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Abstract: Recent observations have revealed the existence of a population of slowly-rotating, nitrogen-rich
B dwarfs that are not predicted by evolutionary models including rotational mixing. However, as theoretical
arguments suggest that magnetic processes may significantly increase the efficiency of the transport of the
chemical elements, it is of importance to assess the extent of mixing in some known magnetic OB stars. We
review our knowledge of the CNO abundance properties of these objects and present the first results of an
NLTE abundance study of massive stars identified as being magnetic by the MiMeS collaboration. Although a
nitrogen excess is often associated with the presence of a magnetic field, there is no evidence for a strict one-to-
one correspondence between these two phenomena. This therefore suggests that other (still elusive) parameters
may control the amount of mixing experienced by main-sequence OB stars.

1 Context
Magnetic fields are involved in a wide variety of phenomena associated to massive stars. A question
that has recently been a focus of interest is the impact they may have on mixing of the internal lay-
ers. Evolutionary models incorporating magnetic fields generated through dynamo action generally
predict a greater amount of mixing and hence higher CNO abundance anomalies (Maeder & Meynet
2005, but see Heger, Woosley & Spruit 2005). The detection of a sizeable population of slowly-
rotating, yet N-rich, main-sequence B stars in the Magellanic clouds (Hunter et al. 2008) and in the
Galaxy (e.g., Gies & Lambert 1992; Kilian 1992; Morel, Hubrig & Briquet 2008) challenges current
rotational mixing theories (Brott et al. 2009) and urges the need to investigate this problem. The dis-
tribution of the N to C abundance ratio in nearby, main-sequence B stars appears to be bimodal with
about 20–25% exhibiting values a factor 2–3 higher than the bulk of the sample (Fig.1). Guided by
the theoretical results, one may be inclined to think that the relative proportion of magnetic stars could
be higher in the N-rich group. Investigating the CNO abundance properties of magnetic OB stars thus
appears not only warranted, but also timely in view of the rapidly growing number of magnetic field
detections in massive stars. An indication for a higher incidence of a nitrogen excess in magnetic
stars was inferred by Morel et al. (2008) who found 8 out of the 10 magnetic stars in their sample
to be N rich by a factor ∼3. Here we re-address this result in the light of new spectropolarimetric
observations that have questioned the magnetic status of some of these stars (Silvester et al. 2009)
and first results of our NLTE abundance analyses of a number of main-sequence OB stars that have
recently been shown to host a strong magnetic field by the MiMeS collaboration (Wade et al. 2010).
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Figure 1: Distribution of the logarithmic N to C
abundance ratio in nearby, main-sequence B stars
(adapted from Morel 2009). The dashed line indi-
cates the solar value (Asplund et al. 2009).

2 Analysis of the MiMeS stars

2.1 Observations and targets
High-resolution (R ∼ 46,000) FIES spectra of four O9–B2 IV–V targets (NGC 2244 #201, Par 1772,
NU Ori and HD 57682) were obtained in late 2009 in the framework of the ‘fast-track service pro-
gramme’ of the Nordic Optical Telescope (NOT; Canary Islands). As can be seen in Fig.2, these stars
span a wide range of v sin i values (from about 22 to 225 km s−1).

Spectropolarimetric observations of NGC 2244 #201 by Alecian et al. (2008) indicate a longitudi-
nal field strength of about 500 G with no variability of the Stokes V profile over 5 days. The star HD
57682 shows strong UV and optical line-profile variability. In particular, the Hα profile is atypical and
modulated by the rotational period (Grunhut et al. 2010). The relatively sharp emission component
filling in the absorption profile observed in our data is very similar to the case reported by Halbedel
(1993). The field likely confines the stellar wind and has a polar strength of ∼1700 G assuming a
dipole morphology (Grunhut et al. 2009). The polar field strengths under the same assumption are
∼1150 and ∼600 G in Par 1772 and NU Ori, respectively (Petit et al. 2008).

Figure 2: Spectra of the targets for the spectral range 4550–4730 Å.

2.2 Methods of analysis
The atmospheric parameters are derived purely on spectroscopic grounds: log g is determined from
fitting the collisionally-broadened wings of the Balmer lines, Teff from ionisation balance of various
species (He I/II, N II/III, Ne I/II and/or Si III/IV) and the microturbulence, ξ, from requiring the
abundances yielded by the O II features to be independent of their strength. The abundances are
computed using Kurucz atmospheric models, an updated version of the NLTE line-formation codes



Table 1: Atmospheric parameters and elemental abundances of NGC 2244 #201 and HD 57682 (on
a scale in which log ε[H]=12). The results of previous studies in the literature (Kilian 1992, 1994;
Vrancken et al. 1997) and those obtained for τ Sco using exactly the same tools and techniques are
shown for comparison (Hubrig et al. 2008). The number of lines used is given in brackets. A blank
indicates that no value could be determined. The solar [N/C] and [N/O] ratios are –0.60±0.08 and
–0.86±0.08 dex, respectively (Asplund et al. 2009).

NGC 2244 #201 HD 57682 τ Sco
This study Vrancken et al. (1997) This study Kilian (1992, 1994) Hubrig et al. (2008)

Teff (K) 27000±1000 27300±1000 33000±1000 31800±200 31500±1000
log g (cgs) 4.20±0.15 4.3±0.1 4.00±0.15 3.85±0.10 4.05±0.15
ξ (km s−1) 3±3 4 5±5a 0+1

−0 2±2
v sin i (km s−1) 22±2 22±1.5 25±4 35±3 8±2
He/H 0.072±0.023 (9) 0.106±0.030 (10) 0.085±0.008 0.085±0.027 (9)
log ε(C) 8.22±0.13 (6) 8.20± 0.23 8.20±0.19 (6) 8.75±0.06 8.19±0.14 (15)
log ε(N) 7.68±0.13 (20) 7.58±0.20 7.52±0.25 (8) 7.71±0.09 8.15±0.20 (35)
log ε(O) 8.63±0.18 (31) 8.59±0.19 8.31±0.21 (14) 8.10±0.08 8.62±0.20 (42)
log ε(Ne) 8.02±0.12 (7) 7.95±0.17 (1) 8.11±0.06b 7.97±0.10 (5)c

log ε(Mg) 7.29±0.20 (1) 7.38 7.37±0.18 (1) 7.33±0.07 7.45±0.09 (2)
log ε(Al) 6.20±0.13 (3) 6.15±0.15 6.07±0.21 (1) 6.23±0.06 6.31±0.29 (3)
log ε(Si) 7.41±0.25 (5) 7.28±0.30 7.47±0.32 (5) 7.24±0.06 7.24±0.14 (9)
log ε(S) 7.30±0.19 (1) 6.97±0.09b 7.18±0.28 (3)
log ε(Fe) 7.33±0.13 (20) 7.48±0.12b 7.33±0.31 (13)
[N/C] –0.54±0.14 –0.62±0.31 –0.68±0.30 –1.04±0.11 –0.04±0.25
[N/O] –0.95±0.21 –1.01±0.28 –0.79±0.19 –0.39±0.13 –0.47±0.29

a: Assumed value. b LTE values. c From Morel & Butler (2008).

DETAIL/SURFACE (Butler & Giddings 1985; Giddings 1981) and classical curve-of-growth tech-
niques. The relatively low mass-loss rate of the O9 IV star HD 57682 (Ṁ ∼ 1 × 10−9 M� yr−1;
Grunhut et al. 2009) validates the use of a static model atmosphere for this star.

2.3 First results
In this contribution, we present the results for the two narrow-lined stars NGC 2244 #201 and HD
57682. The two fast rotators remain to be analysed using spectral synthesis techniques. The atmo-
spheric parameters and elemental abundances are provided in Table 1 where they can be compared
with previous results in the literature (Kilian 1992, 1994; Vrancken et al. 1997) and values obtained
following exactly the same methodology for the magnetic, N-rich star τ Sco (Hubrig et al. 2008).
Grunhut et al. (2009) obtained Teff=34500±1000 K and log g=4.0±0.2 dex for HD 57682 from spec-
troscopic indicators using the NLTE, unified code CMFGEN (Hillier & Miller 1998).

There is no indication for a contamination of the surface layers of these two main-sequence stars
by core-processed material. In the case of NGC 2244 #201, the CNO logarithmic abundance ratios
([N/C] and [N/O]) are consistent with the solar values, fully confirming the results of Vrancken et al.
(1997). The results for HD 57682 are more uncertain owing to the weakness of the spectral lines and
their strong Teff sensitivity, but there is no indication for significant departures from the solar ratios
either. Significant differences with the results of Kilian (1992, 1994) are found.

3 Discussion
These two apparently slowly-rotating, main-sequence stars do not show evidence for CN-cycled ma-
terial at their surfaces and hence do not display the N excesses observed in other magnetic B stars.
Figure 3a shows the positions of these two stars in the log Teff-log g plane, along with those of other



late O/early B stars with or without a magnetic field detection analysed in exactly the same way (Morel
et al. 2008). On average, stars in both groups have roughly similar masses, share about the same evo-
lutionary status and are slow rotators. It is important to note that the distinction between magnetic
and non-magnetic stars remains quite fuzzy: the detection in stars with weak fields is often disputed
(see Hubrig et al. 2009 vs Silvester et al. 2009), while non magnetic stars might be detected with
more sensitive and intensive observations. For this reason, we also show in Fig.3b the results for the
stars for which the (non) detection of a magnetic field can be regarded as more secure, either because
it is (un)detected at a high degree of confidence or because it is confirmed by independent studies.
Although magnetic and abundance studies of a larger sample are needed to draw firm conclusions, in
both cases there is evidence for a higher incidence of an N excess in the magnetic stars.

Figure 3a: Position in the log Teff-log g plane of
the OB stars without (top panel) and with (bot-
tom panel) a magnetic field detection. Filled
symbols denote stars showing an N excess
(magnetic and abundance data from Morel et
al. 2008 and this study). Evolutionary tracks
from Claret (2004) for masses ranging from 6.3
to 25.1 M� are overplotted.

Figure 3b: Same as Fig.3a, but only taking
into account the stars with a secure magnetic
field (non) detection based on the spectropolari-
metric observations of Alecian et al. (2008),
Donati et al. (2001, 2006), Grunhut et al.
(2009), Hubrig et al. (2009, 2010), Neiner et al.
(2003a,b), Schnerr et al. (2006) and Silvester et
al. (2009).

However, it is likely that this simple relationship is only statistical and that other (still elusive)
parameters may play a role in the amount of mixing experienced. This is particularly well illustrated
by the cases of HD 57682 and τ Sco. These two stars have only slightly evolved off the ZAMS, have
about the same mass (Fig.3a) and are slow rotators (likely for HD 57682 unless it is seen nearly pole
on, while τ Sco has a true rotational velocity as low as 6 km s−1; Donati et al. 2006). Yet, the latter
exhibits evidence for CN-cycled material dredged up to the surface (an N excess of a factor ∼3; see
also Przybilla, Nieva & Butler 2008 who obtained [N/C]=–0.14±0.18), whereas the former does not.

We conclude by noting that several aspects may complicate a direct comparison between the
observed CNO surface abundances and the predictions of evolutionary models. First, the models in-
cluding magnetic effects consider a field created through shear instabilities, whereas it has a simple



morphology strongly indicative of a fossil origin in many stars. Second, many uncertainties about the
evolution of the angular momentum along the main sequence still remain. For instance, while mag-
netic braking is unlikely to significantly spin down some of our magnetic targets (see, e.g., ud-Doula,
Owocki & Townsend 2009 in the case of ζ Cas), the impact of g-mode pulsations in redistributing the
angular momentum in the slowly pulsating B stars (SPBs) or hybrid β Cephei/SPBs in our sample
might be dramatic (Townsend 2009).
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