
RESEARCH Open Access

Does probabilistic modelling of linkage
disequilibrium evolution improve the accuracy
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Abstract

Background: Since 2001, the use of more and more dense maps has made researchers aware that combining
linkage and linkage disequilibrium enhances the feasibility of fine-mapping genes of interest. So, various method
types have been derived to include concepts of population genetics in the analyses. One major drawback of many
of these methods is their computational cost, which is very significant when many markers are considered. Recent
advances in technology, such as SNP genotyping, have made it possible to deal with huge amount of data. Thus
the challenge that remains is to find accurate and efficient methods that are not too time consuming. The study
reported here specifically focuses on the half-sib family animal design. Our objective was to determine whether
modelling of linkage disequilibrium evolution improved the mapping accuracy of a quantitative trait locus of
agricultural interest in these populations. We compared two methods of fine-mapping. The first one was an
association analysis. In this method, we did not model linkage disequilibrium evolution. Therefore, the modelling of
the evolution of linkage disequilibrium was a deterministic process; it was complete at time 0 and remained
complete during the following generations. In the second method, the modelling of the evolution of population
allele frequencies was derived from a Wright-Fisher model. We simulated a wide range of scenarios adapted to
animal populations and compared these two methods for each scenario.

Results: Our results indicated that the improvement produced by probabilistic modelling of linkage disequilibrium
evolution was not significant. Both methods led to similar results concerning the location accuracy of quantitative
trait loci which appeared to be mainly improved by using four flanking markers instead of two.

Conclusions: Therefore, in animal half-sib designs, modelling linkage disequilibrium evolution using a Wright-Fisher
model does not significantly improve the accuracy of the QTL location when compared to a simpler method
assuming complete and constant linkage between the QTL and the marker alleles. Finally, given the high marker
density available nowadays, the simpler method should be preferred as it gives accurate results in a reasonable
computing time.

Background
For several decades, detection and mapping of loci
affecting quantitative traits of agricultural interest
(Quantitative Trait Loci or QTL) using genetic markers
have been based only on pedigree or family information,
especially in plant and animal populations where the
structure of these experimental designs can be easily

controlled. However, the accuracy of gene locations
using these methods was limited, due to the small num-
ber of meioses occurring in a few generations. Recent
advances in technology, such as SNP genotyping, leading
to dense genetic maps have boosted research in QTL
detection and fine-mapping. Nowadays, methods for
fine-mapping rely on linkage disequilibrium (LD) infor-
mation rather than simply on linkage data. Linkage dise-
quilibrium, the non-uniform association of alleles at two
loci, has been successfully employed for mapping both
Mendelian disease genes [1-4] and QTL [5-7]. Interested
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readers can also refer to reviews by [8-11]. For all chro-
mosomal loci, including those that are physically
unlinked, linkage disequilibrium can be generated or
influenced by various evolutionary forces such as muta-
tion, natural or artificial selection, genetic drift, popula-
tion admixture, changes in population size (exponential
growth or bottleneck, for instance). Most methods using
the linkage disequilibrium concept for QTL fine-map-
ping are based on the genetic history of the population.
Whichever method is used to include population genet-
ics concepts (calculation of Identity By Descent (IBD)
probabilities under given assumptions about population
history [6], Wright-Fisher based allele frequency model
[12], backward inferences through the coalescent tree
[13]), computation is always time consuming. Further-
more, since mapping accuracy depends on the length of
the haplotype used in the study [14-17], this computa-
tional time could become prohibitive when many mar-
kers are being considered. Therefore, with new
technologies such as SNP genotyping and the amount of
data they generate, it is interesting to evaluate the
improvement in accuracy produced by these time con-
suming methods opposed to using simpler methods. In
this study, we focused on animal populations of agricul-
tural interest. Generally, these populations have a small
effective size, and are composed of a few families with
about a hundred descendants.
We considered that a dense genetic map was available.

Our main objective was to compare the QTL prediction
accuracy of two methods in the half-sib family design.
These two methods differed in the way they modelled the
evolution of linkage disequilibrium between a QTL and
its flanking markers, through the probability of bearing
the favourable QTL allele given the marker observations.
The first method, HaploMax, was a haplotype-based
association analysis, very similar to the one developed by
Blott et al. [7]. In this method, there was no specific mod-
elling of linkage disequilibrium evolution: linkage dise-
quilibrium was complete at time 0 on the mutated
haplotype and remained complete during the following
generations. Therefore, the probability of bearing the
favourable QTL allele given the mutated haplotype is
always equal to one during the generations. This is why
we mentioned the deterministic evolution of linkage dise-
quilibrium. The second method, HAPimLDL, was a max-
imum likelihood approach [12] and it used probabilistic
modelling of the temporal evolution of linkage disequili-
brium based on a Wright-Fisher model. This probabilistic
modelling of the temporal evolution of linkage disequili-
brium made it possible to vary the probability of bearing
the favourable QTL allele given the marker informations
during generations. Our hypothesis was that, in these
animal populations with a small effective size and having
evolved over a few generations, a rough model based on

the deterministic evolution of linkage disequilibrium was
as accurate as a probabilistic-based model and should
therefore be preferred from a computational point of
view. Both methods assumed a single QTL effect for all
the families. Both allow any number of flanking markers
to be considered using a sliding window across a pre-
viously identified QTL region. Both methods have been
implemented in an R-package freely available from the
Comprehensive R Archive Network (CRAN, http://cran.
r-project.org/).
In this paper, we have considered only half-sib family

designs. In this framework, we used simulations to com-
pare the performance of these two fine-mapping meth-
ods. We investigated the effect of various scenarios on
the performance of the methods: allelic effect of the
QTL, marker density, population size, mutation age,
family structure, selection rate, mutation rate and num-
ber and size of the families. For each of these scenarios,
we investigated the improvement produced by probabil-
istic modelling of linkage disequilibrium evolution.

Methods
The genetic model used in this paper was described by
[18]. The population was considered as a set of indepen-
dent sire families, all dams being unrelated to each other
and to the sires. We considered a bi-allelic QTL with
additive effect only and a single QTL effect for all the
families. We assumed the same phase across families.
We will only briefly describe the HaploMax method, as
it is a standard method. The HAPimLDL method, which
has been developed for this work, is presented in detail.

The HaploMax method
HaploMax is a marker-haplotype-regression method
adapted to the following two hypotheses: the QTL is bi-
allelic, and QTL alleles and marker alleles are in com-
plete linkage. In each marker interval, and for each
flanking marker haplotype, we performed a haplotype-
based association analysis with a sire effect and a dose
haplotype effect (0 for absence of the haplotype, 1 for
one copy of the haplotype, 2 for homozygosity). We
tested each haplotype in turn against all the others [7]
and the HaploMax value was given by the haplotype
maximising the F-test values.
The HaploMax method is therefore perfectly suited to

demonstrate the effect of a causal bi-allelic mutation. In
HaploMax, there was no probabilistic modelling of link-
age disequilibrium evolution. Linkage disequilibrium was
complete at time 0 and remained complete during the
following generations.

The HAPimLDL method for half-sib family designs
This likelihood-based method is detailed in the follow-
ing sub-sections. It combines family information with
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probabilistic modelling of linkage disequilibrium evolu-
tion (LDL stands for Linkage and Linkage Disequili-
brium). For clarity purposes, some of the longer
calculations are presented in the Appendix.
Notation
A bi-allelic QTL is assumed with alleles Q and q.
Let i (i = 1, ..., I ) be the identification of a family. Let

ij ( j = 1, ..., ni) be the index of a mate of sire i (i = 1, ...,
I ) and ijk (k = 1, ..., nij ) denote the progeny of dam ij.
When considering strictly half-sib families, only one
progeny is measured per dam (nij = 1) (in the case of
bovine populations, for instance), and the k index can
be omitted.
Assuming that the available information consists of

the phenotypic value of each progeny and a set of hap-
lotypes of observed markers aligned on a genetic map,
we can establish the following notations:

• h h hi i i= ( , )1 2 , marker haplotypes of sire i. hi
1

(respectively hi
2 ) is the set of marker alleles carried

by the first (respectively second) chromosome of the
sire i,

• h h hij ij
s

ij
d= ( , ) , marker haplotypes of progeny ij

transmitted respectively by its father and mother,
• yij , phenotype of progeny ij.

If x denotes a putative bi-allelic QTL locus on the
genome:

• Z x Q x Q xi i i( ) ( ) ( )= 1 2 , the sire diplotype at locus x,

where Q xi
1( ) and Q xi

2( ) denote the QTL allele at

locus x carried respectively by the two homologous
chromosomes. Note that there are three genotypes
but four diplotypes since there are two heterozygous
diplotypes (Qq and qQ).

• h x h x h xi i i( ) ( ( ), ( )) = 1 2 , marker and locus x haplo-

types of sire i. This is the extended marker haplotype
of sire i including the alleles at the QTL locus x .

• Q xij
d( ) , the allele at the QTL locus x transmitted

by the dam ij to her single progeny,

• Q xij
s( ) , the allele at the QTL locus x transmitted

by the sire i to his progeny ij.
LDL likelihood
The population was considered as a set of independent
sire families, all dams being unrelated both to each
other and to the sires. The likelihood is constructed as
follows: a Gaussian mixture models the phenotypes as a

function of QTL states. These are unknown, but their
probability depends on the surrounding markers
through LD, which is modelled by the Wright-Fisher
model. Further, if the chromosome has been received
from a sire, the probability of descent of each paternal
chromosome is considered. Let Λij(x) denote the indivi-
dual ij likelihood.
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where

• z = 1, 2, 3 and 4 stands for QQ, qq, Qq and qQ
respectively,
• a = 1 and 2 for Q and q,
• μi is the phenotype mean within the sire family i,
and s2 the residual variance,
• �(·; μ, s2 ) is the Gaussian probability density func-
tion with mean μ and variance s2

• for a = 1 and 2, the aQa and aqa parameters, sub-
ject to the constraint of their sum being equal to 0,
are the effects of the diplotypes at locus x. The con-
straint aqQ = aQq = 0 leads to an additive model
• the symbol “¬” in the quantities

( ( ) ( ) | ( ), )Q x Q x h x hij
s

i
k

i ij
s←  means “comes from”.

In this likelihood, the probabilities due to linkage that
are contained in the transmission probabilities

( ( ) ( ) | ( ), )Q x Q x h x hij
s

i
k

i ij
s←  for k = 1, 2 were com-

puted using QTLMAP subroutines that implement the
approximate method described in [18].
The expression above considers QTL effects, probabil-

ities of transmission of QTL alleles from sires to off-
spring, and probabilities of QTL states in the founders.
The linkage disequilibrium signal comes from the quan-

tities ℙ(Zi (x) = z|hi) and ( ( ) | )Q x a hij
d

ij
d= which are

the probabilities of QTL alleles in the parents condi-
tional on the surrounding marker haplotypes. QTL
diplotype probabilities given marker information, con-
tained in ℙ(Zi(x) = z|hi), were computed assuming the
Hardy-Weinberg equilibrium. Thus,
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QTL allelic probabilities given marker information for
both sire and dam were computed under the linkage
disequilibrium model described in the next section.

The probability terms, ( ( ) | ( ) )Q x Q Z x zi
j

i= = and

( ( ) | ( ) )Q x q Z x zi
j

i= = (j = 1, 2), involving sire QTL

allele given sire QTL diplotype, are either 0 or 1.
Likelihood approximation and linkage disequilibrium model
QTL allelic probabilities given marker information for
the parents are terms that are modelled through the
evolution of linkage disequilibrium across generations.
These terms depend on the frequencies of marker hap-
lotypes and on the frequencies of QTL allele and marker
extended haplotypes. Under traditional models of popu-
lation genetics, these haplotype frequencies are stochas-
tic. Thus, the likelihood function cannot be easily
calculated and must be approximated. Following [12],
we used the likelihood given the expected value of hap-
lotype frequencies to approximate the overall expected
value of the likelihood and we limited marker haplo-
types to a small number of markers surrounding the
putative QTL locus (in our study, we considered either
two flanking markers or four flanking markers). This led
to the following approximations for a = 1, 2 and k = 1,
2:







( ( ) | ) min ,
[ ( )]

[ ( )]

(

,Q x a h
t

t

Q

i
k

i
k a hIM

hIM

i

i

k

k

= ≈
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
Π

Π

iij
d

ij
d a hIM

hIM

x a h
t

t
ij

ij

d

d

( ) | ) min ,
[ ( )]

[ ( )]

,
= ≈

+

+

⎛

⎝

⎜
⎜

⎞
1

1

1




Π

Π
⎠⎠

⎟
⎟

where

• hIM t hIM t hIM ti i i( ) ( ( ), ( ))= 1 2 denotes the haploty-

pic pair limited to markers surrounding the locus x

carried by sire i at time t and, Π
hIMi

k t( ) the fre-

quency of the haplotype mentioned.

• Π
a hIMi

k t
,

( ) is the frequency of sire i haplotypes

carrying both the a allele at the x locus and the hap-

lotype hIMi
k at the flanking markers at time t.

• hIM tij
d( )+ 1 denotes the progeny ij haplotype at

time t + 1 transmitted by its mother and limited to

markers surrounding the x locus. Π
hIMij

d t( )+ 1 is

the corresponding frequency,

• Π
a hIMij

d t
,

( )+ 1 is the frequency of progeny ij hap-

lotypes carrying both the a allele at the x locus and

the haplotype hIM tij
d( )+ 1 at the flanking markers at

time t + 1.

These haplotype frequencies at time t could be
expressed as functions of marker frequencies, digenic,
trigenic... disequilibria at time t [19]. Moreover, under
the hypotheses of a Wright-Fisher model, no interfer-
ence and a large population size, the expected values of
marker frequencies and disequilibria at time t could be
derived from the same quantities at time 0 and the
recombination rates between the QTL locus and the
markers [19,20]. Therefore, we generalised the formula
obtained by [12] in order to take into account any num-
ber of surrounding markers. These calculations are
detailed in the Appendix.
Finally, we had to model the haplotype frequencies at

time 0. Following [12], we assumed an initial creation of
linkage disequilibrium that was due to mutation or
migration. Generally speaking, assuming that the Q
allele at time 0 appeared on a haplotype denoted h*,
then the time zero model was

Π Π Π Πh Q h Q Q h h, ( ) ( ) ( ) ( ) *0 1 0 0= − + =  

where the parameter b represents the proportion of
new copies of allele Q introduced at time 0, δx = y is the
Kronecker delta operator (equal to 1 if x = y and 0
otherwise), Πh,Q(0) and ΠQ(0) are the frequencies of the
haplotypes (h, Q) and h at time 0, and Πh is the fre-
quency of haplotype h.
In our specific study, we simplified the time 0 model

assuming that there was no pre-existing copy of the Q
allele and we set b equal to 1.

HAPim R-package
From a computational point of view, the HAPimLDL
likelihood calculation was divided into two parts. In the
first part, devoted to the calculation of transmission
probabilities and the reconstruction of sire and progeny
chromosomes, we used a modified version of the soft-
ware QTLMAP written in Fortran 95 [18]. The second
part aimed at calculating and maximizing the likelihood
in the half-sib design. It was developed using the R free
software environment for statistical computing [21]. An
R package named “HAPim” was implemented and is
freely available from the Comprehensive R Archive Net-
work (CRAN, http://cran.r-project.org/).
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Simulations
Simulations were carried out in order to compare these
methods in the specific design of half-sib families. For
each simulation, 500 replicates were performed.
The populations were simulated using the LDSO

(Linkage Disequilibrium with Several Options) program
developed in Fortran 90 by [22] and based on the gene-
dropping method [23]. There was no constraint on the
QTL frequency, but we discarded simulations for which
there was no heterozygous sire. Evolution of the founder
population was modelled through two parameters: the
effective size (i.e. the number of founders) and the time
of evolution. We studied two extreme scenarios for the
founder population. In the first, at time 0, we assumed
complete linkage disequilibrium of QTL-markers (by
introducing a mutation in a single haplotype) and link-
age equilibrium between markers. In the second sce-
nario, the QTL and the markers were at equilibrium.
Evolution time was 50 generations in almost all simula-
tions, except a 200 generation evolution time in one
case of the “disequilibrium scenario” and a 100 genera-
tion evolution time in one case of the “equilibrium sce-
nario”. We considered three effective population size
values: 100, 200 and 400. In most simulations we did
not assume selection, mutation, or bottleneck. However,
to investigate the robustness of the methods, three
simulations were also performed to study the effect of
selection and one to study the influence of mutation.
We simulated a set of half-sib families. Two para-

meters- the number of sires (equal to 10, 20, 25, 50 or
100) and the number of progeny per sire (equal to 10,
20, 25,50 or 100)- were varied to address the problem of
how to choose between many small families and a few
large families.
All simulations were compared both to each other and to

the reference simulation. In the reference simulation, we
considered a 10 cM chromosomal area with 40 evenly
spaced bi-allelic markers and a population size of 100 evol-
ving over 50 generations. We simulated a set of 20 sires,
each having 100 progeny. A single QTL with a substitution
effect of 0.25 was simulated at a position of 3.35 cM. We
then varied the different parameters with respect to this
reference simulation in order to assess their respective
influence. We considered three different values of map
density (0.125 cM, 0.25 cM and 0.5 cM). The phenotypic
values were simulated with a fixed dose-response model at
the QTL position (i.e. regression model as a function of the
number of Q alleles) and a residual variance of 1.
In the first set of simulations, presented in Tables 1

and 2, we analyzed only three-locus haplotypes (com-
posed of the QTL and its two flanking markers). In
Table 3, we also conducted simulations where the hap-
lotype length was equal to 5 (the QTL and two flanking
markers on both sides of the QTL).

Results
In the following tables, we present square roots of the
mean square error (MSE) of the QTL position. The
MSE value is given by the following formula

MSE s

s sr

r( )

( )^

=

−
=

∑ 2

1

500

500

where ŝ r is the estimated QTL position in replicate r,

s is the true QTL position and 500 is the total number
of replicates. We also computed the mean absolute
error criterion and found a clear linear dependency
between these two criteria (data not shown).
We compared the two methods, HaploMax and HAP-

imLDL, with a t-test on the MSE values and found no
significant difference between them for any of the sce-
narios studied.

Complete linkage disequibrium between the QTL and the
markers
In this set of simulations we simulated the scenario for
which there were complete linkage disequilibrium QTL-
markers and linkage equilibrium between markers in the
founder population.
Influence of genetic and population parameters
Here we describe the sensitivity of the two methods to
the following parameters: QTL allelic effect value, mar-
ker density, population’s effective size of population,
number of generations, mutation and selection. How-
ever, despite the fact that our goal was the accuracy of
location, we computed some power values for both
methods, the 5% thresholds being obtained by permuta-
tion. For the reference simulation, the power value was
equal to 63% for Haplomax and to 56% for HAPimLDL.
The highest power values were obtained for the QTL
value equal to 0.5 and were around 90% for both meth-
ods. The lowest power values were obtained when Ne

was equal to 400 and Ng equal to 50, and were around
15%. Table 1 summarises the simulation results. It is
not surprising to see that the bigger the QTL allelic
effect, the more accurate the method. The marker den-
sity had only a very slight influence on the MSE value.
HaploMax presented an erratic trend with the marker
density. HAPimLDL showed a clear decrease in the
MSE values with increasing marker density.
With regard to the design parameters, we noticed that

the precision of the QTL position decreased as the sam-
ple size (i.e. number of sires × number of progeny per
sire) decreased, regardless of the family structure. For a
fixed number of generations, the MSE values increased as
the effective size of the population increased. However,
when both effective size and number of generations
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varied, provided that their ratio remained constant, MSE
values were not modified, which is completely consistent
with traditional theory in population genetics.
When we allowed all SNP markers to mutate at a

mutation rate equal to 10-6, we found a loss of accuracy
of about 20-25% for HaploMax and about 50% for HAP-
imLDL (data not shown). In this case, the power value
was equal to 59% for HaploMax and to 49% for
HAPimLDL.
Influence of phenotypic selection
The influence of phenotypic selection is presented in
Table 2. We considered two values for the additive QTL
effect and two selection strengths (light and strong).
The QTL effect had no influence on the accuracy of

location. However, selection led to a loss of accuracy of
about 50% with light selection and 60% with strong
selection. On the one hand, the selection causes a hitch-
hiking effect which amplifies the signal from the region
where the QTL is located but, on the other hand, it
widens this region, leading to a loss of accuracy (higher
MSE values). For example, a possible outcome of selec-
tion is that just a few different haplotypes are carriers of

the Q allele. This loss of accuracy had already been
pointed out by [24]. It was concluded that selection
increased MSE values, leading to large confidence inter-
vals of the QTL position, and therefore to additional dif-
ficulties in locating the mutation. Moreover, the power
values collapsed in this situation (around 4% for both
methods with strong selection and around 13% for both
methods with light selection).
Influence of haplotype length and population structure
In Table 3, we studied the influence of haplotype length
on the accuracy of the QTL location. It is clear that
there is a significant gain when using four markers
instead of two. All the previous conclusions remained
valid when using four markers. If four markers were
used in the model, increasing the sample size seemed to
be the only way to decrease the MSE.
The influence of the population structure itself is also

investigated in Table 3. Since we noted that haplotypes
containing four markers led to the best results, we have
focused the discussion only on this type of haplotype.
Through this set of simulations, we have tried to resolve
the issue of whether it is better to study many small

Table 1 Square roots of MSE values (in cM) for both methods, HaploMax and HAPimLDL, under various scenarios

Method Param Ref simul QTL effect Marker density Sample size Effective size

QTL 0.25 0.5

Ne 100 200 400 400

Ng 50 200

Ns 20 20 10

Np 100 50 50

dens 0.25 0.125 0.5

HaploMax 2.018 1.431 2.138 2.134 2.496 2.774 2.493 2.840 2.054

HAPimLDL 2.165 1.528 2.114 2.296 2.716 2.990 2.635 2.834 2.147

Square roots of MSE values (in cM) for both methods, HaploMax and HAPimLDL, under various scenarios; we assumed complete linkage disequilibrium between
the QTL and the markers and linkage equilibrium between the markers in the founder population; the haplotype is composed of the QTL and two flanking
markers; the true QTL position is 3.35 cM on a 10 cM-long chromosomal region; unspecified parameters are equal to the corresponding parameters in the
reference simulation; in this table, QTL denotes the QTL allelic effect value, Ne is the effective size of the population, Ng is the number of generations, Ns is the
number of sires, Np is the number of progeny per sire and dens is the marker density; each scenario was simulated 500 times.

Table 2 Square roots of MSE values (in cM) for both methods in the presence of phenotypic selection

Method Param Ref Simul Strong selection Light selection Light selection

QTL 0.25 0.5

Ne 100

Ng 50

Ns 20

Np 100

dens 0.25 cM

sel No selection sel = 0 sel = 0 sel = 0.8

HaploMax 2.018 3.403 3.125 3.103

HAPimLDL 2.165 3.306 3.151 3.124

Square roots of MSE values (in cM) for both methods in the presence of phenotypic selection; we assumed complete linkage disequilibrium between the QTL
and the markers and linkage equilibrium between the markers in the founder population. The haplotype is composed of the QTL and two flanking markers; the
true QTL position is 3.35 cM on a 10-cM long chromosomal region; unspecified parameters are equal to the corresponding parameters in the reference
simulation; in this table, QTL denotes the QTL allelic effect value, Ne is the effective size of the population, Ng is the number of generations, Ns is the number of
sires, Np is the number of progeny per sire, dens is the marker density and sel denotes the selection parameter; each scenario was simulated 500 times.
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families or a few large families. The results are in favour
of having many founders, which increases the power
value. However, this is only clear when both the sample
size and the number of markers are large.

The equilibrium case
In this section, we simulated a scenario where the QTL
and the markers were at equilibrium in the founder
population. We only varied the effective size (50 or 100)
and the number of generations (50 or 100) with respect
to the reference simulation. Results are presented in
Table 4. We noted that MSE values in Table 4 are
lower than the corresponding MSE values in Table 1.
This was not surprising since, in the situation where the
QTL and the markers were at equilibrium, there were
more sires carrying the favourable QTL allele than in
the “complete disequilibrium” case studied in Table 1.
Moreover, the HaploMax method again gave MSE
values slightly below those given by the HAPimLDL
method. Finally, we noticed that MSE increased when
the effective size decreased or the number of genera-
tions increased. This is also completely coherent since,

in this situation, allelic frequencies have moved towards
fixation.

Discussion
Within a dense genetic map framework, we have com-
pared two QTL mapping methods aiming at locating
one QTL on a chromosome in half-sib family designs.
On the one hand, in the HaploMax method there was
no specific modelling of linkage disequilibrium evolution
and the probability of bearing the favourable QTL allele
given the mutated haplotype was always equal to one
during the generations. On the other hand, in the HAP-
imLDL method we used a probabilistic modelling of the
temporal evolution of linkage disequilibrium. In this lat-
ter method, the probabilistic modelling allowed a tem-
poral evolution of the conditional probability of bearing
the favourable QTL allele given the marker observations.
Our simulated scenarios mimicked animal populations
shortly after creation of the breed (i.e. small populations
with a short evolution time). We compared our results
with those of [25], leading to conclusions very similar to
theirs: very slight influence of marker density on the
mapping accuracy, mapping accuracy increasing with
sample size, QTL effect, number of generations since
mutation occurrence, and effective size. However,
although we achieved results of the same order of mag-
nitude, slight differences in MSE values were observed
mainly due to the following three reasons: we did not
study exactly the same type of population; [25] assumed
that haplotypes were known, but we reconstructed
them; and, finally, we did not consider the same value
for the number of generations parameter. It has been
established that the evolution time parameter has a
great influence on the accuracy of the location [[25], table

Table 3 Square roots of MSE values (in cM) for both
methods for two haplotype lengths: the QTL and its two
flanking markers and the QTL and its four flanking
markers

Param Methods

HaploMax HAPimLDL

Number of markers 2 4 2 4

Ns 20 1.66 1.26 1.66 1.26

Np 100

Ns 100 1.65 1.11 1.71 1.15

Np 20

Ns 20 1.68 1.36 1.74 1.45

Np 50

Ns 50 1.73 1.32 1.83 1.46

Np 20

Ns 20 1.73 1.39 1.81 1.47

Np 25

Ns 25 1.83 1.49 1.85 1.59

Np 20

Ns 50 1.82 1.57 1.98 1.53

Np 10

Ns 10 1.85 1.41 1.92 1.61

Np 50

Square roots of MSE values (in cM) for both methods for two haplotype
lengths: the QTL and its two flanking markers and the QTL and its four
flanking markers; we assumed complete linkage disequilibrium between the
QTL and the markers and linkage equilibrium between the markers in the
founder population; the true QTL position is 3.35 cM on a 10-cM long
chromosomal region; the QTL allelic effect value is equal to 1, the effective
size of the population is equal to 100, the number of generations is equal to
50 and the marker density is equal to 0.5 cM; Ns is the number of sires and Np

is the number of progeny per sire; each scenario was simulated 500 times.

Table 4 Square roots of MSE values (in cM) for both
methods

Method Param Ref
simul

Number of
generations

Effective
size

QTL 0.25

Ne 100 50

Ng 50 100

Ns 20

Np 100

dens 0.25

HaploMax 1.49 1.85 1.69

HAPimLDL 1.65 1.98 1.85

Square roots of MSE values (in cM) for both methods in the case where the
QTL and the markers were at equilibrium in the founder population; the
haplotype is composed of the QTL and two flanking markers; the true QTL
position is 3.35 cM on a 10-cM long chromosomal region; unspecified
parameters are equal to the corresponding parameters in the reference
simulation; in this table, QTL denotes the QTL allelic effect value, Ne is the
effective size of the population, Ng is the number of generations, Ns is the
number of sires, Np is the number of progeny per sire, dens is the marker
density; each scenario was simulated 500 times.

Cierco-Ayrolles et al. Genetics Selection Evolution 2010, 42:38
http://www.gsejournal.org/content/42/1/38

Page 7 of 10



five]. Despite these differences, and despite the fact that
one of our methods took into account the transmission
from sires to sibs, both studies showed the same tenden-
cies with regard to the mapping accuracy. We found a
gain in mapping accuracy when using a 4-SNP haplotype
instead of a 2-SNP one. However, this result is valid with
a fixed density marker (the one we used in our simula-
tion study). With a very high density marker, a 1-SNP
haplotype will probably lead to the best results. Finally,
we demonstrated that neither method was robust to
selection. The simulations showed that both methods led
to similar results concerning QTL position accuracy. The
simplest method, HaploMax, performed as well as HAP-
imLDL. This is in agreement with recent findings.
In [26], it has also been concluded that a three-marker-
haplotype-based association analysis (deterministic com-
plete LD modelling) could be as efficient as the IBD
method of [6]. The conclusion of our study is that the
probabilistic modelling of the linkage disequilibrium evo-
lution using a Wright-Fisher model did not improve the
accuracy of the QTL location when compared to a sim-
ple method using deterministic modelling that assumed
complete and constant linkage between the QTL and the
marker alleles. The deterministic model, which is a
rough model, was efficient enough in our simulated sce-
narios, which mimicked animal populations shortly after
the creation of the breed (i.e. small populations with a
short evolution time).
The conclusion might then be to use HaploMax for

animal populations with a small effective size and having
evolved over a few generations. In fact, the forward
method associated with causal mutation, used in our
simulation study, reflected exactly the theoretical evolu-
tion model used to compute the LD dynamics in the
likelihood function, thus favouring the HAPimLDL
method as against the HaploMax method. Therefore, we
can conclude that the HAPimLDL method did not per-
form significantly better than simpler methods within
our evolution scenarios.
When dealing with populations with large effective

sizes or with very old mutations, combining linkage with
probabilistic modelling of linkage disequilibrium evolu-
tion should produce the greatest accuracy. Actually, in
these populations, a huge number of recombination
events would occur, leading to a small extent of the
linkage disequilibrium signal. Therefore, deterministic
complete linkage disequilibrium modelling would be less
appropriate in this case.

Appendix
To derive haplotype frequencies at time t as functions of
haplotype frequencies at time 0, we used the Bennett
decomposition of haplotype frequencies [19] and the
work of [20].

Let An denote a set of n alleles at n different loci, An =
{a1, a2, ..., an}. Let Dn(An , t) be the n-loci linkage dise-
quilibrium of An alleles at time t defined by [19] such
that, in an infinitely large population, under random
mating and meiosis

D A t D A tn n A n nn
, ,{ }+( ) = ( )1  (1)

where r{An } is the probability of no recombination
across loci belonging to An .
Assuming no interference between loci leads to

{ } ,( )A i i

i

n

n
c= − +

=

−

∏ 1 1

1

1

where ci, i’ is the recombination rate between loci i
and i’.

Let Π An
(t) be the frequency of the haplotype carry-

ing the alleles in An at time t. Then by definition
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⎛

⎝
⎜
⎜

⎞
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⎟
⎟

= ={ }
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(2)

where the coefficients Cp are constants obtained by

recursion [20], and p = {⋃i Ani = An} denotes a partition
of An. For example, for n = 3 there are 5 partitions
namely {a1, a2, a3}, {{a1, a2}⋃{a3}}, {{a1, a3}⋃{a2}}, {{a2,
a3}⋃{a1}} and {{a1}⋃{a2}⋃{a3}}.
When n equals two and three, [20] proved that the

Cp are all equal to one. But when n ≥ 4, some Cp are

not equal to one even if we assume no interference
between loci. For example, for the partition {{a1, a4}⋃
{a2, a3}} with four loci, [20] proved that

c
c c

c c ca a a a{{ , } { , }} ( ) ( )( )1 4 2 3

12 34

14 12 341 1 1∪ =
− − − −

which does not reduce to unity, except for unlinked
loci. This means that, for n ≥ 4, the Bennett disequilibria
are different from disequilibria defined by [27-29] since

these authors imposed Cp = 1 in formula (2). However,

the Bennett disequilibria are the only multilocus linkage
disequilibrium measures that decay geometrically with
time.
Let n be odd and composed of (n − 1)/2 left and right

markers surrounding a putative causal locus. Assume
that at time 0 all the Bennett disequilibria between mar-
kers are null, i.e. markers were in equilibrium when the
causal mutation appeared. Formula (1) states that mar-
ker disequilibria are null throughout the population
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history. Moreover, all the terms not equal to zero in the
formula (2), applied to the frequency of markers and the

mutated locus haplotypes, have a Cp constant equal to

one. Partitions that do not involve marker disequilibria
are such that

p a A Ak

k

p n=
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
={ } 

where the causal locus is in the set Ap and k = 0
means Ap = An. Since those partitions are composed of

singletons and a single subset of An, Cp = 1 (formula

4.14 in [20]), then we get
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where #Ap denotes the cardinal of set Ap . We finish
the calculation by using the reverse formula of D#Ap (Ap

, 0) as a function of haplotype frequencies at time 0,
which in this case can be obtained easily using recursion
based on the following equation

D A D An n A A

p a A A

p a

k
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k k p n
k

k
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0 0 0 0
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∑ ∏Π Π
 

⎞⎞

⎠
⎟
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In a finite population, formulae developed in an infi-
nite population, can be transformed using the expecta-
tion of multi-locus disequilibria and haplotype
frequencies, and taking only the first order development
of these expectations as the population size extends to
infinity. We then get

[ ( )] ( ) ( , ) ( ){ }

{ { } }

#Π ΠA A
t

p a A A

A p a

k
n p

k k p n

p k
t D A

 


= =

∑ ∏
⎛

⎝
⎜
⎜

⎞
0 0

⎠⎠
⎟
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where ≃ means asymptotically equivalent.
Equalities of first order developments are based on the

fact that products of expectations are asymptotically
equal to expectations of products. These equalities can
also be found using the work of [27].
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