
Classification performance resulting from a 2-means

C. Ruweta,∗, G. Haesbroecka
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Abstract

The k-means procedure is probably one of the most common nonhierachical

clustering techniques. From a theoretical point of view, it is related to the

search for the k principal points of the underlying distribution. In this pa-

per, the classification resulting from that procedure for k = 2 is shown to

be optimal under a balanced mixture of two spherically symmetric and ho-

moscedastic distributions. Then, the classification efficiency of the 2-means

rule is assessed using the second order influence function and compared to the

classification efficiencies of the Fisher and logistic discriminations. Influence

functions are also considered here to compare the robustness to infinitesi-

mal contamination of the 2-means method w.r.t. the generalized 2-means

technique.

Keywords: Asymptotic loss, Cluster analysis, Error rate, k-means,

Influence Function, Principal points, Robustness.

1. Introduction

Generally, clustering methods aim to classify observations into several

groups on the basis of some distances. Cluster analysis differs from discrim-
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inant analysis because in clustering, there is no training sample (for which

the source population is known for each observation) to set up the rule which

will be used afterwards to classify the observations. This implies that the

prior probabilities to belong to each group cannot be estimated by propor-

tions observed on the training sample. Statistical clustering (e.g. Vermunt

and Magidson, 2002; Fraley and Raftery, 2002; Gallegos and Ritter, 2005;

Qiu and Tamhane, 2007; Garćıa-Escudero et al., 2008) is somewhat between

these two kinds of analysis. The underlying distribution F is assumed to be

a mixture distribution of k distributions F1, . . . , Fk with prior probabilities

π1(F ), . . . , πk(F ), i.e. F =
∑k

i=1 πi(F )Fi. Each of the mixture components

represents a sub-population which is denoted by Gi, i = 1, . . . , k. These sets

Gi are easier to understand when assuming the presence of a latent vari-

able, Y , which gives the membership. Then, Gi is the set {x : Y (x) = i}.

In this setting, one hopes to end up with clusters representing the different

sub-groups. In this sense, an error rate might be defined to measure, as in

classification, the performance of the clustering.

A well-known clustering technique is the k-means procedure which con-

sists of looking for k centers in order to minimize the sum of the squared

Euclidean distances between the observations assigned to a cluster and the

mean of this cluster. At the population level, the name “k principal points”

instead of “k-means” has been introduced by Flury (1990). Principal points

have already been extensively studied in the literature, even in recent years.

For example, the uniqueness of principal points has been shown for univari-

ate models (Li and Flury, 1995), for univariate location mixtures (Yamamoto

and Shinozaki, 2000a) and for multivariate location mixtures of spherically
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symmetric distributions (Yamamoto and Shinozaki, 2000b). Also, the posi-

tion of the principal points of elliptical distributions (Tarpey et al., 1995), of

mixtures of spherically symmetric distributions (Yamamoto and Shinozaki,

2000b; Kurata, 2008; Kurata and Qiu, 2011) or of general mixtures (Mat-

suura and Kurata, 2011) have been derived. In this paper, when no confusion

is possible, the terminology “k-means” refers to the empirical problem as well

as to its population version.

The aim of this paper is to study the classification performance resulting

from a k-means procedure when k = 2, refereed to as “2-means” procedure.

First, as Qiu and Tamhane (2007) and Qiu (2010) did in the univariate and

bivariate normal cases, the 2-means procedure is shown here to be optimal

(in the sense of achieving the smallest error rate) under multivariate mixtures

of spherically symmetric distributions. This part of the work can be viewed

as an extension of their previous works. Then, as Croux et al. (2008a) and

Croux et al. (2008b) did in the context of discriminant analysis, influence

functions (e.g. Hampel et al., 1986) are used to compute the asymptotic

loss (Efron, 1975) of 2-means classification. This asymptotic loss is then

used to compare the 2-means method to the Fisher and logistic discriminant

analyses. This second part of the work is based on the paper of Garćıa-

Escudero and Gordaliza (1999) who derived the influence functions of the

k-means centers in the particular case of univariate data to be clustered into

two groups (k = 2).

Here are some notations used throughout the paper. The set of all real

vectors of dimension p is denoted by R
p while R

p
n denotes the set of all real

matrices of dimensions p × n. The vector e1 represents the unity vector
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(1, 0, . . . , 0)t, whatever the dimension.

This paper is organized as follows: Section 2 presents the 2-means clus-

tering methodology and the setting in which it will be used. Section 3 defines

the error rate as a measure of performance. In Section 4, the expressions of

the first and second order influence functions are derived under a general mix-

ture model. Some particular cases are also emphasized and some influence

functions are represented. Section 5 introduces the asymptotic classification

efficiency of the 2-means procedure w.r.t. Fisher linear discrimination and

logistic discriminant analysis. In Section 6, some simulations illustrate the

finite sample behaviors of all these procedures while Section 7 outlines some

conclusions.

2. The 2-means procedure

The result of a clustering method can be provided via a set of two points

(simply called a 2-set from now on) containing the two centers. Letting F

denote the distribution of interest, the population version of the 2-means

procedure is the 2-set {T1(F ), T2(F )} ⊂ R
p which is solution of the following

minimization problem

{T1(F ), T2(F )} = argmin
{t1,t2}⊂Rp

∫

Rp

(

inf
1≤j≤2

‖x− tj‖

)2

dF (x)

for those distributions for which this integral exists.

A generalization of this method is the generalized 2-means procedure: the

main idea is to replace the quadratic penalty function by another penalty

function, denoted by Ω, which is assumed to be non-decreasing. Its popula-

tion version is defined as the 2-set {T1(F ), T2(F )} in R
p which is solution of
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the following minimization problem

{T1(F ), T2(F )} = argmin
{t1,t2}⊂Rp

∫

Rp

Ω

(

inf
1≤j≤2

‖x− tj‖

)

dF (x) (1)

for those distributions for which this integral exists. Taking Ω(x) = x2 leads

to the classical 2-means estimator while Ω(x) = x gives the 2-medoids esti-

mator. Garćıa-Escudero and Gordaliza (1999) derived robustness properties

of the generalized 2-means procedure in the univariate case. For example,

they showed that any Ω function with a bounded derivative yields a bounded

influence function for the estimators T1(F ) and T2(F ).

Assuming that T1(F ) and T2(F ) are the outputs of the generalized 2-

means analysis, corresponding clusters, denoted as C1(F ) and C2(F ) can be

constructed. The jth cluster consists of the region of points closer to Tj(F )

than to the other center, the closeness being assessed by the penalty function.

A clustering rule can then be defined as

RF (x) = Cj(F ) ⇔ j = argmin
1≤i≤2

Ω(‖x− Ti(F )‖),

for any x ∈ R
p. For a strictly increasing penalty function, the allocation of

an observation x to a cluster depends on its position in IRp with respect to

a hyperplane and the previous rule can be written as:







RF (x) = C1(F ) if A(F )tx+ b(F ) > 0

RF (x) = C2(F ) otherwise
(2)

where

A(F ) = T1(F )− T2(F ) and b(F ) = −
1

2

(

‖T1(F )‖2 − ‖T2(F )‖2
)

.
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If ω(x) denotes the gradient of Ω(‖x‖) (when it exists), the first-order

conditions corresponding to the minimization problem (1) are given by

∫

Ci(F )

ω(x− Ti(F ))dF (x) = 0 i = 1, 2 (3)

showing that the generalized principal points are the ω-means, in the sense of

Brøns et al. (1969), of the corresponding clusters. For example, if Ω(x) = x2,

ω(x) = 2x and the first order conditions simply imply that the principal

points Ti(F ) are the means on the clusters Ci(F ) for i = 1, 2. When the

gradient of Ω(‖x‖) does not exist for a finite number of points, the integral

in (3) has to be split into a sum of integrals but the property still holds.

The set of centers resulting from a 2-means procedure is a maximum

likelihood estimate obtained under a model which assumes that the two pop-

ulations are normally distributed with the same spherical covariance matrix

(Scott and Symons, 1971). Then, only mixture distributions with spherically

and equally scattered components will be considered in the sequel.

Let Fµ,σ2 denote a spherically symmetric distribution with center µ ∈ R
p

and scatter σ2Ip ∈ R
p
p. Its density function can be written as

fµ,σ2(x) =
K

σp
g

(

(x− µ)t(x− µ)

σ2

)

withK a constant such that the honesty condition holds and where g is a non-

increasing generator function. For example, the multinormal distribution

with spherical covariance is defined by the function g(r) = exp(− r
2
) while

the function g(r) =
(

1 + r
ν

)− ν+p

2 defines the multivariate Student distribution

with ν degrees of freedom. See e.g. Serfling (2006) for more information

about spherically symmetric distributions.
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With that notation, the mixture distribution under consideration here is

given by F = π1Fµ1,σ2 + π2Fµ2,σ2 . W.l.o.g., one can assume that the means

of the distributions are located on the first axis, symmetrically w.r.t. the

origin, yielding the following model

(M) FM ≡ π1F−µ,σ2 + π2Fµ,σ2 where w.l.o.g. µ = µ1 e1 and µ1 > 0.

Under this particular setting, Yamamoto and Shinozaki (2000b) showed

that the 2-means centers are on the first axis. Although a formal proof could

not be worked out, the symmetry of the problem makes us believe that the

same property holds for any generalized 2-means procedure, as the following

conjecture states:

Conjecture 1. Under model (M), the generalized 2-means centers Ti(FM),

i = 1, 2, are given by ti e1 for some t1 and t2 in R.

Simulations computing the distance between the centers and the first axis

have been conducted and support this conjecture. Under model (M), it is

easy to check that the multivariate 2-means analysis reduces to a univariate

one since the first coordinates ti, i = 1, 2, are simply the centers of the one

dimensional 2-means problem based on the univariate mixture distribution

FM,1D = π1F−µ1,σ2 + π2Fµ1,σ2 .

3. Error rate

Any classification rule is bound to misclassify some objects. A measure

of classification performance may be defined in terms of the error rate which

corresponds to the probability of misclassifying observations distributed ac-

cording to a given model. Assuming that the model distribution, Fm say, is a
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mixture of two distributions, Fm,1 and Fm,2, with respective proportions π1,

and π2, i.e. Fm = π1Fm,1 + π2Fm,2, while F still represents the distribution

under which the 2-means centers are derived, the error rate takes the form

ER(F, Fm) =
2

∑

j=1

πjIPFm,j

[

RF (X) 6= Cj(F )
]

. (4)

Using the clustering rule (2), the error rate can be written as

ER(F, Fm) = π1IPFm,1

[

A(F )tX + b(F ) < 0
]

+π2IPFm,2

[

A(F )tX + b(F ) > 0
]

.

(5)

As the error rate is only based on the clustering rule, it remains the same

for any generalized 2-means procedure based on a strictly increasing penalty

function.

In ideal circumstances, the distribution used to compute the clustering

rule is the same as the one on which the quality of the rule is assessed.

However, as will be further discussed in Section 4.1, this is not always the

case.

In classification, the Bayes rule gives the smallest error rate; this is the

gold-standard. This rule is defined by C1(F ) = {x ∈ R
p : π1f1(x) > π2f2(x)}

and C2(F ) = R
p\C1(F ). The error rate of the 2-means procedure can reach

the minimal error rate of the Bayes rule for some particular models. For

example, this holds under a balanced mixture of spherically symmetric and

homoscedastic distributions, i.e.

(O) FO ≡ 0.5F−µ,σ2 + 0.5Fµ,σ2 where w.l.o.g. µ = µ1 e1 with µ1 > 0

as the following proposition, proved in the Appendix, shows.
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Proposition 1. Under model (O), the error rate of the 2-means clustering

procedure is equal to the one of the Bayes rule, ERBR. This implies the

optimality of the 2-means procedure under this model.

Moreover, under Conjecture 1, the error rate of any generalized 2-means

procedure based on a strictly increasing penalty function also reaches the error

rate of the Bayes rule, leading to their optimality under model (O).

Proposition 1 provides an extension to any multivariate and spherically

symmetric distribution of the univariate and bivariate cases proved under

normality by Qiu and Tamhane (2007) and Qiu (2010).

4. Influence function of the error rate

4.1. Contamination model

In practice, data often contain outliers, in which case the distribution

yielding the clustering rule would be better represented as a distribution Fε

defined as Fε = (1− ε)Fm + εG, i.e. a proportion 1− ε comes from the true

model while the remaining fraction, ε, comes from another distribution G.

It is usually assumed that contamination cannot affect the test dataset, nor

the prior probabilities (which are estimated assuming a prospective sampling

scheme). Nevertheless, contamination will have an impact on the error rate

through the corruption of the classification rule as definition (4) adapted to

Fε clearly shows

ER(Fε, Fm) =
2

∑

j=1

πjIPFm,j

[

RFε
(X) 6= Cj(Fε)

]

.
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4.2. First and second order influence functions

Let us now turn to the derivation of the influence function of the error

rate. Roughly speaking, influence functions (Hampel et al., 1986) measure

the influence that an infinitesimal contamination placed on an arbitrary point

has on the estimator of interest. More formally, when existing, the influence

function of the statistical functional ER at the model Fm is defined by

IF(x; ER, Fm) = lim
ε→0

ER(Fε, Fm)− ER(Fm, Fm)

ε
=

∂

∂ε
ER(Fε, Fm)

∣

∣

∣

∣

ε=0

where Fε = (1− ε)Fm + ε∆x and ∆x is the Dirac distribution having all its

mass at the point x ∈ R
p. In this classification setting, the contaminated

distribution Fε can be written as the natural mixture Fε = π1F1,ε + π2F2,ε

where Fj,ε = (1− ε)Fm,j + εδj(x)∆x, δj(x) being equal to 1 if x comes from

the jth population and 0 otherwise.

Before considering Proposition 2 which gives the influence function of

the error rate, let us introduce some additional notations. Under the model

distribution Fm, the 2-means centers Tj(Fm) will be denoted by τj for j =

1, 2 and the functionals A and b evaluated at Fm by α and β. Thus, one

has α = τ1 − τ2 and β = −1
2
(‖τ1‖

2 − ‖τ2‖
2). Moreover, the conditional

distributions Fm,1 and Fm,2 correspond to some densities fm,1 and fm,2. For

any p-dimensional vector y, the notation y = (y1, y
t
2)

t distinguishes its first

component, y1 ∈ R, and the vector of its last components, y2 ∈ R
p−1. This

decomposition will also be used for the 2-means centers T1 and T2 as well as

for A, leading to T11, T21 and A1 in R and to T12, T22 and A2 in R
p−1.

Proposition 2. With the previous notations and the hypothesis that the
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centers τ1 and τ2 satisfy

−τ1 = τ2 = τ e1, with τ > 0, (6)

the influence function of the error rate of any generalized 2-means procedure

based on a strictly increasing penalty function, under model Fm, IF(x; ER, Fm),

is given by

∫

Rp−1

(

IF(x; b, Fm) + yt2IF(x;A2, Fm)

α1

)

(

π1fm,1 (0, y2)− π2fm,2 (0, y2)
)

dy2

(7)

where

IF(x; b, Fm) = τ
(

IF(x;T21, Fm) + IF(x;T11, Fm)
)

IF(x;A2, Fm) = IF(x;T12, Fm)− IF(x;T22, Fm)

with IF(x;T1, Fm) and IF(x;T2, Fm) the influence functions of the two gen-

eralized 2-means centers.

The proof is in the Appendix. The result of Yamamoto and Shinozaki

(2000b) and Conjecture 1 show that the assumption (6) is fulfilled under

model (M) up to a translation. Under another model for which the true

centers are not located on the first axis, the orthogonal equivariance of the

generalized k-means procedure allows to modify the distribution in order to

satisfy (6). Indeed, one can always construct an orthogonal matrix Γ such

that Γτi = τi1 e1 for i = 1, 2, and translate the data such that (6) holds. Let

F ′
m be the distribution of ΓX + γ so that F ′

m satisfies (6). Following Hampel

et al. (1986, p. 259), one gets IF(x; ER, Fm) = IF(Γx + γ; ER, F ′
m), where

the IF on the right hand-side is given by (7).

11



The influence function of the error rate relies on the influence functions of

the 2-means centers T1 and T2 which were computed by Garćıa-Escudero and

Gordaliza (1999) for any generalized 2-means procedure based on a strictly

increasing penalty function. These influence functions can be written in the

form




IF(x;T1, Fm)

IF(x;T2, Fm)



 = M−1





ω1(x)

ω2(x)





where ωi(x) = − gradyΩ(‖y‖)
∣

∣

y=x−Ti(Fm)
I(x ∈ Ci(Fm)) and where the matrix

M depends only on the distribution Fm. This implies that these influence

functions are bounded as soon as the inverse of the matrix M exists and the

gradient of the penalty function is bounded. On the other hand, it is clear

that the influence function of the error rate (7) is bounded as soon as the

influence functions of the functionals T1 and T2 are bounded and the first

moment of the model distribution exits.

Two special cases where expression (7) simplifies further are worth con-

sidering:

The spherical mixture model (M): As explained above, condition (6) holds

under model (M). Moreover, it is easy to check that

fM,1(0, y2) = fM,2(0, y2) (8)

for all y2 ∈ R
p−1. Then, the influence function of the error rate reduces to

IF(x; ER, FM) =
π1 − π2

α1

fµ,σ2(0) IF(x; b, FM).

When the mixture probabilities are equal (π1 = π2 = 0.5), i.e. under

model (O), it is clear that the first order influence function vanishes. This
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is a consequence of the optimality of the generalized 2-means procedure.

Indeed, ER(Fε, FO) > ER(FO, FO) = ERBR(FO) by optimality. Therefore,

the IF of ER has to be always positive or null for all x since, for any ε small

enough, the first order Taylor’s expansion of ER states that

ER(Fε, FO) ≈ ER(FO, FO) + εIF(x; ER, FO). (9)

As the expected value of the influence function must equal zero (Hampel

et al., 1986), the influence function of the error rate vanishes under model

(O). A second order influence function needs then to be computed. It is

defined here as

IF2(x; ER, Fm) =
∂2

∂ε2
ER(Fε, Fm)

∣

∣

∣

∣

ε=0

(when this derivative exists) and is derived in Proposition 3.

Proposition 3. Under model (O) and with the same notations as in Propo-

sition 2, the second order influence function of the error rate of any gen-

eralized 2-means procedure based on a strictly increasing penalty function,

IF2(x; ER, FO), is given by

−2µ1
K

σp+2

∫

Rp−1

(

IF(x; b, FO)

α1

+ yt2
IF(x;A2, FO)

α1

)2

g′
(

µ2
1 + yt2y2
σ2

)

dy2

(10)

where the function g′ is the derivative of the generator function of the spher-

ically symmetric distribution under consideration and

IF(x; b, FO) = τ
(

IF(x;T21, FO) + IF(x;T11, FO)
)

IF(x;A2, FO) = IF(x;T12, FO)− IF(x;T22, FO)

with IF(x;T1, FO) and IF(x;T2, FO) the influence functions of the two gener-

alized 2-means centers.
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The proof is in the Appendix. Since the first order influence function

vanishes under model (O), the Taylor’s expansion (9) becomes

ER(Fε, FO) ≈ ER(FO, FO) +
ε2

2
IF2(x; ER, FO).

By optimality under model (O), ER(Fε, FO) > ER(FO, FO) and this implies

that the second order influence function must be positive (which is indeed

the case since g is non-increasing).

Under normality (model FN say), g′(r) = −e−
r
2/2 and expression (10)

can be written in a more explicit way:

IF2(ER; x, FN ) =
µ1

σ3α2
1

ϕ
(µ1

σ

)(

IF(x; b, FN)
2+σ2IF(x;A2, FN)

tIF(x;A2, FN)
)

where ϕ is the pdf of the standard normal distribution.

The univariate case (p=1): In this case, (7) cannot be used but it is straight-

forward to compute the influence function of the error rate:

IF(x; ER, Fm) =
1

2

(

IF(x;T1, Fm) + IF(x;T2, Fm)
)

(

π2fµ2,σ2(C(Fm))− π1fµ1,σ2(C(Fm))
)

where C(Fm) =
(

T1(Fm) + T2(Fm)
)

/2 is the cut-off point between the two

clusters. Under an optimal model (balanced mixture of spherically symmetric

distributions), one gets

IF2(x; ER, FO) = −
1

4
f

′

−µ,σ2(0)
(

IF(x;T1, FO) + IF(x;T2, FO)
)2

The univariate generalized 2-means and the influence function of its error

rate are studied in details in Ruwet and Haesbroeck (2011).
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Figure 1: First order influence function of the error rate based on the 2-means procedure

under the univariate mixture model F = π1 N(−∆/2, 1) + π2 N(∆/2, 1), with varying

values of ∆ and π1 = 0.4 (left panel) or varying values of π1 and ∆ = 3 (right panel).

4.3. Graphical representations

In this Section, the spherically symmetric distribution under considera-

tion is the normal distribution.

First, let us consider the univariate case (p = 1) where visual analysis of

the influence function is much easier. Figure 1 gives the influence functions

of the error rate derived from the 2-means methodology under the following

mixture of normal distributions: F = π1 N (−∆/2, 1) + π2 N (∆/2, 1) . The

left panel shows the impact of varying values of the distance between the

means of the two components of the mixture, denoted as ∆, on the first

order influence function of the error rate when π1 = 0.4. The right panel

represents the changes in the first order influence function of the error rate

when the weight of the components of the mixture varies while ∆ = 3. A

first general comment concerns the unbounded characteristic of the influence
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function. This is a result of the computation of the influence functions of the

clusters centers T1(F ) and T2(F ) which are unbounded too (Garćıa-Escudero

and Gordaliza, 1999). Secondly, the discontinuity in the function comes from

a discontinuity in IF(x, T1, F ) and IF(x, T2, F ) at the cut-off point C(F ). As

far as the impact of the distance ∆ between the two groups is concerned,

the impact of contamination is bigger when the groups overlap more (small

value of ∆), as expected. When x lies before the cut-off point, i.e. in the

cluster corresponding to the smallest group, the influence function is mainly

negative, yielding a decrease of the error rate (see Taylor’s expansion (9)).

The impact of the standard deviation on the influence function is similar

to the one of the distance between the means and the corresponding plots

are omitted to save space. For varying values of the prior probabilities,

one observes first that the position of the jump corresponding to the cut-off

moves towards the center of the group with the highest prior probability.

This illustrates the fact that the k-means procedure tries to get groups of

similar weights. Furthermore, one can notice that the slope of the influence

function is positive for small values of π1 and negative for bigger values.

Another comment concerns the magnitude of the slope which is bigger (in

absolute value) in the smallest group. This implies that the error rate based

on the 2-means procedure is more sensitive to outliers in the smallest group.

Under the optimal setting, the first order influence function vanishes and

one needs to look at the second order one to measure the impact of contami-

nation. Figure 2 shows this second order influence function under the model

F = 0.5N(−∆/2, 1) + 0.5N(∆/2, 1) for different values of ∆. Since the 2-

means method is optimal under the given model, this second order influence
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Figure 2: Second order influence function of the error rate based on the 2-means procedure

under the optimal model F = 0.5N(−∆/2, 1) + 0.5N(∆/2, 1) for varying values of the

distance between the means of the two components.

function is always positive. Of course, it is still unbounded, leading to a

possible harmful impact of infinitesimal contamination on the error rate of

the 2-means clustering method. As under non-optimal models, the influence

of outliers becomes smaller when the distance between the groups becomes

bigger.

Let us now consider the bivariate case (p = 2) with the distribution

F = π1N2(−2 e1, I2) + π2 N2(2 e1, I2). The left panel of Figure 3 shows the

behavior of the first order influence function (π1 = 0.4) which is quite similar

to the one observed in the one dimensional case: there is a discontinuity in

the function corresponding this time to the plane separating the two clusters

and the influence function of the error rate based on the 2-means procedure

is unbounded. The right panel pictures the second order influence function

(π1 = 0.5) and the similarity with the one-dimensional case still holds.
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Figure 3: First order influence function of the error rate based on the 2-means procedure

under the multivariate mixture F = 0.4N2(−2 e1, I2) + 0.6N2(2 e1, I2) (left panel) and

second order influence function of the error rate based on the 2-means procedure under

the optimal multivariate model F = 0.5N2(−2 e1, I2) + 0.5N2(2 e1, I2) (right panel).

Proposition 2 being valid for other penalty function than Ω(x) = x2, one

can also look at the influence function of the error rate of the 2-medoids

procedure (Ω(x) = x). The left panel of Figure 4 represents the one-

dimensional influence function of the error rate based on the 2-medoids

method under the model F = 0.4N(−∆/2, 1) + 0.6N(∆/2, 1) with vary-

ing values of ∆ while the right part illustrates the multivariate model F =

0.4N2(−2 e1, I2) + 0.6N2(2 e1, I2). The most important feature of these two

graphs is the bounded behavior of the influence functions of the error rate

related to the 2-medoids procedure. The impact of infinitesimal contami-

nation is thus less harmful on the 2-medoids method than on the 2-means

one. However, as Garćıa-Escudero and Gordaliza (1999) show, the 2-medoids

procedure can still break down when faced with a single outlier, leading to
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Figure 4: First order influence function of the error rate based on the 2-medoids pro-

cedure under the model F = 0.4N(−∆/2, 1) + 0.6N(∆/2, 1) (left panel) and under the

multivariate model F = 0.4N2(−2 e1, I2) + 0.6N2(2 e1, I2) (right panel).

a breakdown point asymptotically equal to zero. Besides the discontinuity

corresponding to the cut-off point (in one dimension) or to the hyperplane

between the clusters (in higher dimension), there are two other discontinuities

coming from the influence functions of the clusters centers (Garćıa-Escudero

and Gordaliza, 1999) and corresponding to the 2-medoids centers τ1 and τ2.

5. Asymptotic classification efficiencies

As already mentioned in the Introduction, cluster analysis is not the

most natural tool to use in order to classify mixture data. Other more

appropriate methods would be preferred, as Fisher discrimination or logistic

discrimination, both being optimal under a different set of models.

Nevertheless, these three classification procedures are optimal under a

balanced mixture (π1 = π2 = 0.5) of spherically and equally scattered nor-
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mal distributions (denoted FN as before) and it is of interest to determine

whether the 2-means clustering compares favorably to the other methodolo-

gies under this particular setting. From now on, the focus is on the 2-means

procedure instead of the generalized 2-means one since the following results

are really dependent on the optimality result which relies on conjecture 1 in

the generalized case.

To characterize the classification performance of the different procedures,

the same approach as the one advocated by Croux et al. (2008a) and Croux

et al. (2008b) will be considered. They suggest computing Asymptotic Rela-

tive Classification Efficiencies (ARCE) of a discrimination method (Method

1, say) with respect to another one (Method 2, say) by means of the ratio

ARCE(Method 1,Method 2) =
A-Loss(Method 2)

A-Loss(Method 1)
,

where A-Loss stands for the asymptotic loss which is defined as

A-Loss = lim
n→∞

nEFm
[ERn − ERopt].

There, ERn stands for the error rate of an optimal discriminant rule based

on a training sample of size n drawn from the model. Proposition 3 in Croux

et al. (2008a) shows that this finite-sample error rate converges at the n−1

rate to the optimal error rate. Hence, the asymptotic loss measures how much

increase in error rate is to be expected by estimating the optimal discrimi-

nant rule from a finite training sample. Under consistency and asymptotic

normality of the estimators appearing in the definition of the error rate (here

T1 and T2), Proposition 3 in Croux et al. (2008a) also shows that the A-Loss

of an optimal rule is related to the second order influence function in this

20



way:

A-Loss =
1

2
EFm

[

IF2(X; ER, Fm)
]

.

Conditions stated in Pollard (1981, 1982) to ensure consistency and asymp-

totic normality of T1 and T2 are satisfied in the present setting.

See Efron (1975) and Croux et al. (2008a) for more details on classification

efficiencies.

The A-Loss corresponding to the 2-means procedure under a balanced

mixture of spherically symmetric and homoscedastic normal distributions is

given Proposition 4.

Proposition 4. Under the optimal mixture of normal distributions FN with

µ = ∆/2 e1 and using the notations of Proposition 2, the asymptotic loss of

the 2-means procedure is given by

A-Loss =
∆

4σ3α2
1

ϕ

(

∆

2σ

)

(

τ 2[ASV(T21) + ASV(T11) + 2ASC(T11, T21)]

+ σ2[ASV(T12) + ASV(T22)− 2ASC(T12, T22)]
)

where ASV and ASC stand for the asymptotic variance and covariance of

their component (at the model distribution).

Figure 5 shows how the asymptotic loss and the asymptotic relative clas-

sification efficiency vary with the distance between the means of the two

components, ∆. The left panel of Figure 5 represents the A-Loss of the

three classification procedures while the right part yields the ARCE of the

2-means clustering method w.r.t. the Fisher and logistic discriminations.

As expected, the loss in classification performance decreases as the distance

between the mixture components increases. For the 2-means clustering and

21



2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Delta

A
−

Lo
ss

2−means
Fisher
Logistic

1.0 1.5 2.0 2.5 3.0

0
20

40
60

80

Delta

A
R

C
E

Fisher
Logistic

Figure 5: A-Loss of the 2-means clustering procedure, the Fisher discriminant analysis

and the logistic discrimination (left panel) and ARCE of the 2-means clustering method

w.r.t. the Fisher and logistic discriminations under the multivariate mixture model F =

0.5N2(−∆/2 e1, I2) + 0.5N2(∆/2 e1, I2).

Fisher discrimination, the A-loss tends towards 0 when ∆ increases (while

this is not the case for logistic discrimination). Moreover, the A-loss of the

2-means goes to zero much faster than the other one. This corresponds to a

better efficiency to classify observations coming from FN in favor of the 2-

means. Therefore, even if the 2-means method is optimal under fewer models

than the other two methods, when the model distribution is a balanced mix-

ture of spherically symmetric and homoscedastic normal distributions, the

2-means method performs better as far as this ARCE measure is concerned.

6. Empirical results

Section 5 compared the performance of the 2-means clustering method

w.r.t. the Fisher and logistic discriminant analyses under optimality. In
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this Section, simulations are conducted to illustrate their behavior under

other settings. The idea is to measure the impact of some deviation from

the optimal model (O). First, the tails of the distributions are modified

by using the multivariate Student distribution. Then, correlation between

the covariates will be considered. Finally, skewness is introduced in the

distributions following the idea of Azzalini (2005): if X ∈ R and Y ∈ R
p are

independent normal variables, then

W =







Y if X < αtY

−Y otherwise

follows a skew-normal distribution with skewness α ∈ R
p. More formally, the

chosen models for the simulations are balanced mixtures (π1 = π2 = 0.5) of

(IN) normal distributions with means ±∆/2 e1 and an identity covariance

matrix,

(T) translated Student distributions centered at ±∆/2 e1 with ν = 4 de-

grees of freedom and an identity covariance matrix,

(DN) normal distributions with means ±∆/2 e1, standard deviations 1 and

correlations ρ = 0.3,

(SN) skew-normal distributions with skewness parameter e1, an identity co-

variance matrix and location parameters (±∆/2−
√

1/π) e1 (in order

to get means of ±∆/2 e1).

It is important to note that the tails of the multivariate Student distribution

used here are thinner than the tails of the normal distribution with the same

covariance structure (Kotz and Nadarajah (2004)).
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Several sampling schemes are considered with p = 5 dimensions and N =

1000 training samples of size n = 100. Other values of these inputs have

been considered as well and the results were similar. The classification rule

derived from each training sample is assessed on a test sample of size 105

(which can be assumed to be a good representation of the population) by

computing the error rate of the classification rule. Average error rates over

the N simulations (± standard deviations) are reported in Table 1. The gold

standard given by the error rate of the Bayes rule is also reported in Table 1.

In the case of a mixture of independent normal distributions (IN), all three

methods are optimal. One can observe that the finite-sample performances

are comparable even if the 2-means procedure tends to achieve the smallest

error rate as the distance between the groups increases.

Under the multivariate Student distribution (T), the Fisher discriminant

rule seems to be the best choice while the logistic discrimination and 2-

means method are either at the second or the third position depending on

the distance between the groups. The nice behavior of the Fisher analysis

is due to the fact that there are less observations in the tails than under

normality.

When the covariates are dependent (DN), Fisher classification still gives

the best overall results but the 2-means method performs better than the

logistic discrimination when the distance between the means is big enough.

Finally, when there is skewness in the data (SN), the 2-means procedure

is able to do as well as Fisher analysis when the components of the mixture

are sufficiently separated.
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Table 1: Simulated error rates of the 2-means, Fisher and logistic methods for balanced

models (independent normal, student, dependent normal and skew-normal) for different

values of ∆.

Models ∆ Bayes 2-means Fisher Logistic

(IN) 1 .3085 .3837 (± .0528) .3261 (± .0127) .4256 (± .0129)

2 .1587 .1779 (± .0299) .1710 (± .0077) .1726 (± .0090)

3 .0668 .0720 (± .0037) .0744 (± .0042) .0812 (± .0094)

4 .0228 .0246 (± .0013) .0266 (± .0024) .0404 (± .0121)

5 .0062 .0068 (± .0004) .0078 (± .0009) .0167 (± .0087)

(T) 1 .2593 .3689 (± .0777) .2815 (± .0162) .2828 (± .0168)

2 .1151 .1457 (± .0832) .1280 (± .0101) .1329 (± .0134)

3 .0506 .0610 (± .0615) .0578 (± .0062) .0680 (± .0136)

4 .0237 .0305 (± .0517) .0280 (± .0041) .0406 (± .0129)

5 .0121 .0142 (± .0341) .0139 (± .0022) .0234 (± .0001)

(DN) 1 .2893 .4314 (± .0156) .3054 (± .0118) .3056 (± .0117)

2 .1333 .2947 (± .0473) .1449 (± .0068) .1473 (± .0085)

3 .0478 .1008 (± .0291) .0542 (± .0039) .0637 (± .0110)

4 .0132 .0273 (± .0065) .0161 (± .0017) .0287 (± .0111)

5 .0027 .0070 (± .0017) .0035 (± .0005) .0092 (± .0065)

(SN) 1 .2710 .4350 (± .0475) .2883 (± .0115) .2884 (± .0116)

2 .1120 .1513 (± .0591) .1227 (± .0060) .1257 (± .0077)

3 .0342 .0391 (± .0135) .0396 (± .0032) .0515 (± .0117)

4 .0079 .0090 (± .0007) .0097 (± .0010) .0197 (± .0095)

5 .0013 .0016 (± .0002) .0019 (± .0003) .0051 (± .0043)
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7. Conclusion

This paper has shown the optimality (in the sense of reaching the smallest

possible error rate) of the 2-means clustering procedure when the model dis-

tribution is a balanced mixture of spherically symmetric distributions with

the same covariance matrix. This result is an extension of the univariate and

bivariate cases proved by Qiu and Tamhane (2007) and Qiu (2010) under nor-

mality. Unfortunately, the same result concerning the generalized 2-means is

still based on the conjecture that the generalized centers are on the axis of

symmetry of the distribution. Due to the symmetry, this hypothesis seems

natural. Furthermore, it is supported by simulation results. However, a

formal proof is still lacking.

The computation of the first and second order influence functions of the

error rate of the 2-means method has extended to the multivariate setting

the work done in Ruwet and Haesbroeck (2011). Influence functions have

been derived for any generalized 2-means procedure defined with a strictly

increasing penalty function and were shown to be bounded as soon as the

corresponding penalty function has a bounded derivative.

Under balanced mixtures of spherically and equally scattered normal dis-

tributions, the classification performance of the 2-means method has been

compared with that of the Fisher and logistic discriminant analyses, all of

these methods being optimal under this model. The tool used for this com-

parison is the asymptotic loss which is based on the second order influence

function of the error rate, as in Croux et al. (2008a). The loss in classification

efficiency resulting from the use of an empirical rule instead of the optimal

one is smaller with the 2-means procedure than with the two others, yielding
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a better efficiency to classify data under this model distribution.

Finally, a simulation study has compared the finite sample error rates of

these three classification procedures. Under the setting for which all three

procedures are optimal, it is the 2-means procedure which achieves the small-

est error rate as soon as the distance between the means of the two compo-

nents is big enough. Under other model distributions, the 2-means procedure

is a good alternative to the logistic discrimination. It is even able to compete

with the Fisher discriminant analysis in presence of skewness.

Although presented here with only 2 clusters, the definition of the clus-

tering rule (2) can be adapted to the general case of k clusters by considering

k(k − 1)/2 hyperplanes and clusters defined by intersections of half-spaces.

In this case, the error rate (4) becomes

k
∑

j=1

πj

k−1
∑

l=1

(−1)l+1
∑

Il
j

IPFm,j

[

il
⋂

i=i1

(

Aji(Fε)
tX + bji(Fε) < 0

)

]

with I l
j =

{

(i1, . . . , il) ∈ {1, . . . , k}\{j} : i1 < . . . < il

}

, Aji(F ) = Tj(F ) −

Ti(F ) and bji(F ) = −1
2
(‖Tj(F )‖2 − ‖Ti(F )‖2). In order to get the influence

function, one has to derive this expression. Under a more general form, the

derivation of the IF implies the computation of the following derivative:

∂

∂ε

∫

{x:A(ε)tx+B(ε)>0l}

f(x) dx

with A ∈ R
p
l , B ∈ R

p, 0l the null vector in l dimensions (l = 1, . . . , k−1) and

f a density function. This is not a trivial problem and, up to our knowledge,

no general solution has been proposed yet in the literature. Schechter (1998)

developed a method to replace the integral in R
p by p integrals in R. Then,
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the derivative can be passed through the different integrals. However, this

technique is not applicable to general values of k and p.

Appendix

Proof of Proposition 1 Model (O) satisfies the condition of Yamamoto

and Shinozaki (2000b) or Conjecture 1 leading to Ti(FO) = ti e1, ti ∈ R for

i = 1, 2. Then the first order conditions (3) become















∫

{x∈Rp:x1<(t1+t2)/2}

ω(x− T1(FO))f(x) dx = 0 (.1)

∫

{x∈Rp:x1>(t1+t2)/2}

ω(x− T2(FO))f(x) dx = 0 (.2)

where the function ω is odd and f is symmetric w.r.t. the origin. Changing

x into −x+ T1(FO) + T2(FO) in equation (.1) leads to

∫

{x∈Rp:x1>(t1+t2)/2}

ω(x+ T1(FO))dF (x) = 0.

The resulting system implies that the generalized 2-means must be such

that T2(FO) = −T1(FO) = t e1 with t > 0. This leads to b(FO) = 0 and

A(FO) = −2T2(FO) = −2t e1. Thus, the error rate of the generalized 2-

means procedure is given by

ER(FO, FO) =
1

2

(

IPFO,1
[−2tX1 < 0] + IPFO,2

[−2tX1 > 0]
)

=
1

2

(

IPFO,1
[X1 > 0] + IPFO,2

[X1 < 0]
)

.

On the other hand, the Bayes rule is based on the clusters

C1(F ) = {x ∈ R
p : f1(x) > f2(x)} and C2(F ) = R

p\C1(F ).
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Since the generator function g of the spherically symmetric distribution is

non-increasing,

f1(x) > f2(x) ⇔ f−µ,σ2(x) > fµ,σ2(x)

⇔ g

(

(x+ µ)t(x+ µ)

σ2

)

> g

(

(x− µ)t(x− µ)

σ2

)

⇔ (x+ µ)t(x+ µ) < (x− µ)t(x− µ)

⇔ 4µtx < 0 ⇔ µ1x1 < 0

where µ1 > 0. The error rate of this classification rule is then given by

ERBR(FO, FO) =
1

2

(

IPFO,1
[X ∈ C2(F )] + IPFO,2

[X ∈ C1(F )]
)

=
1

2

(

IPFO,1
[X1 > 0] + IPFO,2

[X1 < 0]
)

= ER(FO, FO).

This prove that the error rate of the generalized 2-means procedure under

model (O) (and under Conjecture 1 when Ω(x) 6= x2) reaches the smallest

value and is thus optimal.

Proof of Proposition 2 Let us consider the contaminated model Fε =

(1 − ε)F + ε∆x and the shorthand notations αε = A(Fε) and βε = b(Fε).

From (5), one has

ER(Fε, Fm) = π1

∫

βε+αt
εy<0

fm,1(y)dy + π2

∫

βε+αt
εy>0

fm,2(y)dy. (.3)

As one decomposes every vector of y ∈ R
p such as y = (y1, y

t
2)

t, one does

the same with α, β, αε and βε. Under the hypothesis −τ1 = τ2 = τ e1 with

τ > 0, one has α = α1 e1 with α1 < 0 and β = 0. Since it implies that, for ε

small enough, αε,1 < 0, one introduces the notation

k(y2, ε) =
−βε − yt2αε,2

αε,1

.
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With this notation, the integral (.3) can be written as the double integral:

π1

∫

Rp−1

∫ +∞

k(y2,ε)

fm,1(y1, y2)dy1dy2 + π2

∫

Rp−1

∫ k(y2,ε)

−∞

fm,2(y1, y2)dy1dy2.

Derivation w.r.t. ε results in

∂

∂ε
ER(Fε, Fm) =

∫

Rp−1

−
(

π1fm,1(k(y2, ε), y2)−π2fm,2(k(y2, ε), y2)
)∂k(y2, ε)

∂ε
dy2.

(.4)

Taking this last expression for ε = 0, one has

IF(x;ER,Fm) =

∫

Rp−1

−
(

π1fm,1(0, y2)− π2fm,2(0, y2)
) ∂k(y2, ε)

∂ε

∣

∣

∣

∣

ε=0

dy2

since k(y2, 0) = −β/α1 = 0 in this setting. The derivation of k(y2, ε) is

straightforward and gives

∂k(y2, ε)

∂ε

∣

∣

∣

∣

ε=0

=
−
(

∂βε

∂ε
+ yt2

∂αε,2

∂ε

)

αε,1 +
(

βε + yt2αε,2

)

∂αε,1

∂ε

α2
ε,1

∣

∣

∣

∣

∣

∣

ε=0

= −
IF(x; b, Fm)

α1

− yt2
IF(x;A2, Fm)

α1

. (.5)

The computation of the influence functions of A1 and A2 are immediate and,

for b, one has

IF(x; b, Fm) = −
1

2

(

∂‖T1(Fε)‖
2

∂ε

∣

∣

∣

∣

ε=0

−
∂‖T2(Fε)‖

2

∂ε

∣

∣

∣

∣

ε=0

)

= −
1

2

(

∂T1(Fε)
tT1(Fε)

∂ε

∣

∣

∣

∣

ε=0

−
∂T2(Fε)

tT2(Fε)

∂ε

∣

∣

∣

∣

ε=0

)

= −
1

2

(

2T1(Fε)
t∂T1(Fε)

∂ε
− 2T2(Fε)

t∂T2(Fε)

∂ε

)∣

∣

∣

∣

ε=0

= T2(Fm)
tIF(x;T2, Fm)− T1(Fm)

tIF(x;T1, Fm)

= τ IF(x;T21, Fm) + τ IF(x;T11, Fm).
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Proof of Proposition 3 One uses the notation f i to denote the derivative

of the function f : Rp → R w.r.t. the ith component.

Let us start with the expression (.4) of the previous proof which is now

derived once more to give
∂2

∂ε2
ER(Fε, Fm) =

∫

Rp−1

(

−

[

π1f
1
m,1(k(y2, ε), y2)

∂k(y2, ε)

∂ε
− π2f

1
m,2(k(y2, ε), y2)

∂k(y2, ε)

∂ε

]

∂k(y2, ε)

∂ε

−
[

π1fm,1(k(y2, ε), y2)− π2fm,2(k(y2, ε), y2)
]∂2k(y2, ε)

∂ε2

)

dy2.

Taking ε = 0, π1 = π2 = 0.5 and Fm = FO one has

− 0.5

∫

Rp−1

[

f 1
O,1(k(y2, 0), y2)− f 1

O,2(k(y2, 0), y2)
]

(

∂k(y2, ε)

∂ε

∣

∣

∣

∣

ε=0

)2

dy2

− 0.5

∫

Rp−1

[

fO,1(k(y2, 0), y2)− fO,2(k(y2, 0), y2)
] ∂2k(y2, ε)

∂ε2

∣

∣

∣

∣

ε=0

dy2

where one has already seen before that k(y2, 0) = 0 and that the second term

vanishes under FO (equation (8)). Using (.5) leads to

−0.5

∫

Rp−1

(

f 1
O,1(0, y2)−f 1

O,2(0, y2)
)

(

−
IF(x; b, FO)

α1

− yt2
IF(x;A2, FO)

α1

)2

dy2.

(.6)

Using the definition of spherically symmetric densities, it follows that

f 1
O,1(0, y2) = Dy1 f−µ,σ2(y1, y2)|y1=0

= Dy1

K

σp
g

(

(y1 + µ1)
2 + yt2y2

σ2

)∣

∣

∣

∣

y1=0

since µ = µ1 e1. Then

f 1
O,1(0, y2) =

K

σp+2
g′
(

µ2
1 + yt2y2
σ2

)

2µ1
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and

f 1
O,2(0, y2) = Dy1 fµ,σ2(y1, y2)|y1=0

= Dy1

K

σp
g

(

(y1 − µ1)
2 + yt2y2

σ2

)∣

∣

∣

∣

y1=0

= −
K

σp+2
g′
(

µ2
1 + yt2y2
σ2

)

2µ1.

Introducing this in (.6), one finally gets IF2(ER; x, FO)=

−2µ1
K

σp+2

∫

Rp−1

(

IF(x; b, FO)

α1

+ yt2
IF(x;A2, FO)

α1

)2

g′
(

µ2
1 + yt2y2
σ2

)

dy2.
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