The microbial diagnosis of infective endocarditis (IE)
• Introduction
• Duke criteria for diagnosis
• Review of microbiological investigation of IE
• Key points
• Conclusion and perspectives
IE - Introduction

- High morbidity and mortality
 - No decrease of incidence
 - Progressive changes of risk factors
 - Classic risk factors
 - New risks
 - IV drug use
 - Selective valve in elderly patients
 - Use of prosthetic valves
 - Nosocomial diseases
 - Haemodialysis patients
 - Newly identified pathogens difficult to cultivate

Duke criteria
Laboratory
Key points
Conclusion
Introduction

Evolution of antimicrobial resistance
- Multidrug R Streptococcus viridans
- MRSA and CA-MRSA
- VISA
- VRE
- Aminoglycoside high level R Enterococci

Challenge for a successful outcome:
Diagnosis and subsequent treatment
Diagnosis of IE: Modified Duke criteria

- Major criteria
 - Blood culture
 - Positive blood cultures (≥2/2) with typical IE microorganisms (viridans streptococci, S.bovis, HACEK gp, S.aureus, or community acquired enterococci in the absence of primary focus)
 - Persistently positive blood cultures defined as 2 culture sets drawn >12 h apart, or 3 or most of 4 culture sets with the first and last separated by ≥ 1 h
 - Single positive culture for C.burnetii or IgG titre against phase I ≥ 1:800
 - Evidence of endocardial involvement
 - Positive echocardiogram for IE
Diagnosis of IE: Modified Duke criteria

- Minor criteria
 - Predisposing conditions
 - Fever (T°≥ 38°C)
 - Risk factors
 - Etc.
 - Microbiological evidence:
 - Positive blood cultures, but not meeting major criteria; or
 - Serological evidence of active infection with plausible microorganism

- (Echocardiogram consistent with disease but not meeting major criteria)
Diagnosis of IE:

Modified Duke criteria

- **Diagnosis**
 - **Definite**
 - Pathology or bacteriology of vegetations, major emboli; or
 - Intracardiac abscess specimen; or
 - Two major criteria; or
 - One major and three minor criteria; or
 - Five minor criteria
 - **Possible**
 - One major and one minor; or
 - Three minor criteria
 - **Rejected**
 - Firm alternative diagnosis; or
 - Resolution after ≤ 4 days antibiotherapy; or
 - Etc.
Diagnosis of IE: Modified Duke criteria

- **Sensitivity**
 - 66 - 100 % in selected cohorts

- **Limitations**
 - Negative blood culture
 - 5 - 20% of cases
 - Echocardiography inconclusive

!! RAPID ACCURATE DIAGNOSIS ESSENTIAL !!

- For early treatment
 - Decrease of complication rates - surgery - mortality
Microbiological diagnosis

- Conventional culture based
 - Blood culture
 - Valvular material, embolic tissue, abscess debridement,
 - Id & susceptibility
- Serological tests
- Molecular based techniques
 - Identification ; resistance genes
 - Specimen
 - Blood
 - Valvular material
 - Isolates from culture
Microbiological diagnosis

Blood cultures

The most important available laboratory diagnostic test

- The best method to provide live bacteria
 - For identification
 - For susceptibility testing

- Usually, recovery of etiologic agent
- 5-20 % of blood culture-negative IE
Microbiological diagnosis

Blood cultures

1 - 10 microorganisms/ml until treatment is initiated.

- **Timing**
 - 3 sets
 - within first 12-24 h; > 1 h apart; different sites
 - Or within 2 h if acute IE, before antibiotherapy
 - Further blood cultures
 - If patient febrile or unwell under treatment

- **Collection**
 - Aseptic technique (imperative)
 - Arterial blood not superior to venous samples
 - Volume: minimum 20 ml/set (adult)
 - 1 aerobic and 1 anaerobic bottles, or
 - 2 aerobic bottles
Patterns of positivity in successive BC evidence of the diagnostic importance of separate cultures (Weinstein et al 1983, Rev InfectDis 5:35-53)
Microbiological diagnosis

Blood cultures

- **Standard**
 - Automated continuous monitoring systems
 - Improved compared to the past
 - No one suited for the detection of all blood pathogens
 - Improvement
 - Media with absorptive resins ...
 - Evidence
 - Length of incubation
 - 5 days incubation; no further prolonged incubation

- **Specific methods**
 - Lysis centrifugation techniques
 - Prior antibiotherapy
 - Fastidious or slow growing microorganisms
Automated continuous monitoring blood culture system
215 patients believed to have had IE
- 3 sets of 20ml BC (BACTEC aer+ana)
- Prolonged incubation of culture: 21 days
 - Subcultures at days 3 and 10 on 5-6 specific media/bottle
 - Acridine orange smear at days 3 and 10
- 4 lysis tube, Isolator system
- Only 3 clinically relevant results (2 mycobacteria, 1 *Legionella*)

All other patients (14,000 BC)
- 2 sets of 20ml BC (BACTEC aer+ana)
- 5 days incubation
 - Subcultures of positive vials
- 24 HACEK group organism recovered
- 98% of all positive BC detected by day 4

Introduction
Duke criteria
Laboratory
Key points
Conclusion

Prolonged incubation and extensive subculturing do not increase recovery of clinically significant microorganisms from standard automated blood cultures,
EJ Barron, JD Scott, LS Tompkins, CID 2005:41
Emerging data indicating that extended incubation of blood cultures has little clinical value

MP Weinstein, CID 2005:41

From Cockerill et al, CID, 2004;38 ; Bhally, Weinstein et al, IDSA , 2004 ; Reller, Duke university, 2005 ; Etc.

1. Objective evidence that prolonged incubation of blood cultures for > 5 days is unnecessary for the detection of HACEK bacteria when a modern, automated, continuous-monitoring blood culture system is used.

2. Extended incubation of BC for patients with suspected IE due to HACEK bacteria or other fastidious organisms has no clinical utility and should not be done.
Emerging data indicating that extended incubation of blood cultures has little clinical value

MP Weinstein, CID 2005:41

3. Alternatives to extended incubation
 - Better diagnostic methods for specific microorganisms
 - Lysis centrifugation tube for dimorphic fungi
 - Special broth media or Lysis centrifugation tube for mycobacteria
 - Molecular amplification for some microorganisms
Microbiological diagnosis

Blood cultures

- Diagnostic challenge
 - Negative blood culture
 - 5 - 20% of cases
 - Prior antibiotherapy!
 - Fastidious or atypical microorganism
 - Suboptimal blood collection
 - Volume
 - Timing
 - Temperature
 - Transport to the lab and placing in instrument

Introduction
Duke criteria
Laboratory
Key points
Conclusion
Microbiological diagnosis

Blood cultures

Negative blood culture

- Prior antibiotherapy!
 - Recovery of bacteria reduced by 35-40 %
 - Washington JAC 1987;20
 - Hoen et al CID 1995;20
 - Badour et al Circulation 2005

- Recovery of a microorganism is dependent on
 - susceptibility of the organism, and
 - duration & nature of previous ATB
 - Tunkel, Kaye NEJM 1992;20
Prior antibiotherapy

- Improvement for recovery
 - Withholding antibiotics to achieve a positive BC
 - No data available
 - 2 to 4 days if ...
 - Special procedures:
 - Inactivating antibiotics in culture media
 - Dilution to 1:5 or 1:10
 - Absorptive resins or activated charcoal particles
 - Lysis centrifugation techniques
 - PCR amplification 16S ribosomal RNA gene
Microbiological diagnosis

Blood cultures

- Negative blood culture
 - 5 - 20 % of cases
 - Prior antibiotherapy !
 - Fastidious or atypical microorganism
 - Bartonella spp; Tropheryma whippelii; Gemella, Coxiella, Chlamydia; HACEK group and nutritionally deficient Streptococcus spp; Legionella spp; mycobacteria
 - Fungi, including C.albicans and Aspergillus spp

- Specific procedures
 - Culture-based
 - PCR-based
Microbiological diagnosis

Resected valves or biopsy specimens

- **Conventional cultures**
 - Infrequently positive (15%)
 - Could be helpful and efficient
 - Large number of organisms
 - False positive
 - Use of appropriate medium
 - Sometimes guided by positive serologic tests results
 - *C. burnetii*, *Brucella* spp, *Legionella* spp, etc

- **Histologic testing, specific staining**
 - More reliable indicator of presence of microorganisms

- **Cell culture**

- **PCR amplification**
Microbiological diagnosis
Antimicrobial Susceptibility Testing

Cornerstone of therapy: bactericidal antibiotics

- Choice based on AST
- Minimum Inhibitory Concentrations (MIC)
 - Principal drugs / infecting pathogen

- Availability of interpretive criteria
 - New guidelines from CLSI for AST of « infrequently isolated or fastidious bacteria »
 - CLSI M45-A, May 2006
 - Guidance for the most relevant drugs to test and report on specific organisms
« For infrequently isolated or fastidious bacteria »

Gram positive
- *Abiotrophia* and *Granulicatella* species
- *Bacillus* species (excluding *B.anthracis*)
- *Corynebacterium* species
- *Erysipelothrix rhusiopathiae*
- *Lactobacillus* species
- *Leuconostoc* species
- *Listeria monocytogenes*
- *Pediococcus* species

Gram negative
- *Aeromonas hydrophila* complex and *Plesiomonas shigelloides*
- *Campylobacter jejuni/coli*
- HACEK group
- *Moraxella catarrhalis*
- *Pasteurella* species
- *Vibrio* species (excluding *V.cholerae*)
Serologic tests included as diagnostic criteria (Duke)

- For culture negative BC, antibody determination against
 - *C. burnetii* (IF)
 - *Bartonella* spp (IF)
 - *Legionella pneumophila* (IF)
 - *Chlamydia* spp (IF, FC, ELISA)
 - *Brucella melitensis* (agglutination)
 - *Mycoplasma pneumoniae* (ELISA)
Microbiological diagnosis

Key points

- **Starting IE microbiological diagnostic kit**
 - 3 Blood culture sets (volume !)
 - Blood tube for further serological tests
 - (Blood tube for further PCR tests)

- **Standard BC: 5 days incubation**
 - BC with most microorganisms Positive < 48 h
 - 98% of Positive BC at 4 days

- **Team discussion with physician**

- **Saving all blood culture isolates**
 - Further characterization, comparison or MICs determination

Introduction Duke criteria

Laboratory

Conclusion
Conclusions & perspectives

- Positive blood culture
 - Major criterion for diagnosis
 - Key to identifying
 - Etiologic agent
 - Optimal antimicrobial regimen

- Culture-negative endocarditis
 - Diagnostic challenge
 - Future major criteria??
 - Serological tests and PCR-based tests for difficult-to-cultivate organisms
 - Strict interpretive criteria