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Genome-wide meta-analysisincreasesto 71 the number of confirmed
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Abstract

We undertook a meta-analysis of six Crohn's disgaeeme-wide association studies (GWAS) comprising
6,333 affected individuals (cases) and 15,056 otsand followed up the top association signats5y694
cases, 14,026 controls and 414 parent-offspring.tiVe identified 30 new susceptibility loci megtmenome-
wide significance® < 5 x 10°). A series oin silico analyses highlighted particular genes within tHeseand,
together with manual curation, implicated functibnateresting candidate genes includByIAD3 ERAP2
IL10, IL2RA TYK2 FUT2 DNMT3A DENND1B BACH2andTAGAP.Combined with previously confirmed
loci, these results identify 71 distinct loci wiflenome-wide significant evidence for associatiothh@rohn's
disease.

Crohn's disease (MIM#266600) results from the adton of environmental factors, including inteatin
microbiota, with host immune mechanisms in gentiyicaisceptible individuals. Along with ulceratigelitis, it
is one of the main subphenotypes of inflammatonyddalisease (IBD). Genome-wide association studies
(GWAS) have highlighted key pathogenic mechanisn@rohn's disease, including autophagy and Th17
pathways. A meta-analysis of these early scanddatpd 32 susceptibility loci but only accounted 26% of
the genetic contribution to disease risk, sugggstiat more loci await discoveryRecognizing that an
increased sample size would be required to ddiestt we expanded the International IBD Genetics
Consortium (IIBDGC), approximately doubling theabsery panel size in comparison with the first meta
analysis.

The discovery panel for the current study comprg883 individuals with Crohn's disease (cases)1&n056
controls, all of European descent, with data derivesh six index GWAS studies (for overview, see
Supplementary Table 1)®. Imputation using Hap Map3 reference data allougtb test for association at
953,241 autosomal SNPs. Our discovery panel had@Wer to detect variants conferring odds ratiod &kt
the genome-wide significance level®k 5 x 10°, assuming a minor allele frequency>@0% in healthy
controls. Underthe same conditions, the sampledSiper original meta-analysis had only 11% power

A guantile-quantile plot of the primary meta-stétisising single-SNP z-scores combined acrossaaipde sets,
showed a marked excess of significant associaffeusplementary Fig. 1). A total of 2,024 SNPs within 107
distinct genomic loci, including all previously dwedd significant hits from our earlier meta-anady@iable 1),
demonstrated association wit 10°. A Manhattan plot is shown Bupplementary Figure 2. We followed

up 51 of the regions, representing new loci assediatP < 5 x 10°, by genotyping the most significant SNPs in
an independent panel of 15,694 Crohn's diseass,cB$626 controls and 414 parent-offspring tricab{e 2
andSupplementary Table 2).

Variants within 30 distinct new loci met a genomiglevsignificance threshold &< 5 x 10° for association
with Crohn's disease in the combined discovery mp$ication panel, with at least nominal assocrath the
replication panelTable 2). Two additional loci, encompassi@ARD9andIL18RAP had previously been
reported as associated with Crohn's disease indidste gene studynd were here both replicated and
confirmed aP < 5 x 10°. Another five loci were identified at genome-wisignificance in GWAS published
subsequent to our replication experiment beinggehesi. One, th@UT2locus, was found in a recent adult
Crohn's disease GWASFour more (irZMIZ1and inlL27 at 16p11, 19913 and 22¢12) were identified in a
pediatric IBD population these identifications were replicated here in@urent sample set. Two further loci
had produced suggestive evidence of associatidnreilication in our earlier studyHere, these loci clearly
exceeded the genome-wide significance threshdldeiieta-analysis alone and, given the previodiegjon
evidence, were not followed up further. Thus, cuatiuély, 39 loci can now be added to the 32 cordiim
Crohn's disease susceptibility loci identifiedta time of our original meta-analysi¥Ve did not observe
statistically significant heterogeneity of the oddtos (Breslow Day teft < 0.05 after Bonferroni correction;
Supplementary Table 3) between the panels from our 15 different coust{@applementary Tables 1 and?2)
for any of the 71 loci, nor did we observe any ewice of interaction between the associated loci
(Supplementary Fig. 3).
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Table 1 Association results and in silico analyses for 3@viwusly confirmed Crohn's disease risk loci

dbSNP ID

Chr.

Left-right
(Mb)

Allele frequency

Risk
allele controls

in

P meta

OR (95% Cl)

Association reporte Positional candidate

with other
phenotypes

genes of interest

rs1120902¢ 1p31 67.13-67.54

rs2476601 1pl3

rs4656940 1g23
rs7517810 1924

rs7554511 1932
rs3792109 2q37
rs3197999 3p21
rs1174257(5p13
rs1252186¢ 5q31

rs7714584 5¢33
rs6556412 5¢33

rs6908425 6p22
rs1799964 6p21

rs6568421 6921
rs415890 6q27
rs1456896 7pl2
rs4871611 8924
rs1075866¢ 9p24
rs3810936 9qg32

113.66-114.4:

158.96-159.2(
170.92-171.2:

199.11-199.3:
233.81-234.2¢
48.16-51.73
39.88-41.00
129.41-132.0¢

150.01-150.3¢
158.43-158.8¢

20.60-21.25
31.49-32.98

106.50-106.6"
167.26-167.4"
50.22-50.34
126.54-126.6¢
4.93-5.29
116.47-116.7¢

rs1224211(10p11 35.22-35.94
rs1076165¢ 10921 63.97-64.43
rs4409764 10924 101.26-101.3:
rs7927997 11913 75.70-76.04
rs1156425t12q12 38.42-39.31
rs3764147 13q14 43.13-43.54
rs2076756 16912 49.02-49.41

rs2872507 17921 34.62-35.51

rs1187180: 17921 37.57-38.25
rs1893217 18pll 12.73-12.92
rs740495 19p131.04-1.13

rs1736020 21921 15.62-15.77
rs2838519 21022 44.41-44.52
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0.932 1.00 x 10

0.907

0.801
0.246

0.726
0.529
0.297
0.606
0.422

0.088
0.332

0.784
0.209

0.301
0.522
0.69

0.609
0.349
0.682
0.315
0.538
0.492
0.389
0.025
0.245
0.26

0.458

0.756
0.153
0.247
0.579
0.391

4.47 x 10

6.17 x 10/
1.51 x 10"

1.58 x 10/
6.76 x 10"
6.17 x 10
7.08 x 10
1.41 x 10°

7.76 x 10°
5.37 x 104

1.41 x 10°
3.98 x 101

4.37 x 16
2.51 x 10"
1.20 x 1¢°
1.51 x 102
1.00 x 10
1.00 x 10"
1.10 x 10°
4.37 x 162
2.29 x 167°
5.62 x 10"
6.17 x 10
1.41 x 10
3.98 x 10°

1.51 x 10°

2.51 x 10°
1.29 x 104
8.13 x 10
9.33 x 10
2.09 x 10t

2.66 (2.36-3.00, UC, AS, Ps, PBC, GCIL23R

1.26 (1.17-1.37) TID? RA, SLE, Ps,

1.15 (1.09-1.21)

1.14 (1.08-1.19)
1.34 (1.29-1.40)
1.22 (1.16-1.27)
1.33 (1.27-1.39)

1.37 (1.28-1.47)

1.18 (1.13-1.24) Ps, SLE, malaria,

1.17 (1.11-1.23)

1.13 (1.07-1.18)
1.17 (1.12-1.22)

1.14 (1.09-1.20) AD, SLE, MCV, ALL

1.17 (1.12-1.23)
1.18 (1.13-1.23)

1.21 (1.15-1.27) UC, leprosy, SpA

1.15 (1.10-1.20)
1.23 (1.18-1.29)
1.22 (1.17-1.27)
1.17 (1.12-1.22)
1.74 (1.55-1.95)
1.17 (1.12-1.23)

BD
PTPN22
Vitiligo? AITD
SLE, RA CD244, ITLN1
1.22 (1.16-1.28) HepC, SLE, SSc, T2[ TNFSF18, TNFSF4,
FASLG
UC, celiac, MS Clorf106, KIF21B
uc ATG16L1
uc MST1, GPX1, BSN
MS PTGER4
1.23 (1.18-1.28) Ps, fibrinogen, asthm SLC22A4, SLC22A5,
TB, UC IRF1,IL3
B IRGM
1L12B
asthma
T2D, Ps, UC CDKAL1
1.19 (1.13-1.25) Multiple including UC LTA, HLA-DQA2,TNF,
LST1,LTB
SLE, RA PRDM1
RA, Graves CCR6
IKZF1, ZPBP, FIGNL1
UC, MPD JAK2
TNFSF15, TNFSF8
uc CREM
BC ZNF365
uc NKX2-3
Atopy? C1liorf30
PD, leprosy MUC19, LRRK2
Leprosy C13o0rf31
NOD2

1.53 (1.46-1.60) Leprosy, atopy, Blau,
1.14 (1.09-1.19) Asthma, UC, PBC,

1.15 (1.10-1.21) MS?, obesity, HIES

1.25 (1.18-1.32)
1.16 (1.10-1.21)
1.16 (1.11-1.21)
1.18 (1.13-1.23)

GvHD
T1D, RA, WBC
TID? celiac

ucC
Celiac, UC

GSMDL, ZPBP2,
ORMDLS, IKZF3
MLX, STAT3
PTPN2

GPX4, SBNO2

ICOSLG

The table reports new data for loci confirmed ia #arlier meta-analysid_eft-right association boundaries are given fmrteindex SNP
(NCBI's dbSNP build vI30; see Online Methods). Asations with other relevant traits were identifiggla literature search using the US
National Institutes of Health catalog of genomeavissociation studies and the HUGE database (netsif** Candidate genes of
interest are listed. Those in bold were highlighigéh silico analyses (GRAIL connectivity, presence of an eQffeat with LOD> 5.0 or
implicated coding SNP; see main text @upplementary Table 6 for more details). Loci tagged by rs4656940 an®54B11 previously
replicated strongly (at 0.00048 and 2.3 ¥ téplicated previously, respectivéyand still pass genome-wide significance on cothin
analysis. UC, ulcerative colitis; AS, ankylosingsgylitis; Ps, psoriasis; PBC, primary biliary tiosis; T1D, type 1 diabetes; RA,
rheumatoid arthritis; SLE, systemic lupus erythersas; T2D, type 2 diabetes; MS, multiple sclero&[3; Alzheimer's disease; MCV,
mean corpuscular volume; ALL, acute lymphocytidiemia; SpA, spondyloarthritis; PD, Parkinson's @& AITD, autoimmune thyroid
disease; BC, breast cancer; BD, Behcet's dised3eg&ktric cancer; HepC, hepatitis C susceptibiBiyc, systemic sclerosis; MPD,
myeloproliterative disease; TB, tuberculosis; GvigEaft versus host disease; WBC, white blood aalint; HIES, hyper immunoglobulin E

syndrome.

@Association in the opposite direction in differératits.
®|_oci with more than one independent association
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Table 2 Association results and in silico analyses for 3@Igeconfirmed Crohn's disease risk loc

Chr. Left-right Risk Allele Preta Prepl. Pcomb. OR (95% Cl)  Association Positional
(Mb) allele frequency reported with candidate gene
in controls other phenotype of interest
1p36 7.66-7.89 A 0.9 2.69 x 10 1.40 x 1¢ 7.10 x 10 1.05 (1.01-1.10) Celiac VAMP3
1922 153.24-154.3¢ A 0.25 1.29x 10 2.70x 1 2.30 x 10 1.13 (1.06-1.1%) T2D, asthma, PD SCAMP3, MUC1
1931 195.58-196.2: G 0.302 490 x10 1.60 x 107 8.70 x 1 1.04 (1.00-1.09) Asthma DENND1B
Ig32 204.87-205.1( T 0.157 8.32x10° 1.50x 10 1.60 x 10 1.12 (1.07-1.17) T1D, UC, SLE,  ILW,IL19
2p23 25.30-25.46 G 0.326 1.41x 10 5.90x 10" 8.50 x 10'° 1.06 (1.03-1.10) DNMT3A
2p23 27.24-27.71 T 0.418 1.10x 1¢* 3.30 x 16 4.70 x 10"* 1.15 (1.10-1.21) CRP, glucose, TG GCKR
2p21 43.30-4380 T 0.129 7.70x 16 290 x 1¢ 1.60 x 10" 1.14 (1.09-1.26) T2D, PC THADA
2p1€ 60.77-61.74 T 0.42 6.61x 10 N/A N/A 1.14 (1.09-1.19) RA, UC, celiac  C2orf74, REL
2q1Z 102.17-102.67 G 0.231 1.58 x 10" N/A N/A 1.19 (1.14-1.26) Celiac, asthma, |L18RAP,
IL12RL2,
IL18R1, ILIRL1
2033 197.85-198.67 A 0.473 1.82 x 10 1.60 x 10 3.50 x 1 1.06 (1.02-1.11) PLCL1
2q37 230.76-230.9¢ T 0.187 457 x10 7.40x1¢ 3.10 x 10® 1.12 (1.07-1.18) SP140
3p24 18.58-1886 A 0.322 8.20 x 10 1.00 x 1¢° 6.70 x 10 1.08 (1.03-1.13)
5ql3 72.49-7262 A 0.600 2.00x 1F 6.40 x 10 5.90 x 10 1.12 (1.07-1.17)
5q15 96.11-96.45 C 0.409 4.47 x 10 2.00 x 16° 1.10 x 10*° 1.05 (1.02-1.09) AS, PD, T1D, PE1ERAP2, LRAP
5031 141.39-141.6: C 0.796 1.10x 1 4.20x 10° 2.00 x 1 1.06 (1.02-1.11) NDFIP1
5q35 173.15-173.47 T 0.571 525x 10 3.30 x 1P 2.50 x 10" 1.08 (1.04-1.12) CPEB4
6p25 3.35-3.41 T 0.639 6.16 x 10 3.10 x 10" 6.70 x 10 1.10 (1.05-1.16)
6ql5 90.86-91.14 G 0.658 3.63x1¢ 1.40x 10" 5.10x 10 1.07 (1.03-1.11) BACH?2
6025 159.26-159.4¢ G 0.393 1.41 x 10 2.40 x 1 2.30 x 10"* 1.10 (1.05-1.14) RA, celiac, TID TAGAP
8g24 129.56-129.67 T 0.865 2.29 x 1P 2.40 x 10" 3.90 x 10'® 1.23 (1.17-1.30)
9g34 138.27-1385: T 0.411 4.37 x 10*° 1.50 x 10° 1.30 x 1 1.18 (1.13-1.22) CARD9,
SNAPC4
10p15 6.07-6.21 C 0.852 8.51 x 10 520 x 10 2.90 x 1¢ 1.11 (1.05-1.16) MS, T1D, vitiligo, IL2RA
RA, AA, asthma,
10921 59.50-59.81 C 0.774 1.41x 10 1.10 x 10*° 9.10 x 10" 1.19 (1.13-1.25) AD UBE2D1
10g2Z2 80.67-80.77 G 0.669 2.00 x 10°° 7.30 x 167 1.10 x 10®° 1.19 (1.15-1.23) Celiac, MS, ZMIZ1
vitiligo, ESC
11912 61.28-61.44 ¢ 0.341 7.24x 10 1.70 x 1 2.30 x 10"* 1.08 (1.04-1.12) CAD, dyslipidemic FADSL
11913 63.58-64.05 A 0.626 3.38x 10 3.50 x 10* 6.00 x 10'° 1.10 (1.05-1.16) AA PRDX5, ESRRA
13q14 41.72-42.00 G 0.346 2.00x1¢ 5.70x 10 4.90 x 10° 1.10 (1.05-1.15) BMD, RA TNFSF11
1424 68.23-68.39 G 0.584 2.00 x 10 4.50 x 1 1.60 x 10'° 1.07 (1.11-1.04) Celiac, T1D ZFP36L1
14935 87.28-87.71 T 0.119 1.29 x 1 5.90 x 10"* 4.20 x 10'® 1.23 (1.16-1.3P) GALC, GPR65
15022 65.20-65.27 T 0.233 1.41 x 10 2.00 x 16 2.70 x 10'° 1.12 (1.07-1.16) CAD, T2D SMAD3
16plf 28.20-2894 G 0.386 1.10 x 10°° 1.20 x 16 1.50 x 10"* 1.07 (1.03-1.12) T1D, obesity, |L27, SH2B1,
asthma, CRC,  EIF3C, LAT,
SLE,RA,IBD  CD19
17912 29.51-29.70 A 0.723 1.70 x 10° N/A N/A 1.20 (1.14-1.26) HIV resistance ~ CCL2, CCL7
19p13 10.26-10.50 G 0.084 9.20 x 10°° 1.90 x 1¢° 1.40 x 10** 1.12 (1.06-1.1%) T1D, SLE, MS,  TYK2, ICAM1,
ICAM3
19g13% 38.42-38.47 T 0.612 2.69x10 2.00x10 8.70 x 10 1.06 (1.02-1.11)
19g13% 53.78-53.97 A 0.487 8.60 x 10° 5.20 x 1 7.40 x 10" 1.07 (1.04-1.11) B12, norovirus, HI FUT2, RASIP1
20q13 61.65-61.95 G 0.709 2.51 x 10 4.60 x 10 2.70 x 10" 1.12 (1.06-1.18) Glioma RTEL1,
TNFRSF6B,
SLC2A4RG
22qll 20.14-2039 T 0.203 6.31 x 10" 2.30 x 1P 4.80 x 10'° 1.10 (1.06-1.15) RA, celiac, SLE, YDJC
22q1F 28.23-29.00 C 0.471 570 x 10 8.30 x 1C° 7.30 x 10" 1.08 (1.04-1.13) IBD, T1D MTMR3
22g13 38.00-38.14 C 0.830 1.70 x 10° 9.50 x 10 1.10 x 107® 1.23 (1.17-1.29) MAP3K7IP1

The table lists Crohn's disease susceptibility tesily identified since the first meta-analysigth P< 5 x 10° in the combined analysis

(discovery plus replication sample) aAck 0.05 in the replication stage. Seven of theseHage previously been reported (see below).
Column headings and abbreviations are as desdribeable 1. Additional abbreviations are as follows: CRC, celdal cancer; CRP, C-

reactive protein; TGs, triglycerides; PC, prostaacer; HSV, human simplex virus; CAD, coronargprtdisease; CLL, chronic
lymphocytic leukemia; BMD, bone mineral density; B%erum vitamin B12 levels; HPglicobacter pylori;AA, alopecia areata.

3 oci with more than one independent associaflooci that previously showed suggestive associaiuh replicatiohbut not at genome-

wide significance’lL18RAPandCARD9associations were reporfetut not previously at genome-wide significarféessociation in the

opposite direction in different traitd.oci previously reported at genome-wide significaint GWAS published subsequent to design of the
current replication experimexft
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Regional association plots of all 71 susceptibllityi, includingthe underlying genes, are showdetail in
Supplementary Figure 4, and complete genotype data, including odds ratiaksallele frequencies, are shown
in Supplementary Tables 3 and4. Five loci showed evidence for more than one inddpetly associated
variant Table 2). Although six of the 30 newly discovered regi@estain just a single gene, which is thereby
strongly implicated in Crohn's disease pathogern&zigexample SMAD3 NDFIP1andBACH2, 22 of these
regions include more than one gene within the aagtastinterval Table 2). We thus applied additional silico
analyses to refine the list of functional candidggees further. These analyses were (i) interrogaif a

publicly available expression quantitative traitileeQTL) databagewhich identified genes for which
expression correlates with genotype at our mosicésted SNPupplementary Note), (ii) use of 1000
Genomes Project Pilot sequence data and HapMap3dalatentify genes containing non-synonymous vasia
in strong linkage disequilibriumr{> 0.5) with the focal SNP within each region (fmtails on coding SNPs, see
Supplementary Table 5) and (iii) use of GRAI to identify non-random and evidence-based corvigcti
between the genes in the 71 confirmed Crohn's skisleai. Specifically, GRAIL evaluates each gendinita
Crohn's disease-associated locus for non-randoralation with genes in the other 70 loci throughrdvasage
in PubMed abstracts related to the gef¥ig.(1).

Figure 1 Gene relationships across implicated loci (GRAIL)wey analysis. Links between genes at 23 of 71

Crohn's disease-associated oci which scored P 4 Q€ing GRAILSpecifically, of the 71 Crohn's disease-associated
SNPs, 69 are in linkage disequilibrium intervalstaining or within 50 kb of at least one gene.dtal, there were 355 genes implicated by
proximity to these 69 SNPs. Each observed assoniatas scored with GRAIL, which takes each genepimgpwithin Crohn's disease-
associated intervals and evaluates for each whitisemon-randomly linked to the other genes tigtoword usage in PubMed abstracts.
The 23 SNPs shown in the outer circle are signifieaP < 0.01, indicating that the regions which they ¢agtain genes which are more
significantly linked to genes in the other 68 regidhan expected by chance at that level. The beéseen genes represent individually
significant connections that contribute to the pesisignal, with the thickness of the lines beimgersely proportional to the probability
that a literature-based connection would be seerhbyce. To accurately assess the statisticalffisignée of this set of connections, we
conducted simulations in which we selected 1,0@9 ae69 SNPs implicating in total 355 genes + #8ep (5%) (selecting the SNPs
randomly and using rejection sampling, only taKists that implicated the same number of geneg)hE@ those 1,000 sets was scored with
GRAIL. The mean number &f < 0.01 hits in a simulated list was 0.91, with again the 1,000 sets from O to 11, suggestingttieat
likelihood of observing 23 hits witR < 0.01 is far less than 0.1%.

| rsa024505

"\rs?_(!fvﬂt‘r@o
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Summary results of these analyses are shown inghinost column offable 1 andTable2 and in
Supplementary Table 6. Highlighted genes are described briefl\Biox 1, as are genes that constitute
particularly noteworthy candidates from intervadsitaining one or few genes. Although we believe these
evidence-based approaches are helpful in idengflikely functional candidates, in some instandies,
different techniques highlight different genes.sTteflects uncertainty as to which genes are caunshl
emphasizes the need for functional studies.
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We identified 30 new signals here beyond thoseriestin the earlier meta-analysand other subsequent
publications. The discovery of these new associatigas driven primarily by increased power arigiogn the
expanded sample size rather than improved impuatadi® more than two-thirds of the newly discovédoed
have good proxieg{> 0.8) on both generation arrays used in theeastudies (lllumina 300K and Affymetrix
500K). Extending this argument beyond the curreatysis, it seems likely that many more loci of resid
effect size still await discovery.

For many of the loci, associations have been redgiteviously in other complex diseases, comprigingtly
chronic inflammatory disorder3 ébles 1 and2). Such diseases can cluster both within familiesvaitizin
individuals, reflecting shared genetic risk factdtsr example, IBD and ankylosing spondylitis carsegregate
and both are associated witt23R (refs. 2,10) and NFSF15(refs. 11,12). Thél.10 locus was previously
associated with ulcerative colittsand was identified as a new Crohn's diseaseaisks|here. Thusl 10is a
generic IBD locus, which is a functionally intuiéifinding of potential therapeutic significance.

For loci previously associated with other inflamorgtdiseases, the direction of effect in Crohnéedse is
usually the same; however, in five instances, idleallele for one disease appears to be protettia@other
disease (see arrow symbol in the reported assoeietiiumn inTables 1 and2). In most such instances,
functional annotation suggests modulation of T cafid other immune pathways. Indeed, GRAIL highBggnt
number of such genes. These inverse associationsaftect overlap in the pathways by which the host
regulates effector functions in defense and regojdtinctions in self tolerance. This is a delicatéance and,
in the face of competing requirements, selecti@sgures may have conferred an advantage for divestieles
in a cell- and environment-dependent manner.

The associated SNP rs281379 at 19q3, also redeethyified in another studyis highly correlatedrf > 0.80)
with a common nonsense variant (rs601338, also kramswc.428G>A or p.Trpl42X) BUT2 This is
classically referred to as the non-secretor varasitndividuals homozygous for this null allelerdx secrete
blood group antigens at epithelial surfaces. Régembn-secretors were identified as having neanuete
protection from symptomatic Gll.4 norovirus infextt!, and the same null allele is identified here @sla
factor for Crohn's disease. This suggests one pakehisive link between infection and immune-méslia
disease.

In contrast to the implication of coding variationFUT2, our previous data showed that most Crohn's disease-
associated SNPs were not in linkage disequilibrivith coding polymorphisnis suggesting that regulatory
effects are likely to be a more common mechanisdisgase susceptibility. Providing further direddence

for this, we here identified a number of new eQTleef$ Table 2 andSupplementary Note), including
CARD9(log;o odds score (LOD) = 12.4ERAP2(LOD = 47.2) andrNFSF11(also known aRRANKL) (LOD =

5.9). The latter maps adjacent to but outside sise@ated recombination interval, suggesting amgibtential
long-rangecis-regulatory effect as previously describedPIIGER4in Crohn's disea$eRANKL has

pleiotropic immunological effects and also stimetabsteoclast activity. This finding may be relewtarthe
osteoporosis clinically associated with Crohn'sase.

Given the importance of regulatory effects, itadable that variants within the gene encoding arkegiator of
epigenetic regulatiorDNMT3A(the DNA methyltransferase 3A gene), should becatad with Crohn's
disease. By inducing transcriptional silencing, DNBA is known to play an important role in
immunoregulation. For example, DNMT3A methylatesdlland IFNy promoters following T-cell-receptor
stimulation, hence regulating T-cell polarizafiyrand induces dynamic regulation of TNRranscription
following lipopolysaccharide exposure in leukocyteG€enetically determined alterations in DNMT3A it
could thus have far-reaching effects.

The 32 loci described up until 2008 explained apipnately 20% of Crohn's disease heritability Addthg 39
loci described since that time increases the ptagroof heritability explained to only 23.2%. Thiatgern of
common alleles, explaining a logarithmically desieg fraction of heritabilityKig. 2), is consistent with a
recent model of effect size distributiépwhich predicted (based on the previous Crohrseatie meta-analysis)
that our current sample size would likely idend® new loci. Furthermore, it is likely that morghifrequency
Crohn's disease risk alleles of even smaller effieet remain unidentified: the same model predicis 140 loci
would be identified by a sample size of 50,000,these loci would explain only a few more percdn€mhn's
disease heritability. It is clear, therefore, taager GWAS alone will not explain all of the misgiheritability

in Crohn's disease.
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Box 1 Noteworthy genes within loci newly implicatedCiohn's disease pathogenesis

Although we highlight these as interesting genesda not yet have data to confirm causality.

m VAMP3 (1p36) encodes vesicle-associated membrane p&it€iollowing bacterial stimulation of TNé&-
production within macrophages, VAMP3 interacts VBIRARE proteins first on the trans-Golgi network,end TNF-
o is taken up, and then on the cell membrane, whfe is releaself. VAMP3 also plays a role in cell migration
and adhesion by trafficking molecules sucllastegrin to the cell surface, and it has beenlicaped in autophad?.
= MUC1-SCAMP3 (1g22).MUC1 encodes a key constituent of mucus, which is tlysipal barrier that protects the
intestinal epithelium from gut bacteria. MUC1 owareession and hypoglycosylation have been repant¢8D?, and
Mucl knockdown mice exhibit increased small inteatidamage afteE. jejuniinfectiorf®. Secretory carrier
membrane protein 3 (encoded B¢AMP3 regulates EGFR trafficking within endosomal membsit It is
manipulated by intracellular salmonellae to acquin&rients and influence host immune respofises

m DENND1B (1g31) has recently been associated with asthamal is expressed in dendritic and natural kiltisc
DENN-containing proteins influence MAP-kinase sigmglpathways and DENND1B, in particular, has been
predicted to interact with TNFR1.

m |L10 (1932). Association with Crohn's disease followgsrécent implication in ulcerative colitisand the reporting
of mutations in théL10 receptors in extreme Crohn's disease in infané&nown to inhibit synthesis of pro-
inflammatory cytokines within macrophages and Tils; IL-10 also suppresses antigen-presentingacéiity.
Knockdown of IL-10 in mice presents one of the lz8ial models of IBD.

= DNMT3A (2p23). DNA methyltransferase 3A is one of threg keethyltransferase genes in humans, effecting
epigenetic regulation of gene transcription by mietting cytosine residues within CpG islands. Amomany other
roles, this protein is known to determine dynareiguiation of both adaptive and innate immune meishasr*°

m GCKR (2p23) encodes an inhibitor of glucokinase, with ihcal SNPs at this locus also correlating witthbo
fibrinogen and CRP levéls

m THADA (2p21) is expressed in the small intestine and aispe encode a death receptor-interacting protein,
suggesting an apoptotic functfén

m ERAP2 (5g15). Regulated by NEB, this gene encodes one of two human endoplagtiatilum aminopeptidases,
which work in concert to trim peptides for pres¢iotaon MHC class 1 and hence critically affectigen presentation
to T cell€®. Ankylosing spondylitis is associated with thisus, but with a different pattern of associatedaras”.
Given the close clinical relationship between Crsliiisease and ankylosing spondylitis, and thexgtassociation of
HLA-B27 with the latter but not with the former, thevergent association of these closely relatecemdeés is
intriguing and will refocus interest on the MHC dal associations in Crohn's disease.

m NDFIP1 (5g31). Nedd4-family interacting protein 1 is a niieeme protein involved in maintenance of the Golgi
complex™. It is important for protein trafficking througlx@somes and may play a role in rapid sequestration
removal of proteins during stréés

m CPEB4 (5g35) encodes a regulator of protein translatimh@ell division and is a transcriptional targeR@Ryt.
Mouse work suggests that the produc€HEBA4is the effector by which ROR (a key determinant of Thi7 cell
differentiation) inhibits proliferation of thymoag$”.

m TAGAP (6g25) T-cell activation GTPase-activating protein, assedatith multiple autoimmune diseases, was
originally identified through its involvement in man T-cell activation and co-regulation with IL+2f( 24).

m |L2RA (10p15) encodes part of the IL-2 receptor comptlexs mediating IL-2 signaling in host defense and
regulating response to autoantigens by Tregs. Tdermded variants correlate with differential exgsien of IL2RA
(CD25) on CD4 naive and memory T ceffspossibly affecting Foxp3Treg homeostasi

m FADS2 (11g12). Fatty acid desaturase 2 is predominaatgted in the endoplasmic reticulurads2knockdown
mice develop duodenal and ileocecal ulcerdfion

m TNFSF11 (13g14), also calleRANKL (receptor activator of nuclear factor kappa B) @aF (osteoclast
differentiation factor), encodes a member of thé=Tdytokine family. RANKL stimulation of dendriticetis leads to
proliferation of naive T cells and inducible Tr&4t also regulates osteoclast activity and boss.|@revious studies
have demonstrated increased plasma levels in Grdisgas®.

m SMAD3 (15g22). Phosphorylated following T@¥signaling through its receptor, the SMAD3 protegmplexes
with SMAD4 and is then translocated to the nuckeusmiodulate target gene expression. SMAD3 playsyaréle in
the TGFB-mediated induction of Foxp3egulatory T cel€, with SMAD3 deficiency reciprocally enhancing Thi7
Reduced SMAD3 phosphorylation has been observiDrand may impair the immunosuppressive effectGF-.
m TYK2 (19p13) encodes tyrosine kinase 2, a member afAkesignal transduction family. It is involved iytokine
signaling by IFNy, IL-12 and IL-23 among others, hence affecting didl Thl7 lineage development. TYK2 also
plays an important role in TLR-mediated responsetemmdritic cells, including IL-12 and IL-23 prodigst, andTYK2
mutations predispose to opportunistic infectfon

m FUT2 (19913) encodes-(l,2)fucosyltransferase, which regulates expressiathe Lewis ABO (H) histo-blood
group of antigens on the surface of epithelialscefid in body fluids. lis strongly associated with Norovirus infecti
as well as with wittHelicobacter pylorinfection and serum vitamin B12 lev&té?
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One key shortcoming of our current model of heiitigbexplained by these loci is a direct consequeeaf the
extent to which GWAS tag SNPs are often imperfeokies for causal alleles and thus substantially
underestimate the true attributable risk. For eXantpe best tag SNP at theD2locus in our meta-analysis
appears to explain just 0.8% of genetic variandereas the thradOD2 coding mutations themselves account
for 5%. If an analogous situation applies to evemall fraction of the other 70 Crohn's diseaseejutibility

loci, the proportion of overall heritability exptead will increase substantially. Indeed, one sifdinkage
disequilibrium between tag SNPs and causal variarttse heritability of human heigfitsuggests that this
effect might double the total fraction of heritatyilexplained by GWAS SNPs. Coding variants idéedtere
from the 1000 Genomes Project that are in strarigafie disequilibrium with the focal SNPs in sevefabur
regions Bupplementary Table 5) thus now require direct assessment in order pboex this possibility.

Figure 2 Cumulative fraction of genetic variance explaingd7ti Crohn's disease risk loChe loci are ordered from
largest to smallest individual contribution. Blgaints were identified pre-GWAS, green points waeatified in the first generation

GWAS, blue points were identified in an earlier manalysis, and cyan points were identified in #nialysis. The inset shows a logarithmic
fit to these data extrapolated to an extreme siendrere 20,000 independent common alleles areciged with disease. Even in this
situation, less than half of the genetic variancelld be explained. This demonstrates that othesyyf effect (for example, low frequency
and rare alleles with higher penetrance) must edsst.
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Other factors will also account for the heritailifap, including uncertain epidemiological estirsaiédisease
prevalence and total heritability, as well as dogservation that several of the new regions contare than one
independent risk allele. The likelihood is that mmamore such effects will be identified. Indeed,adled future
analyses will play a key role in helping us to wistend the absolute contribution of common causzlks, as
well as in identifying lower frequency variants aiatle (even family-specific) mutations. By contrastr lack of
evidence for epistasis among the loci described begggests that non-additive interactions amongroamrisk
alleles do not play an important role in the genatchitecture of Crohn's disease.

The current study has approximately doubled the murabconfirmed Crohn's disease susceptibility.l&cir
many of these loci, we have identified potentialyisal genes, though confirmation of their role trausait
detailed fine mapping, expression and functionadisss. Although the alleles detected only modesfigct
disease risk, they continue to enhance our undhelisigy of the genetic etiology of Crohn's diseasmKing for
evidence of sub-phenotype associations represerntsportant future goal for the consortium. Thus,ane
working toward sharing detailed genotype and céihétata to allow this. In the meantime, extensive
resequencing, together with large-scale fine mappkercises using custom array-based technolagiekgady
underway and will further elucidate the pathogenéchanisms of IBD.

URLs. Evoker v1.0, http://www.sanger.ac.uk/resources/sni/ evoker/.

ONLINE METHODS

Note: Supplementary information is available onMeture Genetics website.
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Study subjects

All study subjects were of European origin. The araalysis was based on data from 6,333 Crohnastise
cases and 15,056 controls derived from six inderoges-wide scans from Germany, Cedars-Sinai Medical
Center (Los Angeles, California, USAjhe CHOPSTICKS consortium (of early onset casesid the
NIDDK “, Wellcome Trust Case Control Consortium (WTC@nd Belgian-Frenétstudies. Details of the
numbers of cases and controls genotyped in thecésp scans and of the genotyping platforms usedjiaen
in Supplementary Table 1. The methods of ascertainment of the GWAS cohagsyell as of quality control
procedures applied, were provided in the aforernartl original publications. The GWAS set from Gengna
has not yet been published but used standard netiathta filtering, removing samples with >1% nimgs
genotypes and using PLINK to identify samples withess allele sharing (hence removing duplicates and
retaining only one individual from pairs or grougfselatives) and to detect population structulemang
removal of outliers identified by principal compaon® analysis.

Details of the replication panel of 15,694 caseas Bh026 controls plus 414 parent-affected offgptiios are
provided inSupplementary Table 2. As with the GWAS subjects, the replication casesvescertained in
major IBD centers using standard clinical, endograpdiological and histopathological criteria ftiagnosis of
Crohns disease. Each center supplying cases alptiexlijts own panel of controls. The controls foe Cedars-
Sinai study were obtained from the Cardiovasculealth Study (CHS), a population-based longitudstadly of
risk factors for cardiovascular disease and stiolelults 65 years of age or older, recruited at feld

center§’. Five thousand two hundred and one individualsewecruited in 1989-1990 from random samples of
Medicare eligibility lists, followed by an additiah687 individuals recruited in 1992-1993 (tatat 5,888).

All participating centers received approval fromitHocal and national institutional review boardad
informed consent was obtained from all participants

Imputation

GWAS imputation was carried out using BEAGE® and the HapMap3 reference samples from the CEU, TSI
MEX and GJT collections, with the exception of thdyeanset samples, which were imputed using the MAC
program and the HapMap2 CEU reference samples. Wieatéorward a set of 953,242 autosomal markers
(HapMap3 X-chromosome data were not available)ulese polymorphic in at least one GWAS dataset for
association analysis.

Test for association

We used genotype probabilities and empirical vaearto summarize the standard 1 degree-of-freetlele-a
based test for association as a z-score within sea and combined the scores across all six dat@seersely
weighted by variance) to produce a single metassitafor each SNP. Odds ratios for replicated SiNEese
estimated jointly from all case-control replicatidata available. Genomic positions were retrievethfNCH's
dbSNP build vI30. Linkage disequilibrium regionsand focal SNPs were defined by extending the retgion
the left for 0.1 cM or until another SNP with< 10° was reached, in which case the process was repkeare
this SNP. Right-hand boundaries were defined irstirae way.

Notably, the 'belge' and 'cedar2' GWAS collectisingwed more pronounced inflation than the other six
collections Gupplementary Fig. 1). Three lines of evidence suggest that populatiarctire in these
collections is not driving the association at olildci: (i) the principal component analysis-cotegtassociation
analysis of the belge and cedar2 samples implasstme of the inflation is due to population sficgtion (the
belge inflation decreased from 1.2 to 1.15 anccdar2 decreased from 1.30 to 1.05 after contrahi®
principal components). Under the null hypothes# il association signals were driven by thistsication,

we would expect a consistent decrease in signifieat our 71 loci after correction. By contrast)@&8 become
more significant in the belge subset and 37 locbbge more significant in the cedar2 subset afteection,
whereas th® values of the remaining loci did not change sigaifitly. This is especially noteworthy because
the additional degrees of freedom in the corretgstireduced power on average, and this evideraagby
affirms that the signals at these 71 loci are drivg disease association and not by confoundingné&arly all
SNPs, the change before and after corrections maB €upplementary Table 3). (ii) The belge and cedar2
panels only represent 11% of our GWAS sample, ngakidifficult for them to drive associations inetifull
meta-analysis. We also tested for heterogeneitydds§ ratios across all collections and found noitant
differences after correcting for 71 tesEsipplementary Table 3). (iii) Some of the overall study inflation is due
to true disease signal because the inflation faitoreases from 1.27 to 1.24 after excluding tlevknloci
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(with many more to be identified in the future).
Replication

We selected the most significantly associated SN £ach region that was taken forward to replicatind
carried out genotyping according to standard patoassociated with platforms describe®ipplementary
Table 2. Samples with > 10% missing data in any experimesre excluded from further analysis.

The following additional quality controls were amgalito the data before the association analysisis{ijl
and/or manual inspection of each cluster plot, idjghe genotype assignment and cluster sepanatoa
manually checked. For the Sequenom data, we usekeEv1.0 (see URLE)to examine the cluster plots. For
SNPlex, genotype assignments were verified visumlgg the GeneMapper 4.0 (Applied Biosystems\saft,
and for TagMan, we used the SDS v2.3 progam (Ap@iedystems). The aim of examining a cluster ot i
twofold: to determine whether a given SNP has lggsotyped well (in particular, whether clear distiolusters
can be identified on the plot that would corresptmnthe three genotypes) and to determine whetteecdlling
algorithm has called the clusters correctly. Ifthot these requirements were fulfilled, as genotyquants can
usually be assumed to be sufficiently accurateotf any observed disease association of such ang&tyfbe
due to incorrect genotype counts, (ii) Call raten@type success rate) in each case or control gesegier than
95%. (iii) Hardy-Weinberd® > 10“ in each healthy control sample.

Replication and joinP values were calculated using the weighted z statisscribed above.
Heritability analyses

We estimated the fraction of additive genetic vaz@explained using the liability threshold modeRsclT,
which assumes an additive effect at each locusvdmich shifts the mean of a normally distributedtritisition
of disease liability for each genotype class. Githenlack of evidence for gene-gene interactionragraur 71
loci, we consider these contributions to be additWe assumed a prevalence of Crohns diseaseasf4(DO
and a total narrow-sense heritability of 50% (82). Results of this analysis are showifrigure 2.

I nteraction analyses

To test for pairwise interactions among the 71 cordd associated loci, we performed an interactietam
analysis using the approach described below. Eatttedfix scans performed an identical pairwise séahe

71 x 70/2 pairs of SNPs ihables 1,2 using logistic regression in which three termssée of SNP 1, dosage of
SNP 2 and an additive interaction term) were inetudl'he significance of this interaction terms wemesented
by a directional z-score which was then combinedszcall six studies using a sample-size-weighted
combination of z-scores. The overall combined gleaquantile plot resulting from this analysis stemvno
deviation from the nullSupplementary Fig. 3), and no results were significant when considetirggnumber of
tests performed.
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