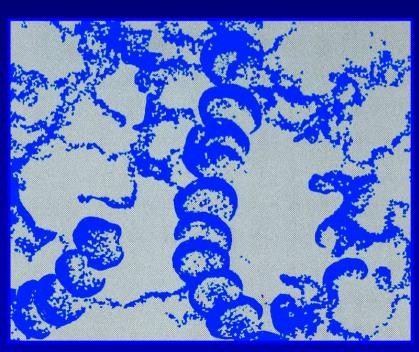

The Flesh-Eating Bacterium

Pierrette MELIN


Medical Microbiology, University hospital of Liege, Belgium

Streptococcus pyogenes

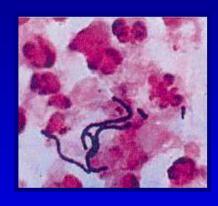
also named Group A Streptococci (GAS)

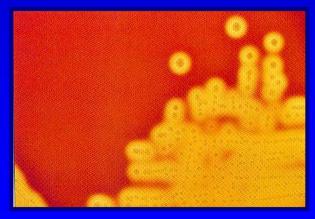
- Introduction
- Microbiological characteristics
- Virulence factors
- Epidemiology
- Clinical types of infection
- Strep TSS
- Conclusion

Introduction

- Since the mid-1980s, marked increase number of highly invasive group A streptococcal infections:
 - With shock and organ failure
 - With or without necrotizing fasciitis
 - " Streptococcal toxic shock syndrome (STSS)"
- 1-5 cases (up to 25 cases)/100,000 population annually
- 30 % mortality despite appropriate treatment
- If survival: major tissue loss, amputation of extremities

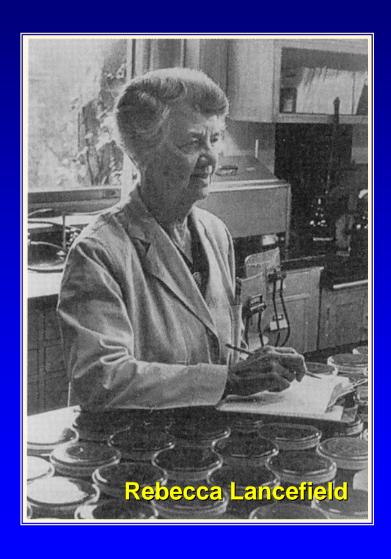
True increase in both number and severity of cases "Will these types of GAS infections decline, stay the same, or increase?"


- Before the advent of antibiotics
 - Many epidemics of GAS infections:


waxed and waned

- Changes in socioeconomic conditions?
- Variations in expression of virulence factors?
- Acquisition of herd immunity to virulence factors?

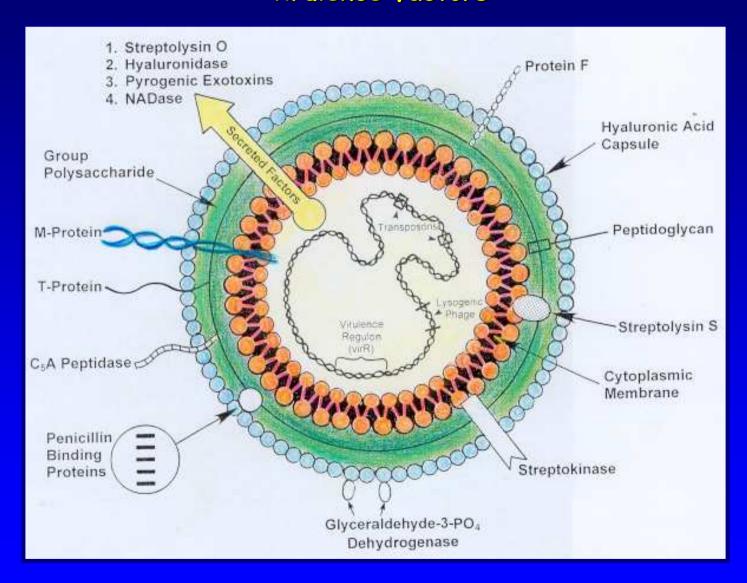
GAS epidemiology is complex


Streptoccoccus pyogenes Microbiological Characteristics

- Gram positive cocci
 - In chains or pairs
- Growth on blood agar media
- Facultative anaerobe
- Growth best with 10 % CO2
- β-Hemolytic
- Catalase negative
- Caspule
- Bacitracin susceptibility

Streptococcus pyogenes

- Group A antigen
- Type-specific antigen
 - M protein
 - > 80 M serotypes
 - Fimbriae
 - Major virulence factor
 - Elicits protective Ab
 - T protein
 - Useful epidemiologic marker
 - Function unknown
- Sequencing of emm gene encoding M protein



Streptococcal M Protein

Schematic location of intracellular, cellular and extracellular virulence factors

Virulence factor -Biologic effect

Capsule

-Antiphagocytic

M proteins

-Adhesin; antiphagocytic; degrades complement component C3b

M-like proteins

Protein F

-Binds IgM, IgG and α 2-macroglobulin

-Fibronectin-binding protein. Mediates

adherence to epithelial cells

Streptolysine S

-Lyses leucocytes, platelets and

erythrocytes; stimulates release of lysosomal

enzymes; nonimmunogenic

Streptolysine O

-Lyses leucocytes, platelets and

erythrocytes; stimulates release of lysosomal

enzymes; immunogenic

Virulence factor -Biologic effect

Hyaluronidase -Hydrolyzes hyaluronic acid in deeper tissue;

facilitates spread of infection along fascial

planes

Streptokinase -Lyses blot clots, facilitates spread of

infection in tissue

C5a peptidase -Degrades complement component C5a

Pyrogenic exotoxins -SPE type A, B and C = erythrogenic or scarlatina toxins. Cause rash seen in scarlet fever, induce lymphocytes blastogenesis, potentiate endotoxin-induced shock, induce fever, suppress antibody synthesis and act as super antigen (U massive release IL, TNF)

Streptococcal Pyrogenic Exotoxins - SPE

◆ SPEA

- Carried by lysogenic phage (not all strains)
- Variation in quantity produced / decade
- Mutation, variation in potency

SPEB

- Mediated by chromosome gene
- Variably expressed
- Severe cases of scarlet F and STSS

◆ SPEC

Carried by lysogenic phage (not all strains)

Epidemiology

- Natural reservoir
 - Purely a human pathogen, skin and mucous mb.
- Relationship to humans
 - Asymptomatic colonization
 - ◆ Age : 15-20 % in children; <5 % in adults</p>
 - Infections
 - Age :
 - most I.: incidence higher in younger (< 10 years)</p>
 - Bacteremia: neonates and elderly
 - 1986-1988: prevalence bacteremia >> 800-1000 % in adolescents and adults
 - Climate :
 - Pharyngitis, scarlet fever
 - Impetigo

Epidemiology

- Pharyngeal or cutaneous acquisition, personto-person spread via
 - Aerosolized microdroplets
 - Direct contact
- ◆ In most cases of GAS infection
 - Transmission and portal of entry ascertained
- Patients with STSS
 - Portal of entry obvious only in 50 % of cases

Clinical Types of Infection

- Pharyngitis and asymptomatic carriage (1-70%)
- Scarlet fever
- Erysipelas
- Streptococcal pyoderma (Impetigo Contagiosa)
- Lymphangitis
- Cellulitis
- Necrotizing fasciitis
 - Myositis, pneumonia
- ◆ STSS
- Puerperal sepsis
- Endocarditis
- Postinfectious sequelae
 - Rheumatic fever, poststreptococcal glomerulonephritis

Strep TSS - Demographic Features

- Increasing incidence of sporadic cases!
 - North America and Europe
- In any age group
- Sometimes when underlying diseases
- Mostly in non immuno-compromised patients
- With Severe complications
 - Bacteremia with aggressive soft tissue infection
 - Shock
 - Acute respiratory distress syndrome (ARDS)
 - Renal failure
- Course of infection is rapid

Sharp contrasts with previous GAS bacteremia

Strep TSS - Demographic Features

(70)
5

Strep TSS - Acquisition

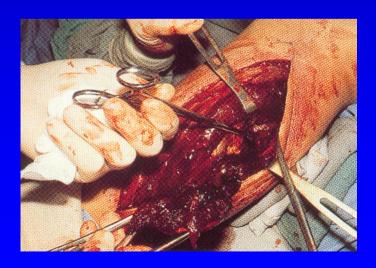
Portal of entry	Cases (%)
 Skin Minor trauma Surgical procedures 	35
 IV drug abuse Mucous membrane Pharynx 	20
VaginaUnknown	45

Risk of secondary cases = very low, despite a high prevalence of « virulent strains of GAS » in population

Strep TSS - The Clinical Picture

- + PAIN
 - Most common initial symptom
 - Abrupt in onset
 - Severe
 - Usually precedes tenderness or physical findings
- Pain usually involves an extremity
 - But may mimic peritonitis, pelvic inflammatory disease, pneumonia, acute myocardial infarction or pericarditis
- Fever: most common presenting sign

Strep TSS


Other symptoms and signs	% of patients
Influenza like syndrome	20
Mental confusion	55
Hypotension, systolic	
Soft tissue swelling	80
(necrotizing fasciitis, myositis)	(70)
Endophalmitis, peritonitis, perihepatitis myocarditis, overwhelming sepsis	20
Diffuse scarlatina like erythema	10
Positive blood culture	69-97
Positive site of infection culture	<i>95</i>

PM -CHU Lg 09.02

GAS Necrotizing Fasciitis (NF)

- Deap-seated infection of subcutaneous tissue
- Progressive destruction of fascia and fat
- May spare skin and muscle
- « Streptococcal gangrene »
- Severe pain out of proportion to superficial appearance of skin

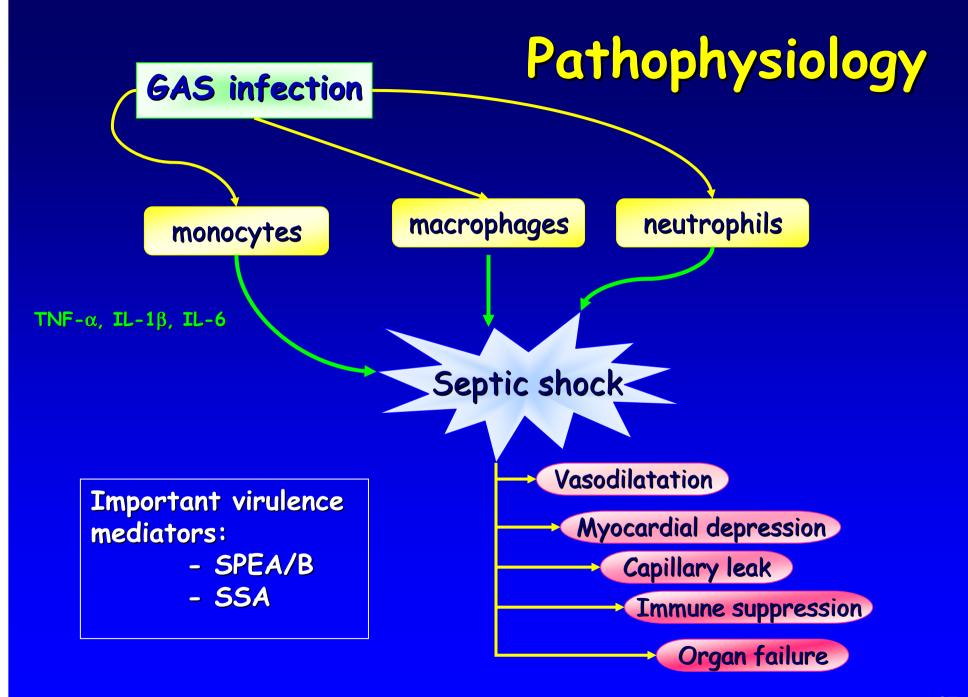
GAS Necrotizing Fasciitis

- + Severe manifestation of systemic illness
- + High morbidity
 - Despite antibiotics, dialysis, ventilators, IV fluids and improved surgical techniques
- Skin signs
 - Diffuse swelling and tenderness
 - Erythema, and later, bullae
 - Colour change from red to purple or black

GAS Myositis

- First, severe pain, chills and fever
- Later, swelling and erythema
 - May be apparent after development of muscle compartment syndrome
- Differentiation with gas gangrene difficult
- Case fatality rate
 - GAS NF: 20-50 %
 - ♦ GAS myositis : 80-100 %

GAS Bacteremia


- In the past, in very young or elderly
 - Among children, predisposing factors
 - Burns, varicella, immunosuppression, neoplasy, age < 2
 - In older adults + elderly
 - ◆ Source = skin infection, cellulitis or erysipelas
 - Diabetes, malignancy, corticosteroid use
 - Rare in 14-40 years of age
 - Puerperal sepsis
- Recently
 - IV drug addicts, highest prevalence of GAS Bacteremia
- In the late 1980s, 600-800% increase in adolescent and young adults
- ◆ Mortality: 24-26 %

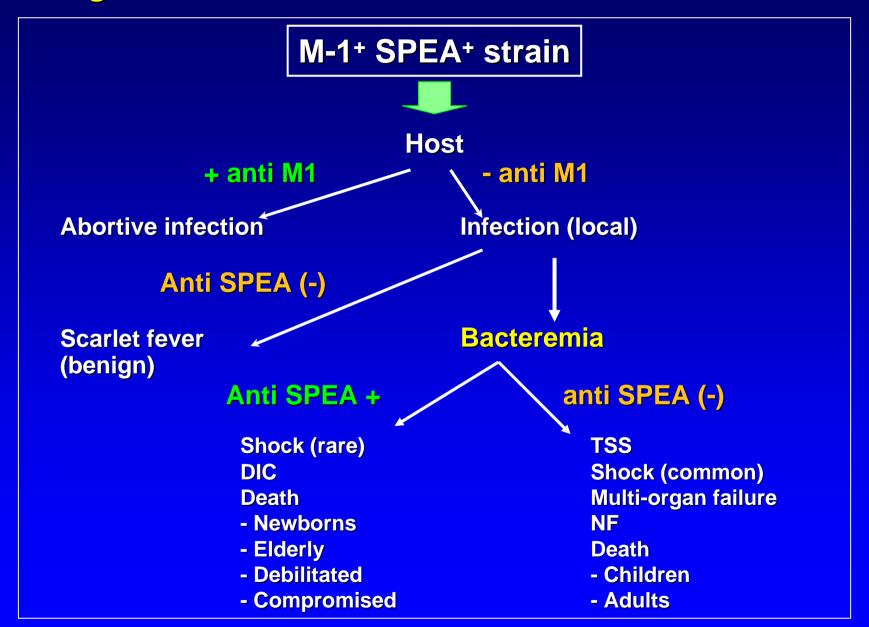
Strep TSS - The Clinical Course

- Impressive rapidity
 - Progression of shock and multi-organ failure
 - Many patients may die within 24-48 h of hospitalization
 - ◆ Shock at time of admission or within 4-8 h
 - Renal impairment often present at time of admission, progression or persistance; dialysis
 - If ARDS, intubation, ventilation in 90% cases

Strep TSS, Characteristic of Clinical Isolates

- ♦ M types 1, 3, 6, 12 and 28 : majority of isolates
 - Sweden, 80 % M-type 1 strains
- Streptococcal exotoxin type A (SPEA) and/or type B (SPEB)
 - SPEA in 15 % of all clinical isolates / in > 80 % of strains causing STSS.
 - SPEA most frequently in USA / SPEB most common in Europe
- Streptococcal superantigen (SSA), a novel pyrogenic exotoxin, isolated in M-3 strains

PM -CHU Lg 09.02 27


Strep TSS - Pathophysiology

- Why worldwide increase of severe GAS infections?
- Why no epidemics?

UNCLEAR!

- Host factors, immunity
 - Same strain may cause severe invasive disease / mild uncomplicated disease / carrier state
 - ◆ Level of Ab -M, and SPEA
- Bacterial factors
 - Change in prevalence of strains with specific virulence factors

Pathogenesis of Scarlet Fever, Bacteremia and S-TSS

PM -CHU Lg 09.02

Strep TSS, Management

Surgical emergency is mandatory

- Diagnosis should be made by surgical exploration
- IMMEDIATE aggressive surgical debridment of all necrotic tissue
 - May include amputation
 - Repeated often daily
- Lesion often much more extensive / examination of skin surface
- Spread of infection >> rate of surgery

Strep TSS, Management

- GAS remain Sensitive to penicillin
- But reduced efficacy in severe GAS infection
 - High inoculum
 - Decrease in expression of Penicillin Binding Protein (PBP) by GAS in stationary phase
- Clindamycin more effective
 - Not affected by inoculum or stationary phase
 - Inhibits synthesis of bacterial toxins
 - Facilitates phagocytosis of GAS by inhibiting synthesis of M protein
 - Suppresses PBP Synthesis & degradation
 - Longer post-antibiotic effect /penicillin

Strep TSS, Management

Supportive management

- Early admission to intensive care unit
- Management for septic shock
- Dialysis
- Tracheal intubation, mechanical ventilation
- Massive amounts of IV fluids

Prophylaxis

- Risk of household's contact:
 - 200 times higher/general population
 - CDC: no definitive recommendations
 - ? Cephalosporin or macrolide : 10-day ?
- Nosocomial transmission and transmission to health care workers
 - Appropriate precautions
 - Gown, mask, gloves and meticulous handwashing

Where do we go from here

- A wild « flesh-eating strain » has recently emerged
- ◆ A major epidemic would be expected
- Other GAS epidemics (pharyngitis, scarlet fever, rheumatic fever) occured in the past
- Last decade: incidence of GAS TSS has remained low
- Large outbreaks of STSS did not occur, WHY?

Where do we go from here

Large outbreaks of STSS did not occur, WHY?

- Vast majority of population
 - Probably immunity to 1 or more virulence factors
- Predisposing conditions required in a given patient
 - Varicella, use of non-steroidal anti-inflammatory drugs
- Small % of population with some other immunological predisposing factors
 - HLA class II ag type, B cell alloantigens, or ...

What should be done?

- Pathogenesis: more information needed
- Continued epidemiological and microbiological surveillance
- Improvement of therapeutic
- Prevention strategy
 - Development of M-vaccine