

UNIVERSITÉ LIBRE DE BRUXELLES, UNIVERSITÉ D'EUROPE

Coccolithophores at the continental margin: Biogeochemical aspects of bloom formation and development

Jérôme Harlay

Collaborators

Anja Engel, Judith Piontek, Corinna Borchard, Nicole Händel, AWI Lei Chou, Caroline De Bodt, Nathalie Roevros, ULB Alberto Borges, Bruno Delille, Kim Suykens, ULg Koen Sabbe, Nicolas Van Oostende, UGent Steve Groom, PML

ROLE OF PELAGIC CALCIFICATION AND EXPORT OF CARBONATE PRODUCTION IN CLIMATE CHANGE

funded by the Belgian Federal Science Policy Office Science for a Sustainable Development - Climate and Atmosphere CONTRAT N° SD/CS/03A/B

Outline

- Preambule:
 - Problematic of coccolithophorid studies
 - Internal calcification
 - Lessons from the cultures
 - Ecological niche
- Results:
 - Bay of Biscay
 - Multidisciplinary cruises
 - 2004
 - 2006
 - 2008
- Perspectives:
 - Synthesis of field data
 - Mechanism of bloom development in the Bay of Biscay
 - Conceptual model for coccolithophorid calcification

Introduction

Coccolithophores play a major role in the biogeochemical cycle of the world ocean:

- Primary producers:

 $106CO_{2} + 16NO_{3}^{-} + H_{2}PO_{4}^{-} + 17H^{+} + 122H_{2}O \leftrightarrow (CH_{2}O)_{106}(NH_{3})_{16}H_{3}PO_{4} + 138O_{2}$

- Key role in total alkalinity (TA) distribution:

 $2HCO_3^- + Ca^{2+} \leftrightarrow CaCO_3 + CO_2 + H_2O$

- CaCO₃ ballasts particulate organic carbon (POC) and maintains the biological pump that removes CO_2 from the surface ocean to the ocean interior.

Understanding the functioning and characteristics of coccolithophorid blooms is of crucial importance to describe the efficiency of the biological pump (Climate Change perspective).

Problematic

How important are pelagic calcifiers in the biogeochemical C cycle?

• "Carbonate rocks" is the most important reservoir of C on the Earth system

location	mass $(10^{18}gofC)$	
carbonate in rocks	60 000	
organic C in rocks	15 000	
ocean $HCO_3^-+CO_3^{-2}$	42	
soil carbon	4	
atmospheric CO_2	0.7	
biosphere	0.6	

Berner, 1998

• CaCO₃ production is a biotic process

• Ocean acidification and Global Warming will affect the distribution and the abundance of the pelagic calcifiers.

(The Royal Society Report, 2005, IPCC, 2007)

Coccolithophorid science

Balch *et* al., 1992; Robertson *et* al., 1993; Holligan *et al.*, 1993, Fernandez *et al.*, 1993; Garcia-Soto *et al.*, 1995; van der Wal *et al.*, 1995; Head *et* al., 1998; Rees *et al.*, 1999; Maranon and Gonzalez, 1997; Graziano *et al.*, 2000; Lampert *et al.*, 2001; Rees *et al.*, 2002; Robertson *et al.*, 2002

PEACE project...

Laboratory experiments

By Paasche in the 60-70s

By Nimer-Merrett-Brownlee in the 80-90s

pCO₂ manipulations in the 2000th

Biogeochemical models

Six and Maier-Reimer, 1996; Heinze, 2004

Phytoplankton functional typebased models

Gregg *et al.*, 2003; Le Quéré *et* al., 2005; Gregg and Casey, 2007

Phytoplankton Individualbased models

Merico *et* al., 2004; Pasquer *et al.*, 2005; Joassin *et al.*, 2008

Remote sensing

Holligan *et al, 1983; GREPMA*, 1988*;* Brown and Yoder, 1994; Balch *et al.*, 2005; 2007

Brown and Yoder, 1994

Sediment trap synthesis

Milliman *et* al., 1999; Honjo, 2008

Global Calcification estimates

Table 5

Summary of global calcification estimates made in this study compared to estimates of other workers

Author	Technique	Global CaCO ₃ production (Pg PIC y ⁻¹)
This study	¹⁴ C measurements and	1.6 ± 0.3
	remote sensing algorithm	
Feely et al. (2004)	Seasonal cycle of	0.8-1.4
	euphotic zone alkalinity	
Wollast (1994)	Chemical state of the	1.1
	carbonate system	
Morse and Mackenzie	Geochemistry of	1.0
(1990)	sedimentary carbonates	
Archer and Maier-	Gridded maps of calcite	1.0
Reimer (1994) and	and diagenetic model of	
Archer (1996b)	CaCO ₃ preservation	
Moore et al. (2002)	Global marine	1.1
	ecosystem mixed-layer	
	model	
Milliman (1993)	Historical accumulation	0.6
	rates and sediment trap	
	data	
Milliman et al. (1999)	Historical accumulation	0.7
	rates and sediment trap	
	data	

(Balch et al., 2007)

Global Calcification estimates

Table 5

Summary of global calcification estimates made in this study compared to estimates of other workers

Author	Technique	Global CaCO ₃ production (Pg PIC y ⁻¹)
This study	¹⁴ C measurements and	1.6 ± 0.3
-	remote sensing	
	algorithm	
Feely et al. (2004)	Seasonal cycle of	0.8-1.4
	euphotic zone alkalinity	
Wollast (1994)	Chemical state of the	1.1
	carbonate system	
Morse and Mackenzie	Geochemistry of	1.0
(1990)	sedimentary carbonates	
Archer and Maier-	Gridded maps of calcite	1.0
Reimer (1994) and	and diagenetic model of	
Archer (1996b)	CaCO ₃ preservation	
Moore et al. (2002)	Global marine	1.1
	ecosystem mixed-layer	
	model	
Milliman (1993)	Historical accumulation	0.6
	rates and sediment trap	
	data	
Milliman et al. (1999)	Historical accumulation	0.7
	rates and sediment trap	
	data	

(Balch et al., 2007)

Considering that this study reflects coccolithophorid calcification!

Benthic Molluscs, Echinoderms...?

Global Calcification estimates

Table 5

Summary of global calcification estimates made in this study compared to estimates of other workers

Author	Technique	Global CaCO ₃ production (Pg PIC y ⁻¹)
This study	¹⁴ C measurements and	1.6 ± 0.3
	remote sensing	
	algorithm	
Feely et al. (2004)	Seasonal cycle of	0.8-1.4
	euphotic zone alkalinity	
Wollast (1994)	Chemical state of the	1.1
	carbonate system	
Morse and Mackenzie	Geochemistry of	1.0
(1990)	sedimentary carbonates	
Archer and Maier-	Gridded maps of calcite	1.0
Reimer (1994) and	and diagenetic model of	
Archer (1996b)	CaCO ₃ preservation	
Moore et al. (2002)	Global marine	1.1
	ecosystem mixed-layer	
	model	
Milliman (1993)	Historical accumulation	0.6
	rates and sediment trap	
	data	
Milliman et al. (1999)	Historical accumulation	0.7
	rates and sediment trap	
	data	

(Balch et al., 2007)

Considering that this study reflects coccolithophorid calcification!

Benthic Molluscs, Echinoderms...?

Coccolithophores are the most important calcifier, actually!!

The high-CO₂ World

Ocean acidification would reduce the ability of calcifying organisms to form $CaCO_3$ structures.

Global warming in surface waters:

- decreases CO₂ solubility
- decreases water mixing
 - enhances stratification
 - decreasing the mixed layer depth
 - reducing the **DIC inputs**
 - reducing the **nutrient inputs**
 - providing higher irradiance for the marine biota

The high-CO₂ World

Ocean acidification would reduce the ability of calcifying organisms to form $CaCO_3$ structures.

Global warming in surface waters:

- decreases CO₂ solubility
- decreases water mixing
 - enhances stratification
 - decreasing the mixed layer depth
 - reducing the **DIC inputs**
 - reducing the **nutrient inputs**
 - providing higher irradiance for the marine biota

"... the time taken for a patch to disappear on satellite images can be calculated as >200 days. The maximum lifetime of such patches on satellite images is 30-40 days, suggesting that processes other than sinking are important in their disappearance." (Holligan *et al.*, 1993)

FISHERIES OCEANOGRAPHY

Fish. Oceanogr. 2:3/4, 175-183, 1993

What controls the distribution of the coccolithophore, Emiliania huxleyi, in the North Sea?

PATRICK M. HOLLIGAN,¹ STEPHEN B. GROOM,² AND DEREK S. HARBOUR¹

¹Plymouth Marine Laboratory, West Hoe, Plymouth PL1 3DH, United Kingdom ²NERC Image Analysis Unit, University of Plymouth, Plymouth PL4 8AA, United Kingdom

ABSTRACT

Satellite data show that the distribution of *Emiliania huxleyi* in the North Sea is characterized by considerable spatial patchiness as well as large annual differences in abundance within any particular area. The causes of this variability are largely unknown, and therefore unpredictable, reflecting a paucity of information on the ecophysiology of the species.

Key words: Emiliania huxleyi, coccolithophore, North Sea, remote sensing, bloom.

Figure 1. Scanning electron micrographs of type B *Emiliania* huxleyi cells (a) and coccoliths (b) from a water sample collected in shallow water (\sim 15 m) off north-west Scotland on 12 July 1985. Scale bars represent 1 μ m.

"... the time taken for a patch to disappear on satellite images can be calculated as >200 days. The maximum lifetime of such patches on satellite images is 30-40 days, suggesting that processes other than sinking are important in their disappearance." (Holligan *et al.*, 1993)

FISHERIES OCEANOGRAPHY

Fish. Oceanogr. 2:3/4, 175-183, 1993

What controls the distribution of the coccolithophore, *Emiliania huxleyi*, in the North Sea?

PATRICK M. HOLLIGAN,¹ STEPHEN B. GROOM,² AND DEREK S. HARBOUR¹

¹Plymouth Marine Laboratory, West Hoe, Plymouth PL1 3DH, United Kingdom ²NERC Image Analysis Unit, University of Plymouth, Plymouth PL4 8AA, United Kingdom

ABSTRACT

Figure 1. Scanning electron micrographs of type B *Emiliania* huxleyi cells (a) and coccoliths (b) from a water sample collected in shallow water (\sim 15 m) off north-west Scotland on 12 July 1985. Scale bars represent 1 μ m.

Ecosystem dynamics based on plankton functional types

for global ocean biogeochemistry models

CORINNE LE QUÉRÉ^{*1}, SANDY P. HARRISON^{*}†, I. COLIN PRENTICE^{*}‡, ERIK T. BUITENHUIS^{*}, OLIVIER AUMONT[§], LAURENT BOPP[¶], HERVÉ C LETICIA COTRIM DA CUNHA^{*}, RICHARD GEIDER^{**}, XAVIER GIRAUD^{*2}, KLAAS^{*†}†, KAREN E. KOHFELD^{*3}, LOUIS LEGENDRE[∥], MANFREDI MAN TREVOR PLATT[§]§, RICHARD B. RIVKIN[¶]¶, SHUBHA SATHYENDRANAT JULIA UITZ[∥], ANDY J. WATSON [‡], and DIETER WOLF-GLADROW[†]†

darkness. Calcifiers are advantageous where P concentrations are low and where Fe is limiting, but this is not the case at least in the high latitudes of the North Atlantic Ocean. This indicates that our knowledge of the behavior of calcifiers is incomplete, which could mean that the traits of calcifiers need to be revised, or that they have protective defenses against zooplankton grazing (Strom *et al.*, 2002).

"... the time taken for a patch to disappear on satellite images can be calculated as >200 days. The maximum lifetime of such patches on satellite images is 30-40 days, suggesting that processes other than sinking are important in their disappearance." (Holligan *et al.*, 1993)

FISHERIES OCEANOGRAPHY

Fish. Oceanogr. 2:3/4, 175-183, 1993

What controls the distribution of the coccolithophore, *Emiliania huxleyi*, in the North Sea?

PATRICK M. HOLLIGAN,¹ STEPHEN B. GROOM,² AND DEREK S. HARBOUR¹

¹Plymouth Marine Laboratory, West Hoe, Plymouth PL1 3DH, United Kingdom ²NERC Image Analysis Unit, University of Plymouth, Plymouth PL4 8AA, United Kingdom

ABSTRACT

Figure 1. Scanning electron micrographs of type B *Emiliania* huxleyi cells (a) and coccoliths (b) from a water sample collected in shallow water (\sim 15 m) off north-west Scotland on 12 July 1985. Scale bars represent 1 μ m.

Global Change Biology (2005) 11, 2016–2040, doi: 10.1111/j.1365-2486.2005.01004.x

Ecosystem dynamics based on plankton functional types

for global ocean biogeochemistry models

CORINNE LE QUÉRÉ^{*1}, SANDY P. HARRISON^{*}†, I. COLIN PRENTICE^{*‡}, ERIK T. BUITENHUIS^{*}, OLIVIER AUMONT[§], LAURENT BOPP[¶], HERVÉ C LETICIA COTRIM DA CUNHA^{*}, RICHARD GEIDER^{**}, XAVIER GIRAUD^{*2}, KLAAS^{*††}, KAREN E. KOHFELD^{*3}, LOUIS LEGENDRE^{||}, MANFREDI MAN TREVOR PLATT[§], RICHARD B. RIVKIN[¶]¶, SHUBHA SATHYENDRANAT JULIA UITZ^{||}, ANDY J. WATSON[‡], and DIETER WOLF-GLADROW[†][†]

Our knowledge of coccolithophrid blooms is insufficient!!!

Coccolithophores are the most important calcifier, actually!!

Our knowledge of coccolithophrid blooms is insufficient!!!

What do we know ?

Outline

- Preambule:
 - Problematic of coccolithophorid studies
 - Internal calcification
 - Lessons from the cultures
 - Ecological niche
- Results:
 - Bay of Biscay
 - Multidisciplinary cruises
 - 2004
 - 2006
 - 2008
- Perspectives:
 - Synthesis of field data
 - Mechanism of bloom development in the Bay of Biscay
 - Conceptual model for coccolithophorid calcification

Internal calcification

van der Wal et al., 1983

- Takes place in **vesicles** derived from the Golgi apparatus
- Nucleation occurs around a fibrillar base-plate
- Involves specific polysaccharides
- The new **coccolith** migrates into the cytoplasm and is released by **exocytosis** to the cell periphery
- Coccoliths are produced in excess and detach from the cell

Schematic development of a coccolithophorid bloom

De Bodt et al., in prep

Schematic development of a coccolithophorid bloom

CaCO₃ (mg kg⁻¹)

De Bodt et al., in prep

Schematic development of a coccolithophorid bloom

Schematic development of a coccolithophorid bloom

Ecological niche

Ubiquitous species (r-strategy) that develop huge blooms

(Tyrrel and Merico, 2004) *Emiliania huxleyi* is generally found in:

- High light
- Stratified waters
- Low dissolved silicate (DSi) waters: competition with K-selected diatoms
- Phosphate (P) more limiting than nitrate (N) (= high N:P ratio)

Reassessed by (Lessard, Merico and Tyrrell, 2005): *E. huxleyi* grows on organic P (Riegmann *et al.*, 2000) and N (Palenik and Henson,1997). The high N:P is not sufficient to explain the presence of *E. huxleyi* but could prevent any other r-selected phytoplankton (*Phaeocystis* spp.) to bloom.

- Low CO₂

But mesocosm studies show that *E. huxleyi* develops in either high or low CO_2 (e.g. Engel *et al.*, 2005)

- High saturation state with respect to calcite (Ω_{cal})

Outline

- Preambule:
 - Problematic of coccolithophorid studies
 - Internal calcification
 - Lessons from the cultures
 - Ecological niche
- Results:
 - Bay of Biscay
 - Multidisciplinary cruises
 - 2004
 - 2006
 - 2008
- Perspectives:
 - Synthesis of field data
 - Mechanism of bloom development in the Bay of Biscay
 - Conceptual model for coccolithophorid calcification

Bay of Biscay

The northern Bay of Biscay

Climatic component: wind-driven residual

currents (Leterme et al., 2008)

1 Ocean Color Time-Series Online Visualization and Analysis web site, Level-3 Sea-viewing Wide Field-of-view Sensor (SeaWiFS), http://reason.gsfc.nasa.gov/Giovanni/ 2 Met Office National Centre for Ocean Forecasting for the North-East Atlantic (1/8°) extracted from http://www.nerc-essc.ac.uk/godiva/ 3 Reynolds *et al.* (2002) weekly SST climatology (http://iridl.ldeo.columbia.edu/)

Multidisciplinary Cruises

Eulerian studies in the Bay of Biscay in 2002-2004 and 2006-2008:

- T, S
- TA, pH, pCO₂
- PO₄, DSi
- Chl-a, Phaeo
- POC, PIC
- TEP
- ¹⁴C PP, ¹⁴C CAL
- BPP, O₂-PCR
- SEM
- Satellite imagery

- Hydrography
- Dissolved inorganic C chemistry
- Nutrient status
 - Standing stocks

Processes

- _____
- Biodiversity, preservation of CaCO₃ Snapshots, Time-series

Hydrography

Temperature and salinity profiles:

Thermal stratification in surface waters over the continental shelf

Composite image (14-16 June 2004)

St12

Phytoplankton biomass

St8

St10

<u>Chl-a profiles:</u>

Chl-a maximum in surface or subsurface

St5 (5bis)

St2

Nutrient distributions

Nutrient profiles:

Nutrient exhaustion in surface waters over the continental shelf

 $PO_4 \sim 0 \mu M$

DSi <2.0 µM*

(*probably limiting for diatom's growth)

POC and PIC profiles

POC and PIC:

Highest PIC in surface or subsurface within the core of the HR patch.

Transparent exopolymer particles

<u>TEP_{color} profiles:</u>

TEP-C were derived from TEP_{color} using the 63% (w/w) conversion factor (Engel, 2004).

TEP-C:POC represents 12-24 %

Harlay et al., submitted

Coccolithophorid blooms affect the Air-Sea fluxes of CO₂

pCO₂

Multidisciplinary Cruises

Fingerprint of calcification in the photic zone based on TA

SEM

Intact coccospheres and coccoliths

"Corroded" coccoliths

(Harlay et al., in prep)

$CaCO_3$ preservation

Description of coccolith preservation in the photic zone (2004).

3★ - Moderate

5★-Excellent

(Harlay *et al.*, in prep)

Barren

23

$CaCO_3$ preservation

Supra-lysiclinal dissolution of CaCO₃ leading to coccolith corrosion

Barren

$CaCO_3$ preservation

Hypothesis:

Corrosion happens in microenvironments formed by fresh TEP and suspended material (different from sinking aggregates).

Heterotrophic respiration is the main process leading to acidification within microenvironments.

No evidence of faecal pellets associated to dissolution features.

Cruise 2006

Cruise 2006

The onset of the coccolithophorid bloom (nWLr) coincides with a **warming** (SST) and a **shoaling of the mixed layer depth** after the first peak of Chl-a in early April.

Cruise 2006

We applied an original approach based on Margalef's Mandala (Margalef, 1997).

A shift towards oligotrophy is accompanied by a change in the relative dominance of phytoplankton species.

Large species Storage capacities (vacuoles)

> We used the water column **density gradient** to build a **stratification index** as an indicator for the preferential niche of coccolithophores to characterize the status of the different stations regarding of **bloom development**.

Higher index corresponds to more stratified conditions

Higher index corresponds to more stratified conditions

Primary production decreases with increasing stratification

Primary production decreases with increasing stratification

The system evolves towards heterotrophy with increasing stratification

Primary production decreases with increasing stratification

The system evolves towards heterotrophy with increasing stratification

Stratification index 150 2 2 **3PP_p (mmdC**m⁻² d⁻¹) CAL (mmolC m⁻² d⁻¹) 100-40 5 50-20r²=0.46 r²=0.37 0 0 2.0 0.6 1.5-CAL:GPP 2 0.4 1.0 0.2-1b____ 0.5 8 r²=0.79 r²=0.55 0.0-0.0

C:P ratio increases with increasing stratification

The system evolves towards heterotrophy with increasing stratification

TEP_{color} and sediment (Cruise 2008)

The abundance of **TEP-C** and **Chl-a** in the **water column** decreases as water stratifies.

Integrated TEP-C value is of the same magnitude as the C- content of the deposited fluffy layer (de Wilde *et al.*, 1998).

More **TEP-C** is observed on the **bottom**, where phytoplankton detritus are more abundant and degraded (« Freshness index »:Chl-a:(Chl-a+Phaeo)=0.35).

"Traps on 8 to 9 May contained large aggregates (Fig. 2) consisting almost exclusively of intact *Emiliana huxleyi* cells, embedded in mucoid material. These occurred following the peak of abundance of this coccolithophorid in surface waters (1.45 x 10⁶ cells dm⁻³)." (Cadée, 1985)

Vol. 24: 193–196, 1985	Published July 11	
ΟΤΕ		
Macroaggree	gates of <i>Emiliana huxleyi</i> in se	diment traps

"Sedimentation of coccoliths on the seabottom can probably only take place when they are transported in macroaggregates or faecal pellets (Honjo & Roman 1978). Loose coccoliths (sinking rate ~ 10 cm d⁻¹, Honjo 1976) will probably never reach the seabottom, intact cells (sinking rate ~ 1 m d⁻¹, Smayda 1971) also need a much longer time than macroaggregates (sinking rate ~ 100 m d⁻¹, Smayda 1971) to reach the bottom."

Introduction

Scientific background

(June, 1995). (c) Depth 500 m, station OM-7. This is below the SNL but within the depth range of generally enhanced SPM concentrations. In this case the filter is blocked with <u>large organic patches of mucus some</u> several hundred micrometres in diameter, which on closer examination show embedded particles of coccoliths, silt and clay. The

(McCave et al., 2001)

Fig. 4. SEM image of mucus layer at st. E showing the solid remains of a typical coccolithophorid assemblage.

a carbon load of 250 mmol C m⁻² over an area of 50,000 km². The recent state of the mucus allowed us to search for its origin. Characteristic pigment composition and the presence of coccoliths pointed to prymnesiophytes (coccolithophorids) as a major contributor, but dinoflagellates (peridinin) and green algae (chlorophyll-b, lutein) must have contributed as well. Sim-

Outline

- Preambule:
 - Problematic of coccolithophorid studies
 - Internal calcification
 - Lessons from the cultures
 - Ecological niche
- Results:
 - Bay of Biscay
 - Multidisciplinary cruises
 - 2004
 - 2006
 - 2008
- Perspectives:
 - Synthesis of field data
 - Mechanism of bloom development in the Bay of Biscay
 - Conceptual model for coccolithophorid calcification

Synthesis of field data

	SHELF	SHELF	SHELF	SHELF
	Biscay	Biscay	Biscay	Biscay
	April-May 2002	April-May 2003	early June 2004	early June 2006
PARAMETERS	this study	this study	this study	this study
Nutrients and Chl-a				
<u>Т°</u>	12-13°	11.5-12.5°	12-15° (up to 17°)	13-14°
DSi (μM)	~1.0	<2.0	<2.0	<2.0
ΡΟ4 (μΜ)	0.01		< 0.2	<0.1
Chl-a (µg L ⁻¹)	<0.1 to (3.0-4.0)	2.0-2.3	0.25 and <1.0 (up to 1.5)	0.5 to 2.0
Int Chl-a (mg m ⁻²)	up to 121	up to 127	up to 87	up to 130
UML depth (m)	20 to 40	_<40	30 to 50	10 to 40
Z ₀ (PAR) (m)	22 to 44	20 to 30	20 to 35	26 to 37
Suspended matter				
ΡΟϹ (μΜ)	7.5 to 20.0	8.9 to 19.3	7.7 to 15.5	4.8 to 17.3
POC (µg L ⁻¹)	90 to 240	107 to 231	92 to 186	58 to 208
ΡΙC (μΜ)	4.2 to 8.3	7.5 to 63.5	<4.0 (up to 8.2)	3.5 to 7.5 (up to 10.6)
PIC (μg L ⁻¹)	50 to 100	90 to 462	<48 (up to 98.4)	42 to 90 (up to 127.2)
PIC:POC (standing stock ratio)	0.54	0.6 (up to 3.3)	0.20 to 0.30	0.30 to 0.66
<u>Coccolithophores</u>				
Cell density (ml ⁻¹)			2 000 to 8 000	
Liths density (ml ⁻¹)			2 000 to 53 000	
Liths:cell			3 to 10:1	
Metabolism				/ //
PP (µMPOC h [°])	0.66	0.25-1.23	0.15-0.20 (up to 0.30)	0.25 (0.08-0.61)
$PP (mg C m^{3} h^{1})$				
CAL µMPIC h ⁻)	0.07 to 0.42	up to 0.18	0.05 (up to 0.22)	0.01 to 0.14
CAL (mg C m ⁻³ h ⁻¹)				
C:P (instantaneous production ratio)	<0.35±0.15> (0.04-0.81)	<0.12±0.11> (0.01-0.34)	<0.11±0.16> (0.01-0.84)	<0.24±0.15> (0.01-0.49)
Int PP (gPOC m ⁻² d ⁻¹)	0.02 to 1.06	<1.21±0.44> (0.3-1.69)	0.21 to 0.68	0.30 (up to 1.57)
Int PP (mmol m ⁻² d ⁻¹)				
Int CAL (gPIC m ⁻² d ⁻¹)	0.1 to 0.52	<0.13±0.07> 0.04-0.26	up to 0.14 (st 2)	0.09 to 0.62
Int CAL (mmol m ⁻² d ⁻¹)				
C:P (integrated production ratio)	<0.45±0.31>	<0.12±0.06> (0.03-0.21)	0.02-0.31	<0.34±0.12> (0.10-0.53)
GP (O ₂) (μM O ₂ m ⁻³ d ⁻¹)				
GP (O ₂) (mmol O ₂ m ⁻² d ⁻¹)				
DCR (O_2) (µM O_2 m ⁻³ d ⁻¹)				2.0-5.2
DCR (O_2) (mmol $O_2 \text{ m}^{-2} \text{ d}^{-1}$)				73.7 to 104.3
carbonate chemistry				
ΔTA (μmol kg ⁻¹)	-23.7 <-6.1>		-5 to -47	up to -26
pCO ₂	< atm equ.	< atm equ.	263 to 325	265 to 325
ΔpCO ₂ (uatm)	-15	-10	-30 to -40	-26
O ₂ Sat % (surf)	-	-		110%

Mechanism of bloom development

Surface warming = increased stratification

Conceptual representation

Why do they calcify?

For coccolithophores, calcification is:

- Not a protection against grazers/viruses
- Not a way to modulate buoyancy
- Not a way to modulate the incoming light
- Cost effective mechanism
- Associated to the production of pôlysaccharides
- Also taking place when cell division has stopped

Carbon concentration mechanism, « Trash can function » ?

Conceptual representation

Internal calcification represents an energetic investment compatible with a **"Trash-can function"** and a **"C-overflow function"**.

Perspectives

Jess & Glynn Gorick

Thank you for your attention

Bay of Biscay

The northern Bay of Biscay

Composite image (14-16 June 2004)