nrs A zealous parallel gradient descent algorithm

Gilles Louppe and Pierre Geurts Université
Department of EE and CS, University of Liege, Belgium de Liége
Abstract Asynchronous mini-batch gradient descent
Parallel and distributed algorithms have become a necessity in modern Parallel mini-batch gradient descent with shared memory [1, 2, 3]:
machine learning tasks. In this work, we focus on parallel - Store O in shared memory.
asynchronous gradient descent and propose a zealous variant that - Have multiple processors process asynchronously and independently
minimizes the idle time of processors to achieve a substantial multiple mini-batches.
speedup. We then experimentally study this algorithm in the context of - Update 0 in mutual exclusion using a synchronization lock.
training a restricted Boltzmann machine on a large collaborative
filtering task. Drawbacks:
¥ Some delay might occur between the time gradient components
Mini-batch gradient descent are computed and the time they are eventually used to update
6. Hence, processors might use stale parameters that do not
Minimize I [C(6,2z)] where Cis some (typically convex) cost function take into account the very last updates. Yet, [1, 4] showed that
and the expectation is computed over training points z. In mini-batch convergence is still guaranteed under some conditions.
gradient descent, this is achieved using the update rule ¥ Contention might appear on the synchronization lock, hence
¥ oC(b,,z, causing the processors to queue and idle. This is likely to
O < O~ PY: happen when updating 6 takes a non-negligeable amount of
o time or as the number of processors increases. .
where a is some learning rate and b is the number of training points in a This is what we
mini-batch. ' address in this work. -

Zealous parallel gradient descent algorithm
Procedure followed by each individual thread Global state Policy functions
<AH - O;> - ©: vector of parameters of the function trylock(pid)
model; counter[pid]++;
l - next: pid of the next thread return next == pid;
e Folse N allowed to update Q; end | |
< End J—— —| Getnextmini-batch b - counter: array of integers, function next(pid)
& such that counter[i] counter[pid] « o;
corresponds to the number of next «<— arg max(counter)
Local state / . ! pending updates of thread /. end
Keep going instead oC(6,2)
- AB: pending of blocking on the AH<—A9+Z;‘ o0 >
updates of ©; synchronization - r .)
_b: current lock, hence solving l V/ Critical section
mini-batch; \ the ldllngwproblem! J (\
S 0 < 0 —ahb;
- pid: unique l Access refused trylock(pid) Access granted » <« .05 g next(pid);
identifier. AG < 0; -

Experimental results Conclusions and future work
Setting o | | | | | «/ Significant speedup over the asynchronous parallel gradient
0ol S Soymohvonous | descent algorithm.

- Train a restricted Boltzmann 0.8} efficiency = - Future work: corroborate the results obtained in this work with
machine on a large collaborative il B - more thorough experiments.
filtering task [3, 5] £ e 1 Updates of 8 may become too much delayed if the number of
-8 counts 210M+ of values, hence T o4l | B cores becomes too large, which can impair convergence.
executing.the critical section " o3 | Future work: Explore strategies to counter the effects of delay.
takes a fair amount of time. Nl Derive theoretical guarantees on the convergence of the
- Experiments carried out on a 0; algorithm.
dedicated 24-core machine. 1 4 8 12 16 20 24))

Number of cores

References and acknowledgements

0.95

S — — —Single [1] A. Nedic, D.P. Bertsekas, and V.S. Borkar. Distributed asynchronous incremental subgradient
0.945 [> B 223;?00“3”0”5 4 methods. Studies in Computational Mathematics, 8:381—407, 2001.
™~ u
\ | . Asynchronous 8 [2] K. Gimpel, D. Das, and N.A. Smith. Distributed asynchronous online learning for natural language
0.94 - KRN Y T N Zealous 8 : . | P d f h C f C] | N | |_ |_]
| ~ zoalous8 = processing. In Proceedings of the Conference on Computational Natural Language Learning, 2010.
0.935 T oS 12 [3] G. Louppe. Collaborative filtering: Scalable approaches using restricted Boltzmann machines.
u i Zealous with 4 coresis | \ - ézéroc:g%ous 16 | Master s.the5|_s, University of Liege, 2010. | |
= 093 AR s T T T T T TR T T [4] M. Zinkevich, A. Smola, and J. Langford. Slow learners are fast. In Advances in Neural Information
oC nearl asfast aS AsynChronOUS 20 |
0.925 Y _ Zealous 20 Processing Systems 22, pages 2331—2339. 2009.
Al asynchronous with 8 cores!| | — — QZ;POC:;%T“S 24 [5] R. Salakhutdinov, A. Mnih, and G. E. Hinton. Restricted Boltzmann machines for collaborative
9ol R T <~ T ...l ¢ealouszd | e - - - - -
0.9 o e - \\ S filtering. In Proceedings of the 24th international conference on Machine learning, page 798. ACM, 2007.
0915 | due to delay.) i . - - -
, Gilles Louppe and Pierre Geurts are respectively research fellow and research associate of the FNRS

0.91 ' . Belgium. This paper presents research results of the Belgian Network BIOMAGNET (Bioinformatics and
Wall clock time Modeling: from Genomes to Networks), funded by the Interuniversity Attraction Poles Programme,
initiated by the Belgian State, Science Policy Office. The scientific responsibility rests with its authors.

	poster-lccc.vsd
	Page 1

