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I. INTRODUCTION

So far the standard approach to baryon spectroscopy is the constituent quark model

where the Hamiltonian contains a spin independent part formed of the kinetic plus the

confinement energies and a spin dependent part given by a hyperfine interaction. The latter

can be either due to one gluon exchange or to Goldstone boson exchange between quarks,

or it can be an instanton induced interaction. The results are naturally model dependent.

It is therefore very important to develop model independent methods that can help in

alternatively understanding baryon spectroscopy and that can support quark model assump-

tions. Large Nc QCD offers such a method. In 1974 ’t Hooft proposed to generalize QCD

from SU(3) to SU(Nc) [1] where Nc is an arbitrary number of colors and suggested a per-

turbative expansion in the parameter 1/Nc, applicable to all QCD regimes. Witten has

generalized the approach to baryons [2] and this has lead to a powerful 1/Nc expansion

method to study static properties of baryons, as for example, the masses, the magnetic

moments, the axial currents, etc. The method is systematic and predictive. It is based

on the discovery that, in the limit Nc → ∞, QCD possesses an exact contracted SU(2Nf)

symmetry [3, 4] where Nf is the number of flavors. This symmetry is only approximate

for finite Nc so that corrections have to be added in powers of 1/Nc. The 1/Nc expansion

method has extensively and successfully been applied to ground state baryons [5, 6, 7, 8] (for

recent developments see Ref. [9]). Its applicability to excited states is a subject of current

investigations. In this case the symmetry under consideration is assumed to be SU(2Nf)

× O(3) where SU(2Nf) is related QCD, as introduced above. However O(3) is not related

to QCD but it brings an additional degree of freedom. It is of common practice to intro-

duce it in order to construct orbitally excited states. The direct product SU(2Nf) × O(3)

is also used in quark models to classify three quark states, but there SU(2Nf) is not an

intrinsic symmetry. Thus the two approaches have formally the same symmetry in common

which does not imply common dynamical assumptions. The only common feature is that

the excited states are stable in a first approximation.

The purpose of the present study is to see whether or not there is a compatibility between

the two methods. If such a compatibility exists, an important support to the constituent

quark model can be provided by the model independent 1/Nc expansion method, and a

better understanding of the physical content of large Nc mass formulas can be gained.
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In the language of quark models, the baryon states can roughly be classified into excitation

bands with N = 0 for the ground state band and N = 1, 2, 3, . . . for excited states, where

N represents units of excitation, like in a harmonic oscillator picture. The key tool of this

comparative study is that one can analyze both the 1/Nc expansion results and the quark

model basic ingredients in terms of N which makes the comparison between the two methods

possible and very convenient.

The paper is organized as follows. The next section introduces the mass formula used in

the 1/Nc expansion method. Section III gives a mass formula obtained from a Hamiltonian

quark model where the kinetic energy is relativistic, the confinement is an Y-junction flux

tubes and the hyperfine interaction is of an one-gluon exchange nature. Section IV is de-

voted to the comparison between terms of the mass formula which are common in the two

approaches. The last section is devoted to conclusions.

II. BARYONS IN LARGE Nc QCD

For simplicity, we illustrate the method with the Nf = 2 case but the arguments are

similar to any Nf . So, here we deal with SU(4) which has 15 generators, the spin subgroup

generators Si (i = 1, 2, 3), the isospin subgroup generators Ta (a = 1, 2, 3) and Gia which act

both on spin and isospin degrees of freedom. The SU(4) generators are components of an

irreducible tensor operator which transforms according to the adjoint representation [211]

of dimension 15 of SU(4). The SU(4) algebra is

[Si, Ta] = 0, [Si, Gja] = iεijkGka, [Ta, Gib] = iεabcGic,

[Si, Sj ] = iεijkSk, [Ta, Tb] = iεabcTc,

[Gia, Gjb] = i
4
δijεabcTc + i

4
δabεijkSk. (1)

Together with the generators ℓi of SO(3), the SU(4) generators form the building blocks of

the mass operator. Then in the 1/Nc expansion the mass operator M has the general form

M =
∑

i

ciOi, (2)

where the coefficients ci are reduced matrix elements that encode the QCD dynamics and

are determined from a fit to the existing data, and the operators Oi are O(3) scalars of the
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form

Oi =
1

Nn−1
c

O
(k)
ℓ · O(k)

SF , (3)

where O
(k)
ℓ is a k-rank tensor in O(3) and O

(k)
SF a k-rank tensor in SU(2)-spin (homomorphic

to SO(3)), but invariant in SU(2)-flavor. Generally the operators O
(k)
SF are combinations of

the SU(2Nf) generators and here, in particular, of SU(4) generators. The lower index i in

the left hand side represents a specific combination. Each n-body operator is multiplied by

an explicit factor of 1/Nn−1
c resulting from the power counting rules [2]. For the ground

state, one has k = 0. For excited states the k = 2 tensor is also important. The sum in

the mass operator is finite. Operator reduction rules simplify the expansion. In addition,

in practical applications, it is customary to include terms up to 1/Nc and drop higher order

corrections of order 1/N2
c . As an example, in Eqs. (4), we exhibit the list of operators used

in the calculation of the masses of the [70, 1−] multiplet up to order 1/Nc included [10].

Note that although O5 and O6 carry a factor of 1/N2
c their matrix elements are of order

1/Nc because they contain the coherent operator Gia which brings an extra factor of Nc.

O1 = Nc 11 , O2 =
1

Nc
ℓiSi, O3 =

1

Nc
T aT a, O4 =

1

Nc
SiSi,

O5 =
15

N2
c

ℓ(2)ijGiaGja, O6 =
3

N2
c

ℓiT aGia. (4)

Here O1 = Nc 11 is the trivial operator, proportional to Nc and the only one which survives

when Nc → ∞ [2], where the SU(4) symmetry is exact. It is the only spin-isospin inde-

pendent term in the mass formula. The SU(4) quadratic operators SiSi, T aT a and GiaGia

should all enter the mass formula (the sum over repeated indices is implicit). But they are

related to each other by the operator identity [7]

{

Si, Si
}

+ {T a, T a} + 4
{

Gia, Gia
}

=
1

2
Nc(3Nc + 4), (5)

so one can express GiaGia in terms of SiSi and T aT a. Note that the right hand side of

Eq. (5) is the eigenvalue of the Casimir operator for the irreducible representation [Nc−1, 1]

of SU(4). The operators O2, O5 and O6 are relevant for orbitally excited states. Among

them, the role of O2 will be discussed below.
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A. The ground state band

The mass formula for the ground state up to order 1/Nc is simple because one can replace

T aT a by SiSi, due to an identity which holds for symmetric [Nc] states [7]. As there is no

orbital excitation, the mass formula (2) takes the following simple form

M = c1Nc + c4
1

Nc

S2 + O
(

1

N3
c

)

, (6)

which means that for N = 0 only the operators O1 and O4 contribute to the mass. Thus

the fit gives quantitative information only for c1 and c4. For Nc = 3, MN = 940 MeV for

S = 1/2, and M∆ = 1232 MeV for S = 3/2, one gets

c1 = 289 MeV, c4 = 292 MeV. (7)

B. Excited states

Among the excited states, those belonging to the N = 1 band, or equivalently to the

[70, 1−] multiplet, have been most extensively studied, either for Nf = 2 [11, 12, 13, 14, 15,

16, 17, 18, 19, 20] or for Nf = 3 [21]. In the latter case, first order corrections in SU(3)

symmetry breaking were also included.

The N = 2 band contains the [56′, 0+], [56, 2+], [70, ℓ+] (ℓ = 0, 2) and [20, 1+] multiplets.

There are no physical resonances associated to [20, 1+]. The few studies related to the N = 2

band concern the [56′, 0+] for Nf = 2 [22], [56, 2+] for Nf = 3 [23], and [70, ℓ+] for Nf = 2

[24], later extended to Nf = 3 [25]. The method has also been applied [26] to highly excited

non-strange and strange baryons belonging to [56, 4+], the lowest multiplet of the N = 4

band [27].

The group theoretical similarity of excited symmetric states to the ground state makes

the analysis of these states simple [23, 26]. For mixed symmetric states, the situation is

more complex. There is a standard procedure which reduces the study of mixed symmetric

states to that of symmetric states. This is achieved by the decoupling of the baryon into an

excited quark and a symmetric core of Nc − 1 quarks. This procedure has been applied to

the [70, 1−] multiplet [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] and to the [70, ℓ+] (ℓ = 0, 2)

multiplet [24, 25]. In fact the decoupling is not necessary, provided one knows the matrix

elements of the SU(2Nf) generators between mixed symmetric states. The case of SU(4)

has been presented in Ref. [10].
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In Section IV, we collect the values of c1, c2 and c4 obtained in the above studies in order

to make a comparison between those values and their analogs resulting from the quark model

described below.

III. QUARK MODEL FOR BARYONS

A. Confining interaction

In the framework of potential models, it is generally assumed that a baryon, viewed as

a bound state of three quarks, can be described in a first approximation by the following

spinless Salpeter Hamiltonian

H =
3

∑

i=1

√

~p 2
i + m2

i + VY , (8)

where mi is the current mass of the quark i, and VY the confining interaction potential.

The nonperturbative part of the gluon exchanges, responsible for the confinement, can

be successfully described in the flux tube model [28]. In this framework, each quark is

assumed to generate a string, or a flux tube, characterized by its energy density (string

tension). Recent developments in lattice QCD tend to confirm the Y-junction as the correct

configuration for the flux tubes in baryons [29]. In this picture, a flux tube starts from each

quark and the tubes meet at the Toricelli point of the triangle formed by the three quarks.

This point, denoted by ~xT , is such that it minimizes the sum of the flux tube lengths, and

its position is a complicated function of the quark coordinates ~xi. Moreover, the energy

density of the tubes appears to be equal for mesons and baryons. The Y-junction potential

reads

VY = a

3
∑

i=1

|~xi − ~xT | . (9)

In Ref. [30], it has been shown that this complicated potential is successfully approximated

by the more easily computable expression

V = a

[

α

3
∑

i=1

∣

∣

∣
~xi − ~R

∣

∣

∣
+ (1 − α)

1

2

∑

i<j

|~xi − ~xj |
]

, (10)

where ~R is the position of the center of mass. If α = 1, Eq. (10) is a simplified Y-junction,

where the Toricelli point is replaced by the center of mass. If α = 0, this interaction
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reduces to a ∆-type potential. Results of Ref. [30], obtained in the framework of a potential

model, show that α = 1 gives a better description than α = 0, and that the Y-junction is

approximated at best by α close to 1/2.

B. Mass formula

Let us now introduce auxiliary fields, in order to get rid of the square roots appearing in

the Hamiltonian (8). We get

H(µi, νj, λij) =

3
∑

j=1

[

~p 2
j + m2

j

2µj
+

µj

2

]

+α
3

∑

j=1

[

a2(~xj − ~R)2

2νj

+
νj

2

]

+
(1 − α)

2

∑

j<k

[

a2(~xj − ~xk)
2

2λjk

+
λjk

2

]

. (11)

The auxiliary fields, denoted as µi, νj , and λij are, strictly speaking, operators. Although

being formally simpler, H(µi, νj , λij) is equivalent to H up to the elimination of the auxiliary

fields thanks to the constraints

δµi
H(µi, νj , λij) = 0 ⇒ µi,0 =

√

~p 2
i + m2

i , (12a)

δνj
H(µi, νj , λij) = 0 ⇒ νi,0 = a|~xi − ~R|, (12b)

δλij
H(µi, νj , λij) = 0 ⇒ λij,0 = a|~xi − ~xj |. (12c)

It is worth mentioning that 〈µi,0〉 can be seen as a dynamical mass of a quark of current

mass mi, while 〈νi,0〉 is, in this case, the static energy of the straight string linking the

quark i to the Toricelli point [31]. Similarly, 〈λij,0〉 can be interpreted as the static energy

of a straight string joining the quarks i and j. Although the auxiliary fields are operators,

the calculations are considerably simplified if one considers them as real numbers. They

are then finally eliminated by a minimization of the masses with respect to them [32]. The

extremal values of µi, νj , and λij, considered as numbers, are logically close to the values

of 〈µi,0〉, 〈νj,0〉, and 〈λij,0〉 given by relations (12). This procedure leads to a spectrum

which is an upper bound of the “true spectrum” (computed without auxiliary fields) [33]:

it can be shown that, the more auxiliary fields are introduced, the higher are the masses

compared to those without auxiliary fields [34]. Let us finally mention that, for α = 1, the

Hamiltonian (11) can be related to the rotating string model for a baryon (see for example

Ref. [35]).
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In Ref. [36], it has been shown that the eigenvalues of a Hamiltonian of the form (11) can

be analytically found by making an appropriate change of variables, the quark coordinates

~xi = {~x1, ~x2, ~x3} being replaced by new coordinates ~x′
k =

{

~R, ~ξ, ~η
}

. The center of mass is

defined as

~R =
µ1~x1 + µ2~x2 + µ3~x3

µt

, (13)

with µt = µ1 + µ2 + µ3 and {~ξ, ~η} being the two relative coordinates. From Ref. [36], it can

be immediately found that the mass spectrum of bound states of three massless particles

(mi = 0 for the u and d quarks) is given by

M(µ, ν, λ) = ω(2n + ℓ + 3) +
3

2

(

µ + αν +
(1 − α)

2
λ

)

, (14)

with

ω = a

√

1

µ

[

α

ν
+

3(1 − α)

2λ

]

, (15)

n = nξ + nη and ℓ = ℓξ + ℓη. An obvious symmetry argument helps us to make the

identification µi = µ, νi = ν, and λij = λ. In this symmetric case, properties of the

equilateral triangle together with the relations (12) allow to make the following ansatz

λ =
√

3 ν. (16)

Defining

Q = α +
(1 − α)

2

√
3, ν̃ = Qν, (17)

and

N = 2n + ℓ, (18)

we find

M(µ, ν̃) = aQ

√

1

µν̃
(N + 3) +

3

2
(µ + ν̃) . (19)

Formula (19) is clearly symmetric in µ and ν̃. That means that we can set µ = ν̃. This

equality can be viewed as a sort of virial theorem. Then we have

M(µ) =
aQ

µ
(N + 3) + 3µ. (20)

One can easily find that the relation δµM(µ) = 0 implies

µ0 =
[a

3
Q(N + 3)

]1/2

, (21)
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and M(µ0) = 6µ0, as observed in Ref. [37]. Writing explicitly the square mass, we see that

the model of Ref. [37] also predicts Regge trajectories, which are in agreement with the

experimental data for light baryons

M2(µ0) = 12 a Q (N + 3). (22)

The Regge slope is here given by 12aQ. However, from experiment we know that the Regge

slope for light baryons and light mesons are approximately equal. For light mesons, the

exact value in the relativistic flux tube model is 2πa, a lower value than the one obtained

from formula (22). This is due to the auxiliary fields method: the more auxiliary fields

we introduce, the more the masses are overestimated [34]. What can be done to cure this

problem is to rescale a: let us define σ such that 12aQ = 2πσ. Then, formula (22) is able

to reproduce the light baryon Regge slope for a physical value σ <∼ 0.2 GeV2. Note that the

best value for α is 1/2. Consequently, the best value for Q is 1/2+
√

3/4 ≈ 0.93. It is worth

mentioning that such a rescaling of the string tension has already given good results in the

study of hybrid mesons [38].

C. One gluon exchange and quark self-energy

Although including only the confining energy is sufficient to understand the Regge tra-

jectories of light baryons, it is well-known that the absolute value of the masses which are

obtained are too high with respect to the experimental data. Other contributions are needed

to decrease these masses and we shall estimate their effect perturbatively. The most widely

used is a Coulomb interaction term of the form

∆Moge = −2

3
αs

∑

i<j

〈

1

|~xi − ~xj |

〉

, (23)

arising from one gluon exchange processes, where αs is the strong coupling constant, usually

assumed to be around 0.4 for light hadrons [39]. Lattice QCD calculations also support this

value [40]. Assuming that 〈1/A〉 ≈ 1/ 〈A〉, and using symmetry arguments, relations (12)

lead to
∑

i<j

〈

1

|~xi − ~xj |

〉

≈ 3 a

λ0

=

√
3 a Q

µ0

, (24)

∆Moge = −2αs
a Q√
3 µ0

. (25)
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Another interesting contribution to the mass, which can be added perturbatively, is the

quark-self energy. Recently, it was shown that the quark self-energy, which is created by the

color magnetic moment of a quark propagating through the vacuum background field, adds

a negative constant to the hadron masses [41]. Its negative sign is due to the paramagnetic

nature of the particular mechanism at work in this case. The quark self-energy contribution

for three massless quarks is given by [41]

∆Mqse = − 3fa

2πµ0
. (26)

The factor f has been computed in lattice QCD studies. First quenched calculations gave

f = 4 [42]. A more recent unquenched work [43] gives f = 3. Since its value is still a matter

of research, we will only assume that f ∈ [3, 4].

With the unperturbed baryon mass M(µ0), given by Eq. (22), the total mass is given by

the sum M0 = M(µ0) + ∆Moge + ∆Mqse. Then, in the first order of perturbation and for

α = 1/2, it is straightforward to obtain the following mass formula for baryons

M2
0 = 2πσ(N + 3) − 4√

3
πσαs −

12

(2 +
√

3)
fσ, (27)

where the scaling 12aQ = 2πσ has been used. The effects of the one gluon exchange term

and of the quark self-energy are thus to shift the square mass spectrum by a global negative

amount. Let us note that the symbol N defined by Eq. (18) and the quantity N used to

classify baryon states and used to plot results from the 1/Nc expansion are the same. This

common N will be used in the next section to perform a comparison between the results

obtained in both approaches.

The mass formula (27) does not take into account spin relativistic contributions, as the

spin-spin or spin-orbit forces. Within the auxiliary field formalism, all these corrections to

the static potential are expanded in powers of 1/µ2 where µ is the constituent quark mass

[44]. All the spin corrections to the mass formula (27) must depend both on the matrix

elements of the interaction and on the coefficient 1/µ2. In the following, we shall consider

that the dominant dynamical effect is due to the constituent mass, while the matrix elements

remain roughly constant with N , as presented in the next section.
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IV. COMPARISON OF THE TWO APPROACHES

In the 1/Nc expansion method, the first term c1Nc in the mass formula of Eq. (2) con-

tains the main spin-independent contribution to the baryon mass, which in a quark model

language, represents the confinement and the kinetic energy. So, it is natural to identify this

term with the mass given by the formula (27). Then, for Nc = 3, we assume the relation

c2
1 =

M2
0

9
, (28)

which gives

c2
1 =

2π

9
σN + c0 (29)

=
2π

9
σ(N + 3) − 4

9
√

3
πσαs −

4

3(2 +
√

3)
fσ. (30)

Fig. 1 shows a comparison between the values of c2
1 obtained in the 1/Nc expansion method

and those derived from the Eq. (29) for various values of N . From this comparison one can

see that the results of large Nc QCD are entirely compatible with the formula (29). From

a fit, one has σ = 0.163 ± 0.004 GeV2, a rather low but still acceptable value according to

usual potential models, and c0 = 0.085± 0.007 GeV2. To reproduce c0, we can set αs = 0.4,

f = 3.5: these are very standard values.

In most of the quark models however, the string tension is generally assumed to lie in the

range [0.17, 0.20] GeV2. If the value of σ is chosen in this interval, the corresponding values

for c2
1, given by Eq. (29), are located in the shaded area of Fig. 1. Although the agreement

with large Nc data is not so good than in the optimal case, where σ = 0.163 GeV2, it remains

satisfactory if we choose f = 3.98 (4.42) for σ = 0.17 (0.20) GeV2, together with αs = 0.4.

These values are larger than what is expected. It could be argued that other mechanisms

than the quark self-energy are present, their contribution decreasing the total mass M0. In

mesons for example, retardation effects due to the finite interaction speed were shown to be

also proportional to µ−2, like the quark self-energy [45]. It is possible that, when retardation

effects are included, f can again be chosen in the interval [3, 4] with a standard value of σ.

But, no model for retardation effects in baryon has been proposed yet.

Within the auxiliary field formalism, we can expect that c2 and c4 ∝ µ−2
0 , and thus

c2 =
c0
2

N + 3
, c4 =

c0
4

N + 3
. (31)
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FIG. 1: Values of c2
1 computed in the 1/Nc expansion (full circles) from a fit to experimental data

(Eq. (7) for N = 0, Refs. [21, 23] for N = 1, Ref. [24] for N = 2 and Ref. [26] for N = 4),

compared with results from a fit (see text) of the formula (29) (empty circles and dotted line to

guide the eyes). No data is available for N = 3 in large Nc studies. Values of c2
1 as predicted by

formula (29) for σ ∈ [0.17, 0.20] GeV2 are located in the shaded area.

We see that this behavior is coherent with the large Nc results in Figs. 2 and 3. We chose

c0
2 = 208 ± 60 MeV so that the point with N = 1, for which the uncertainty is minimal, is

exactly reproduced. Let us note that the spin-orbit term is vanishing for N = 0, so no large

Nc result is available in this case. To compute the parameter c0
4 a fit is performed on all the

large Nc data. We obtain then c0
4 = 1062 ± 198 MeV. Note that c0

4 ≫ c0
2. This shows that

the spin-spin contribution is much larger than the spin-orbit contribution, which justifies

the neglect of the spin-orbit one in quark model studies.

V. CONCLUSIONS

This study supports the quark model basic assumptions by the compatibility of its mass

formula with the mass formula derived from the model independent 1/Nc expansion. These

assumptions are: relativistic kinetic energy for light quarks, Y-junction confining interaction,

negligible spin-orbit interaction, hyperfine interaction dominated by a spin-spin term. A

recent analysis shows that a flux tube model and a feeble spin-orbit interaction give a

succesful account of hadron spectroscopy [46].
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FIG. 2: Values of c2 computed in the 1/Nc expansion (full circles) from a fit to experimental data

(Refs. [21, 23] for N = 1, Ref. [24] for N = 2 and Ref. [26] for N = 4), compared with results from

formula (31) (empty circles and dotted line to guide the eyes). No data is available for N = 3 in

large Nc studies.

In addition this study suggests that a good description of the bulk content of the baryon

mass can be obtained with a spin independent energy eigenvalue of the form M0 ∝
√

N + 3

where N = 0, 1, 2, . . . is the number of excitation units, as in the harmonic oscillator. It

also shows that the spin-orbit and spin-spin interactions vanish with the excitation energy.

Moreover this comparative study gives a better insight into the large Nc mass operator where

the coefficients ci encode the QCD dynamics.
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