-Rocourt axis are at less than twenty 
minutes from destination.  The zones near the Ans-Rocourt link are at less than thirty 
minutes.  But the biggest part of the secondary pole, Ans, is more than thirty minutes 
away.  This is due to the fact that fastest links pass through the centre where a 
connection must be made.  
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Other areas near the destination are strangely at more than thirty minutes. Two 
reasons are at the origin of this.  First, we only considered links with one junction 
maximum.  This is justified by the fact that most of the users generally accept one 
connection maximum.  Secondly, we have assumed that the user goes to the nearest 
node to take the public transport, but in some cases it is more interesting to go on foot 
or at least to cover a bigger distance to have a better link. Anyway this case 
demonstrates that two lines (19 and 88) could be extended to the Liège-Rocourt axis 
to improve the accessibility to the destination. 

7.  IMPROVEMENTS AND FUTURE RESEARCH 

The objective was to establish a method that allocates a cost-time to all the 
points of a given area. This time represents the mean time from the points to a specific 
destination or from a specific origin.  Maps were conceived with this method and a 
analysis of the actual public transport offer has been done. 

The method in its actual shape has some limitations that could nevertheless 
beovercome 

Future developments of the algorithms should solve the problem resulting 
from comparing the connection speed of two routes to a third one (figure 7).  In its 
actual form, if the fastest line is line 1, the connection for line 2 will take place at the 
same connection node as line 1 (node 1) while line 2 is also crossing line 3 at the 
connection node 2.  This results in line 1 being advantaged over line 2 for connection 
with line 3.  

Figure 7. 
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The actual way for calculating the distance to the network is a simple buffering 
(figure 8 A).  As a result, neighbouring pixels might present big differences and the 
closest stop - time speaking- is not the one indicated by the simple buffer (figure 8 B).  
A way of improving the method consist in filtering the distance surface by a local 
filter.  The resulting distance surface should look like figure 8 C. 

Figure 8. 
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