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An overview of the general decision tree approach to power 
system security assessment is presented. The general 
decision tree methodology is outlined, modifications pro- 
posed in the context of transient stability assessment are 
embedded, and further refinements are considered. The 
approach is then suitably tailored to handle other specifics 
of power systems security, relating to both preventive and 
emergency voltage control, in addition to transient stability. 
Trees are accordingly built in these various application 
domains, and their salient features are explored, assessed, 
compared. Among attractive aspects of the trees, we 
mention their ability to uncover the intrinsic mechanism 
governing physical processes, and to provide a clear 
description in terms of  tractable system parameters. 
Further, their dual, 'attribute space' representation is 
shown to have complementary possibilities for more refined 
analysis and, in addition, for sensitivity assessment and 
control. Overall, the approach is characterized by its great 
flexibility with respect to tree structure, types of physical 
parameters driving the phenomena, and classes of potential 
applications. To illustrate and support the developments, 
real-worM examples are reported, rolatin 9 to transient and 
voltage stability issues simulated on several power systems. 
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I. Introduction 
Power systems security is a multifacet problem en- 
compassing static and dynamic stability aspects. The 
current trend to increase bulk power transfers over long 
distances on the one hand, and to operate systems closer 
to their limits on the other, makes security more intri- 
cate and at the same time more imperative to handle. 
Currently available conventional methods can hardly 
meet the imposed requirements. The need for seeking 
new and conceptually more appropriate aproaches is 
being increasingly felt. 
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The proposed decision tree method provides an 
interesting alternative. The general decision tree inductive 
inference method falls into the category of learning from 
examples 1. The underlying principle consists of extracting 
off-line information about a given problem, and organ- 
izing it into decision trees which are both interpretable 
and appropriate for automatic on-line use; this enables 
one subsequently to infer knowledge about new, unseen 
cases, whenever they arise. The trees are automatically 
built on the basis of a 'learning set' of states, preclassified 
by means of 'system theory' methods and corresponding 
numerical programs. 

The first attempt to apply decision trees to power 
system security was for assessing transient stability 2'3. 
The principle of this specific approach may be stated as 
follows: using a set of preconstructed trees, assess the 
robustness of any new operating state by merely 
'dropping' it at the top of the appropriate tree, and 
observing the position it finally reaches in the tree 
structure. Note that this is achieved in terms of 
precontingency state parameters; hence, it avoids all 
cumbersome transient stability computations with con- 
ventional methods, and allows transient stability assess- 
ment to be performed on-line. The results obtained with 
this decision tree transient stability method have been 
very encouraging 4. Hence, research has been steadily 
pursued in order to improve the method, to apply it to 
real-world large systems 5, and at the same time to modify, 
tailor, and extend it to other security contexts 6-8. 

This paper aims at giving a synthetic view of this 
recently proposed decision tree approach. Results - 
theoretical as well as practical - obtained so far are 
reported, stressing key issues, highlighting specific and 
common features, and attempting to suggest operating 
strategies. On the other hand, among the newly proposed 
refinements of the inductive inference method, we men- 
tion a measure which quantifies the 'quality' of a tree by 
combining the notions of precision and complexity. 
Also, backward and forward pruning techniques are 
considered, to optimize the tree quality. 

Two salient features common to the devised approaches 
are highlighted, viz. effectiveness and flexibility; - 
effectiveness is combining quality of the results and real 
time computing requirements; - flexibility, in respect of 
the following: (i) the inductive inference method used to 
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build trees; (ii) system physical parameters participating 
in this building; (iii) practical potential uses offered by 
the trees themselves and their dual representation, the 
'attribute space '9'1°. 

Overall, of paramount importance for the success of 
the approach appear to be the suitability of the inductive 
inference method used for the automatic tree generation, 
and the representativeness of the learning set; or stated 
otherwise, human expertise and the close collaboration 
between engineers in charge of the power system 
operation and researchers in charge of the method. 

The paper originates from ongoing research in the area 
of transient stability, and more recently of voltage 
security (both preventive and emergency types of voltage 
control). Experience gained via these investigations will 
help us to illustrate the methods by means of typical trees 
built for these security purposes with a variety of power 
systems ranging from simple, academic type to very large 
UHV real systems. 

II. Thrust of the general decision tree 
methodology 
Decision tree methodology in general is a nonparametric 
inductive learning technique, able to produce classifiers 
for a given problem which can assess new, unseen 
situations and/or uncover the mechanisms driving this 
problem ~ 1-14. The building of a decision tree relies on a 
learning set (LS), i.e. a set of preclassified states": starting 
at the top node of the tree with the entire LS, one 
progresses by recursively creating successor nodes, i.e. 
by splitting the LS into subsets of increasing classification 
purity. The procedure is stopped when all the newly 
created nodes are 'terminal' ones, containing 'pure 
enough' learning subsets. 

The ways of splitting the successive subsets, and even 
more of deciding when to stop splitting are essential. The 
general method we briefly describe hereafter is a modified 
version of ID315; it was initially developed for the 
purpose of power systems transient stability assessment 3. 
Its mathematical formalism may be found in References 
4, 16 and 17. In what follows, we recall its fundamentals 
along with proposed improvements. 

I1.1 General framework and notation 
We consider a domain specific set ofpreclassified states. 
Each state s k is characterized by a certain number, say 
n, of attributesb; to simplify, we will assume for the time 
being these to be ordered numerical attributes al (the 
same number for each state); accordingly, sk will be 
characterized by 

Sk= [a 1 =Vlk]m[a 2 =Vzk]C~... n [ a , = v , k ]  (1) 

where rig is the value of the ith attribute of the state Sk; 
the n Vik components compose the vector 

V k = (Ulk ,  U2k . . . . .  l)nk ) (2) 
To ease the description we also assume that the states 
are classified into two classes only, { + ,  -}c. 

With the above notation, we define the learning set 
(LS), by the collection of a number, say N, of preclassified 
states 

LS ~ {(v 1, c 1), (v2, c2) . . . . .  (vN, cu)} (3) 

where 

Cke{ +,  --} (4) 

Also, we define the test set (TS) by another number, 
say M, of preclassified states, obtained in a similar but 
independent way 

TSA {(VN+ 1,Cu+ l), (VN+z,CN+2) . . . . .  (VU+ M, CS+M)} 

(5) 

In what follows, learning sets will be used to build 
decision trees, test sets to evaluate their ability to 
correctly classify unseen states. 

Remarks  
(1) The above sets are considered to be statistical samples 
drawn from the population of possible states. Their 
proper size is a question of great concern and essentially 
depends upon the particular application domain. This 
will be discussed in section III and IV, in the context of 
power system security. 
(2) The generalization to more than 2-class classifi- 
cations and to categorical attributes in addition to 
ordered ones may be easily obtained 4' 16.1 ~. Both general- 
izations will be used in the security applications discussed 
in section III. 

11.2 Construction of decision trees 
11.2.1 Automatic building procedure 
A decision tree (DT) is a tree structured upside down, 
comprising test and terminal nodes. Each test node is 
associated with a test on the attribute values o f  the states, 
to each possible outcome of which corresponds a 
successor node. The terminal nodes carry the information 
required to classify the states. Such a DT is portrayed 
in Figure 1 built for the purpose of transient stability 
assessment as outlined in section lII.2.1 below. It is 
composed of five nodes; two test nodes, labelled 1,2 and 
the remaining three terminal nodes. Note that here only 
numerical attributes are considered (whether continuous 
or discrete); the tests are therefore dichotomic, and the 
resulting DT is binary: each test node is split into two 
successors. In the sequel, only binary trees will be 
considered. 

The building of a DT necessitates selecting a priori 
relevant attributes; we will henceforth refer to them as 
the candidate attributes. These are parameters of the 
system readily available and presumably carrying sound, 
essential information about the problem of concern. 
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Given a LS and a list of candidate attributes, the 
automatic building of a DT conforms to the procedure 
described below and illustrated in Figure 1 as. 

• Starting at the top-node (root) of the tree, with the list 
of candidate attributes and with the entire learning set 
of preclassified states, analyse these states in order to 
select a test which achieves their 'optimal' splitting 
into two subsets, in the sense that these subsets provide 
a maximum increase in classification purity (or, 
equivalently, a maximum amount of information about 
the states' classification - e.g. see the Appendix). The 
selection proceeds in two steps: 

(i) for each attribute, say a i, find its 'optimal' 
threshold value vl. in the sense specified above, 
by scanning the values it assumes for all learning 
states; this defines a test 

ai < vi * 9. 

(ii) among the different candidate attributes, choose 
the best one, a , ,  along with its optimal values, 
v**, to split the node, d according to the test 

T: a ,  < v** ? (6) 

In short, test T consists of defining the optimal attribute 
along with its optimal threshold value: it uses the 
attribute along with its threshold value having the 
highest 'score' (see equation (A.5) in the Appendix). 

• The selected test thus applied to the learning set of the 
node, splits it into two subsets, corresponding to the 
two successors of the node. Starting with the top node 
of the tree and the entire LS, the two subsets 

LS1 ~ {Vk~LS[a, < v**} 

LS 2 ~ {VkSLS[a , >1 v**} 

correspond to the two successors of the root. 
• The successors are labelled terminal or nonterminal on 

the basis of the stop splitting criterion described below. 
For the nonterminal nodes, the overall procedure is 

called recursively, to build the corresponding subtrees. 
For the terminal nodes, the class probabilities p+ and 
p_ are estimated on the basis of the corresponding 
subset of learning states there stored, and the class 
label of the majority class is attached, possibly along 
with a weighting factor expressing the class probability 
ratio.e 

Obviously, the crux of the entire construction of a DT 
lies in the selection of the splits and the decision whether 
to declare a node terminal, or to continue splitting. These 
questions have been considered in References 4 and 16. 
Their thrust is recalled below. 

11.2.2 "Optimal" splitting and  test  attributes 
The above strategy consists of considering the best test 
to be the one which separates at most the states of the 
two classes in the local learning subset, i.e. which provides 
the purest direct successors. It is therefore locally, rather 
than globally optimal. 

This locally optimal test selects at each node the test 
attribute along with its threshold value having the best 
'score', in the above, local sense. This score is assessed 
via the normalized information gain defined by equation 
(A.5) in the Appendix. 

11.2.3 The s top splitt ing criterion 
The decision tree construction algorithm is based on 
ID314. An essential difference of the proposed method- 
ology with respect to it resides in the stop splitting 
criterion. Indeed, ID3 stops splitting at a node only if 
the corresponding learning subset is completely class 
pure. According to our experience, however, with 
applications investigated so far, this strategy tends to 
build overly complex DTs with terminal nodes generally 
containing only a very small and unrepresentative sample 
of learning states; this contributes to increasing the 
complexity of the tree thus decreasing its interpretability 
of the phenomena, and also to weaken its ability to 
classify correctly unseen states (i.e. states not belonging 
to the learning set); in short, it decreases the tree 
effectiveness. To circumvent this difficulty, a more 
conservative criterion has been proposed in Reference 3, 
which stops splitting a node as soon as one of the 
following two conditions is met. 

(1) The local subset of learning states is 'sufficiently' class 
pure; we henceforth refer to such a terminal node as 
a leaf. The degree of required class purity is fixed by 
means of a parameter of the algorithm specified by 
H,,, the maximum residual entropy (see in the 
Appendix). In practical investigations, we use the 
same constant value of H,, for all nodes (generally 
H,,--0.1 or 0.01 bits). Such very low values would 
yield very detailed DTs; thus, most of the time, the 
stop splitting criterion actually relies on the second 
condition, described hereafter. 

(2) There is no possibility of enhancing the tree accuracy 
in a statistically significant way by splitting the node 
further. Such a node is called a deadend terminal node. 
This condition for the stop splitting criterion can be 
formulated as a statistical hypothesis test: 

Given the states belonging to the node under 
consideration and the corresponding optimal split, 
can we accept the hypothesis that the apparent I 
increase in classification accuracy of the tree resulting 
from splitting the node further is a purely random 
effectg, 

In quantitative terms: 

Under the hypothesis of no real increase in purity 
(i.e. the apparent increase of classification accuracy 
due to node-splitting is only a random effect) the 
statistic 

Z 2 ~ 2 * ln2* Nnode * I~(S) 

is distributed according to a z-square law °. 

In the above, N,ooe is the number of states in the 
learning subset corresponding to the current node 
and I~(S) the apparent information provided by the 
optimal split, defined by equation (A.1) in the 
Appendix. 

Hence, if we fix the s-risk of not detecting these 
situations, testing the value of Z 2 against the threshold 
Z2r such that 

Prob (Z 2 ~.~ Z2r) = 

allows one to detect with a probability of (1 - ~ )  the cases 
where the apparent increase in accuracy is a random 
effect. Figure 2 sketches such z-square probability density 
functions. 
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Thus, the a-risk of the hypothesis test fixes the amount 
of evidence required at each node to split it; the outcome 
depends on the value of e, on the size of the local learning 
set, and on the amount of apparent information provided 
by the test. The question of 'how much evidence should 
be required to allow the splitting of a node', is related 
to the degree of representativity we impute to the learning 
set and the risk that this degree is overestimated. It is 
fixed by the user via the ~ value, which ranges from 1 
(the criterion has no effect on the splitting procedure any 
more: the tree grows according to the above condition 1 ) 
to zero (no growth is allowed: the tree reduces to its 
root). 

The value of~ has indeed drastic effects on the resulting 
tree characteristics as will be illustrated in section III. 

11.2.4 On the right size of trees 
In general, the choice of ct should be guided by the 
observation that too large a tree will yield a higher 
'misclassification rate' and hide relevant relationships 
among more or less random details, whereas too small 
a tree will not make use of some of the information 
available in the LS. Indeed, the terminal nodes of too 
small a tree have not been expanded enough and this 
prevents getting purer subsets and the corresponding 
insight about the role that the attributes would have 
played in this expansion; too large a tree, on the other 
hand, results from the splitting of statistically unrepre- 
sentative subsets; therefore, it is likely to cause an increase 
in the misclassification rate when classifying states not 
belonging to the LS. Stated otherwise, a tradeoff appears 
between the two following sources of misclassification: 
bias (overlooking significant information in the LS) and 
variance (badly interpreting the randomness in the LS): 
too large a tree will suffer from variance whereas too 
small a tree will present bias ~2. 

111.2.5 Tree effectiveness and its evaluation 
The reliability of a tree is its ability to classify properly 
unseen cases. Among the various criteria proposed to 
assess it, or equivalently its misclassification rate, we 
mention the resubstitution, the cross-validation, and the 
test sample estimates. Observe that all these are only 
estimates, since in real-world problems, even of deter- 
ministic type, scanning all the possible states is scarcely 
feasible. 

The resubstitution estimate is defined as the proportion 
of correctly classified learnin# states. It is generally 

optimistically biased 1z'2°, in particular if the DTs fit too 
closely to the LS. 

The cross-validation method provides a rather un- 
biased estimate (e.g. see Reference 20 for a description). 
It requires however quite large sample sizes in order to 
reduce its initially larger variance. Since it moreover 
requires the rebuilding of several (e.g. ~>10) DTs, its 
computation may become cumbersome ~2. 

In the context of our investigations we have used the' 
test sample estimate, which is obtained by considering all 
M states belonging to the independent test set, dropping 
them through the tree, and computing the proportion of 
misclassified states h. This is recognized to be the most 
reliable and unbiased estimate, provided M is sufficiently 
large (e.g. M~>1000) 12. Another advantage is that its 
variance can be easily estimated; therefrom, confidence 
intervals may be computed. Hence, despite the drawback 
of requiring additional test states in sufficiently large 
number, we use it as the benchmark for accuracy 
estimation (the reciprocal of misclassification rate). 
Accuracy or reliability i, together with simplicity (or its 
reciprocal, complexity~), determine the tree effectiveness. 

11.2.6 Note on the quant izat ion o f  cont inuous valued 
attr ibutes 
The automatic tree building procedure of section II.2.1 
does not require any prior quantization of continuous 
valued attributes. Rather, the method determines at each 
test node of the tree the relevant threshold values in the 
following way 

(1) the local learning set of the node is sorted by 
increasing order of the values of the considered 
attribute; 

(2) let Vmin<U2<...</)max be the sorted sequence of 
values: a corresponding sequence of candidate 
threshold values (rE + Vmin)/2 < (V3 q'- V2)/2 < . . .  are 
defined for test (6), and the one yielding the highest 
'score' is selected as the optimal one; 

(3) this procedure is repeated for each numerical attribute 
(continuous or discrete), at each node candidate for 
splitting. 

Thus, if the learning set contains dense (resp. sparse) 
attribute values, a dense (resp. sparse) set of thresholds 
will be considered. In power system security applications, 
the number of different thresholds considered at a node 
is typically of the same order of magnitude as (and upper 
bounded by) the number of learning states (~  100 to 
1000). 

This technique allows one to exploit fully the infor- 
mation contained in the continuous attributes, at the 
expense of a lesser computational efficiency, in contrast 
to pre-quantization techniques which determine a re- 
stricted set of candidate threshold values prior to the DT 
building, repeatedly used at each test node z 1-23. However, 
the projection sort algorithm used in Reference 17 to find 
the optimal threshold for each numeric attribute reduces 
the computational complexity and succeeds in keeping 
efficient the optimal splitting procedure (see the method's 
computing requirements in section III.4 below). 

11.3 "Quafity" o f  a tree 
A convenient means of quantifying the 'simplicity vs. 
reliability' compromise is provided by the quality 
measure proposed in Reference 16 and expressed by 



equation (A.8) of the Appendix. Indeed, this expression 
indicates quantitatively that, the larger the LS (and hence 
the higher the reliability likely to be expected of the tree), 
the more complex the trees that may be induced, provided 
they allow for enough explanation of the available data. 
Stated otherwise, the fewer the number of available 
learning instances, the less complex the tree one might 
reasonably infer from these data, without overfitting 
them. This is also in agreement with the well known fact 
that the more complex the relation that is to be learned, 
the larger the LS that is required to be to get a precise 
(of low residual uncertainty) and a reliable tree. 

Quantitatively, equation (A.8) yields the following 
necessary condition in order to obtain a positive quality 
(i.e. a more credible tree than the trivial 'attributes vs. 
classes independence hypothesis') k. 

N . I ° T ( L S )  
C(DT)< - -  (7) 

q 

This indicates that the complexity of induced trees could 
increase at most linearly with N, the number of available 
learning samples. This behaviour was corroborated by 
many empirical observations, such as those described in 
section III. 

The above quality measure has many interesting 
properties 16. Theoretical type ones are pointed out in 
the Appendix. Among its nice practical features we 
mention the following. 

Additivity. Given an arbitrary decomposition of the tree 
into subtrees, the total tree quality is equal to the sum 
of the qualities of its component trees. In particular, the 
tree quality is equal to the sum of the qualities of its test 
nodes. This property is exploited below, in the formula- 
tion of a recursive bottom up algorithm for the optimal 
tree pruning. 

Generality. The measure Q expressed by (A.8) allows one 
to assess objectively and compare different trees. It may 
be used either during the tree growing stage, in order to 
select tests to split nodes and to decide when to stop 
splitting, or a posteriori, for example to simplify too 
complex trees by appropriately pruning them (see below). 

Equivalence. It is shown that the elementary steps of the 
previously described inductive inference method are 
(almost) equivalent to choosing tests which improve as 
much as possible the quality (A.8) of the growing tree 16. 
On the other hand, the deadends identified by the 
z2-based stop splitting criterion correspond to local 
maxima of quality. Moreover, there exists a corres- 
pondence between ~ and q (low values of ~ correspond 
to high values of q see Figure 2 and equation (A.9) of 
the Appendix). 

A great number of other, more or less empirical, quality 
measures have been proposed in the literature for the 
evaluation of decision trees. Different measures are 
generally used at the tree growing stage 24 and at the 
subsequent tree pruning stage 25. The theoretical pro- 
perties of the proposed global quality measure, along 
with the above practically interesting features, however 
allow its use at both stages. For example, in the general 
framework proposed in Reference 16, node development 
and tree pruning are two particular search operators, 
which cooperate in order to find a tree of maximal 

quality; node development allows one to search in the 
direction of increasing complexity and pruning in the 
direction of increasing simplicity. 

11.4 Two pruning approaches 
We noted that a compromise should exist between 
simplicity and reliability. Two different approaches may 
be suggested to realize it. 

The first consists of preventing unnecessary node 
developments during the tree growing 4'13. In our method, 
this is achieved by using low values of ~ in the stop 
splitting criterion. 

The second approach consists of controlling the tree 
size after the complete tree growing, by using the pruning 
approach 2s. 

More specifically a tree is selected in the following 
general fashion 12'16'25. 

(1) First build a 'maximal' tree by setting ~=1 (or 
equivalently q =0) during the tree growing stage. 

(2) Generate therefrom a sequence of simpler trees of 
decreasing complexity by using an appropriate 
pruning method, as described below. 

(3) Select one of these trees as the final tree. This step 
generally relies on an independent test set, and 
consists of choosing the tree of minimal test set error 
rate. 

In the context of the quality measure defined by equation 
(A.8) we propose the following two pruning methods. 

Method  1. Forward pruning 
For a given value of ~, prune the DT by replacing each 
test node for which 

Nnode * IV(S ) ~< q(c¢) (8) 

by a terminal node ~. (This will produce exactly the same 
tree as when using the corresponding value of ~ in the 
stop splitting criterion during the tree growing.) For c¢ 
decreasing from 1 to 0 this will yield a (finite) sequence 
of trees DT, DT  I, DT  2 . . . .  of decreasing complexity. 

Method 2. Optimal (backward) pruning 
For a given value of q, extract the pruned tree of maximal 
quality. 

Due to the addivitivy of the quality measure, the 
optimal pruning of a DT can be achieved in a single 
bottom up pass as described by the following recursive 
algorithm: 

• if the DT is trivial then no pruning could be achieved; 
the optimally 'pruned' tree is the DT itself; 

• otherwise the subtrees corresponding to the direct 
successors of its root are first pruned optimally; and 
the quality of the DT is corrected by adding the 
corresponding quality improvements obtained for the 
subtrees (the latter are necessarily non-negative, since 
the subtrees are optimally pruned); 

• if, after this step, the quality of the resulting DT is 
strictly positive, either because it was initially positive, 
or because the pruning of its subtrees has improved it 
enough, then the latter DT is the optimally pruned DT 
and is returned as the solution; 

• otherwise, the resulting quality is non-positive and the 
DT is pruned by replacing its root by a leaf; the 
optimally pruned tree reduces to the trivial tree. 
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Figure 3. (a) Forward and backward pruning sequences 
for the DT of Figure 1 5. (b) Forward pruning sequence 
for the DT of Figure 15 (magnified view) 

Thus the result of pruning a DT is either a trivial DT, of 
quality equal to zero, or a non-trivial DT of (strictly) 
positive quality and whose non-trivial subtrees are also 
of strictly positive quality. Consequently, the deepest test 
nodes of a pruned DT have to be of positive quality. One 
shows that for q increasing from 0 to + oo this produces 
also a sequence DT',  DT~, DT~ . . . .  of trees of decreasing 
complexity 26. 

Although the two pruning methods are not necessarily 
equivalent, in practice only little difference is observed 
between the corresponding sequences of pruned trees. 
For example, in the context of trees that are grown 
according to the information theory criterion of ID3, and 
if minimum test set error rate is used as the criterion for 
selecting the pruned tree, the final trees produced by the 
two methods often appear to be identical. 

This is also illustrated by the example of Figure 3, 
which shows the plot of the complexity C(DT) and test 
set error rate Pe of the sequence of pruned trees obtained 
by varying q(~), for fixed L S  and TS. They correspond 
to the tree of Figure 15 of section III.3, built in the context 
of preventive voltage stability assessment. Figure 3a is 
drawn for both forward and backward pruning methods; 
observe that the differences between the corresponding 
curves of complexity and of test set error rate are 
negligible: both pruning procedures provide the same 
'optimal' tree minimizing Pe- The characteristics of this 
tree are more easily depicted in Figure 3b which gives a 

magnified view of the curves corresponding to forward 
pruning in the range of the more interesting q values, near 
the minimum of Pe: the optimal tree (see Figure 14) is seen 
to correspond to q ~1 3  ( : ~ 4 . 8 5 x 1 0  s), C(DT)=10,  
and Pe = 5.2%.m Observe that, according to Figure 3, the 
pruning allows here a decrease in complexity of 70% and 
simultaneously in error probability of almost 30%. These 
figures are quite typical for the applications we have 
considered so far. 

In the sequel we will consider forward pruning only, 
since it is equivalent to the stop splitting rule used so far. 

11.5 Tree and its dual representation, the attribute 
space 
A 'good' tree offers a clear description of the phenomena 
of concern. It also enables one to readily classify a state 
of a priori unknown classification on the basis of the 
known values of its test attributes (remember, these are 
the attributes appearing at the test nodes of the tree): 
beginning at the root of the tree, one merely has to 
sequentially apply the test at the test nodes and 
systematically move the state to the successor corre- 
sponding to the test's outcome, until a terminal node is 
eventually reached; the state is classified accordingly. 

Another, very interesting classifier is provided by the 
dual representation of a DT in its 'attribute space'. The 
coordinates of this space (or hyperspace) are the test 
attributes of the tred. This dual representation is an 
elegant geometric interpretation obtained by partitioning 
the space into regions corresponding to the classes. Each 
region is composed of the union of hyperboxes of the 
terminal nodes assigned to the class 9'] 0 Figure 4 portrays 
the attribute space corresponding to the tree of Figure 1. 
(Admittedly, this tree and its corresponding attribute 
space are much simpler than those usually obtained; they 
were chosen for the purpose of demonstration.) 

An interesting outcome of the attribute space is the 
possibility of defining distances. These may be used to 
quantify the degree of security of a state and to identify 
the 'locally relevant' parameters, as the more strongly 
affecting the state's distance to the security boundary. 
The latter sensitivity type information may further help 
identify possible on-line control strategies. 
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III. Applicat ions to power  system security 
assessment 
The general principle of the decision tree application to 
power system security is first stated (section III.1), then 
tailored to various types of dynamic security assessment 
(section III.2), finally illustrated on a sample of practical 
results (section III.3), which highlight general features 
(section III.4). 

II1.1 Principle 
It follows the same general pattern: 'for the particular 
security problem at hand, build DTs on the basis of 
"relevant" information, to assess subsequently any new, 
unseen operating state in terms of the values of its test 
attributes'. Let us briefly comment on the terms of this 
general statement, in the context of security assessment. 

The 'relevant' information concerns: 

(1) 'relevant' operating states, preclassified with respect 
to a practical criterion characterizing the security 
problem of concern; 

(2) a list of candidate attributes 'relevant' to this security 
problem, i.e. likely to govern the phenomena, and 
available in the on-line environment. 

Depending on the particular application, information 
(1) may be obtained by: 

• using past records of the system real life, and 
considering plausible scenarios of load-generation- 
topology schemes for which a load flow program is 
run to generate the corresponding operating states; ° 

• considering (a list of) contingencies relating to the 
security problem of concern; further, considering an 
appropriate method to assess security, i.e. to classify 
each operating state with respect to each such pre- 
assigned contingency. This sample of preclassified 
operating states constitutes the 'data base'. Sub- 
sequently, it will be decomposed into learning and test 
sets. 

Obviously, information (1) implies the use of numerical 
programs, in particular those related to the 'system 
theory' security method ~. 

Information (2) is concerned with parameters of the 
system likely to drive the phenomena; they must be 
easily available in the on-line environment (e.g. to the 
operator), so as to make the use of DTs independent of 
the 'system theory' security method. In addition, human 
expertise is fundamental for appropriate choice of contin- 
gencies, precontingency operating states and candidate 
attributes altogether; in short, it is essential to the success 
of the devised DT method. 

Stated otherwise, a 'good' DT-based security method 
results from the combination of a good DT methodology, 
good 'system theory' security methods and numerical 
programs, good system modelling and sound human 
expertise. The expected advantages of this combination 
over the corresponding 'system theory' security methods 
are manifold. Anticipatively, we identify three areas, 
corresponding to three types of assessment: 

• analysis type assessment: a DT identifies the more 
relevant parameters to the security problem of concern; 
once the values of the test attributes of a state are 
known, its classification by means of the DT is almost 
instantaneous; 

• sensitivity type assessment: it can be efficiently obtained 
through distance computations in the attributes space; 
'system theory' security methods are less suited to this 
kind of assessment; 

• control type advices: it can also be obtained in the 
attribute space; in general, no such counterpart is 
available in 'system theory' security methods q. 

Recall that all this information may be assessed with any 
degree of system modelling sophistication and any 
'system theory' security method, since these auxiliary 
tools are essentially used to build DTs, during the off-line 
phase. 

The above advantages are obtained at the expense of 
a bulky off-line data base acquisition. A convenient data 
base management tool is of great help. 

111.2 Appfication to various types of security 
assessment 
The general principle stated above is now tailored to the 
specifics of various security issues. 

111.2.1 Conventional transient stability assessment. 
the decision tree transient stability (DTTS) method 
Transient stability is concerned with the ability of an 
electric power system to withstand severe disturbances. 
A conventional measure of this is the critical clearing 
time (CCT), i.e. the maximum duration that the disturb- 
ance may remain without causing the irrevocable loss of 
machines' synchronism. Two broad families of 'system 
theory' methods are currently used to compute CCTs: 
the time-domain methods, which solve numerically the 
nonlinear differential equations governing the system 
motion, and the direct methods which rely on the 
Lyapunov criterion 27'28. Admittedly, the CCT may not 
be the most appropriate information about transient 
stability: it merely provides a rather crude 'yes-or-no' 
answer, whereas what often matters in practice are 
'stability margins' in terms of operating parameters and, 
where necessary, advice for remedial actions in terms of 
control variables. However, the CCT is a good bench- 
mark, in particular for comparisons. Within the tree 
methodology it provides a handy means of classifying 
the learning states into classes of increasing stability with 
respect to a disturbance. The considerations of section 
III.1 suggested that from there on its is possible to get 
sensitivity and control tools. 

In the basic DTTS method each tree is built for a 
single, preassigned contingency. Two main observations 
underlie this approach. First, transient stability is strongly 
dependent upon the contingency type and location; 
hence, the idea of building a tree per contingency. 
Second, transient stability is quite a localized pheno- 
menon, driven by a few parameters of the system in 
its precontingency condition; (this assumes that there 
are indeed sound correlations between precontingency 
parameters of the system and its transient stability 
robustness); hence, the idea of selecting candidate 
attributes among the system steady state parameters. One 
may distinguish topological discrete attributes and 
electrical continuous ones, such as power flows, power 
injections, voltages. 

The sample of precontingency operating states required 
for a tree building is obtained as indicated earlier, by 
considering a variety of scenarios and running for each 
one of them a load flow program to get the corresponding 



operating states. The classification of these states with 
respect to a contingency is performed by means of a 
stability method (time-domain is preferable to direct 
methods whenever better accuracy or modelling sophisti- 
cation is sought). 

The DTTS method has recently been extended to 
handle through a single tree several (related) contin- 
gencies (e.g. different faults located in the same sub- 
station). Among different explored ways of defining 
multicontingency trees let us succinctly describe the 
following. We consider each 'stability case' to be specified 
by a prefault operating state (characterized by prefault 
attributes, as above) and a fault, identified by a discrete 
attribute; it is accordingly classified as unstable if its 
operating state is unstable with respect to its fault. The 
learning and test sets are therefore composed of collec- 
tions of such 'stability cases'. A DT built with such a 
learning set will be able to provide directly either of the 
following types of information. 

• For a given fault (among those used to build the tree) 
and operating state, is the corresponding stability case 
likely to be unstable or not'? 

• For a given operating state, which are the faults 
corresponding to an unstable behaviour? 

• Which conditions characterize the prefault attributes 
of stable operating states for a given set of possible 
faults? 

Such a multicontingency approach is illustrated in 
section III.3 by the DT of Figure 13. It suggests that, 
although equivalent to the information provided by a set 
of single-contingency trees, the information provided by 
the corresponding multicontingency tree is presented in 
a more compact and easier to exploit fashion. This can 
be explained by the fact that similarities of different 
contingencies are exploited during the tree building so 
as to simplify the resulting tree. In particular, over- 
lappings of unstable (resp. stable) regions are identified 
and imbedded in the tree: hence, combinatorial explosion, 
inherent in multicontingency control on the basis of single 
contingency trees, is avoided. 

111.2.2 Preventive voltage stability assessment 
The proposed method is a replica of the DTTS: it assesses 
the ability of a precontingency state to withstand a 
preassigned contingency in terms of the state parameters 
preselected by the tree, built for this contingency. 

The precontingency states used for the tree building 
are obtained in a way similar to that of section III.2.1. 
The contingencies of concern here are generally outages 
of EHV transmission and/or generation equipment. 

The classification of a precontingency state with respect 
to a given contingency may rely on various 'system 
theory' techniques 6. One such technique is a load flow; 
the considered state will be classified 'stable' or 'unstable' 
according to whether the load flow converges or not 
towards an acceptable post-contingency operating state. 
Feasibility limits, such as upper and lower bounds on 
voltage magnitudes are evaluated. Admittedly, this type 
of classification is less refined than the critical clearing 
time used in transient stability; a more appropriate 
approach would be to consider adequate 'voltage collapse 
proximity indicators' to characterize the weakness of the 
post-contingency state (see e.g. References 29 and 30 and 
the references therein, for some possible such measures). 

Finally, as in transient stability, the candidate attri- 
butes are parameters of the system in its precontingency 
state, relevant to voltage stability. 

It is worth mentioning that References 22 and 23 
propose a quite different tree approach, for the purpose 
of voltage optimization. 

111.2.3 Emergency voltage control 
The proposed approach and resulting procedure are quite 
different from the previous ones. The leading idea is that 
voltage instability following a contingency generally does 
not develop as fast as the transient one (typically voltage 
collapse takes several minutes whereas electromechanical 
loss of synchronism takes only a few seconds); this leaves 
time to detect the potentially critical states after the 
contingency occurrence and to take corrective actions 7. 

A main difference of this method with respect to 
previous approaches is thus the type of considered system 
states. They result from various operating conditions, 
supposed to be subjected to a set of disturbances; they 
are determined after a short-term intermediate equili- 
brium has been reached, i.e. after the electromechanical 
transients have vanished (approximately 10-20 s after the 
disturbance inception). Such just  after disturbance' 
(JAD) states along with their classification (non critical 
if the state ultimately reaches a new equilibrium, critical 
otherwise) are used to build a tree, which therefore is 
relative to a set of disturbances. Subsequently, the tree 
will be used on-line to decide whether, following a 
disturbance on the system, and in terms of attributes 
observed in the JAD state, the system state is critical or 
not. In the former case, the tree itself or its corresponding 
attribute space should be able to suggest some fast 
corrective actions. 

Similarly, the candidate attributes proposed to the tree 
construction are parameters of the system in its JAD 
state. 

Remarks 
(1) One might a priori think that considering a set of 
contingencies, rather than a single one, would provide 
less accurate trees. This however is compensated by the 
rich information carried by the attributes about the 
disturbance undergone by the system. (This is corrobor- 
ated by the simulations: during the tree construction, the 
method consistently selects attributes of the JAD type 
preferably to 'before disturbance' type.) 
(2) To determine and classify JAD states many techniques 
may be used ranging from successive steady-state calcu- 
lations up to refined dynamic simulations. 
(3) Instead of the mere 'critical-noncritical' states classi- 
fication, one might think of more refined ones; e.g., one 
could introduce the degree of criticality in various ways, 
for example in terms of how fast the system would evolve 
towards collapse. 
(4) Another issue worth exploring is how many disturb- 
ances a single tree can handle effectively or, in other 
words how many trees should be built to cover properly 
all relevant disturbances located in a given geographic 
area. Appropriate electrical distances could be quite 
useful in this respect. 
(5) Though the above emergency-wise approach is still 
in its infancy, the results of the academic-type example 
reported below show that the method has potential. 



111.3 Sample of illustrative examples 
We illustrate the decision tree security approach by 
means of the DTTS method which is the more thoroughly 
explored so far. We then provide a sample of trees 
obtained in the contexts of preventive and emergency 
voltage control. 

111.3.1 Decision tree transient stability ( D TTS) 
Four different power systems of growing size have been 
used to test the DTTS method: a one-machine/infinite 
bus, academic type system; a 14-machine/92 bus, real 
system; a 31-machine/128 bus, synthetic system; and a 
61-machine/561 bus, existing system. All in all, over 2000 
decision trees have been built. The following range of 
parameters has been covered by the simulations: 

• 36 different disturbances of several types (short-circuit 
located at generator (or load) buses, with (or without) 
single (or multiple) line (and/or machine) tripping); 

• 2, 3, 4 stability classes; 
• from a few to over 150 candidate attributes per tree; 
• size of LS and TS ranging from 100 to 6000 states; 
• multicontingency trees. 

Below we illustrate the type of trees obtained on a 
detailed typical example, then we outline general salient 
features. 

A detailed account of  a typical decision tree 
Figure 5 portrays a representative 2-class tree obtained 
on an earlier version of the French 400-kV 225-kV system 
comprising 561 nodes, 810 lines, 190 transformers and 61 
machines; the tree was built for a 'busbar' fault, i.e. a 
3-phase short circuit applied at a busbar and afterwards 
cleared by opening all lines terminating at the faulted 
busbar section 5. The data base was generated from a 
base case modified according to predefined probability 
laws r. 3000 operating states were thus generated; they 
were classified with respect to the above contingency: 
stable (resp. unstable) if their critical clearing time (CCT) 
is higher (resp. lower) than a threshold CCT value s. (In 
Figure 5 this threshold is fixed at 155 ms, corresponding 
to the actual time required by the protection system to 
clear the fault.) Out of the 3000 states of the data base, 
2000 are composing the learning set; the remaining 1000 
the test set. The 57 candidate attributes used to build the 
tree comprise the following parameters (notice that the 
categories (1) to (4) are actually directly controllable 
attributes): 

(1) active generation of each unit of each plant of the 
region; 

(2) their EHV voltage magnitude; 
(3) global regional active and reactive load; 
(4) topology attributes, such as the status of lines and 

generation units and the number of nodes in the 
400-kV substations around the faulty busbar; 

(5) active and reactive power flows on the important 
lines in operation; 

(6) 'ad hoc' composite attributes, taking into account the 
prefault operating point and the postfault topology. 

Before commenting on the information provided by 
the tree of Figure 5, let us explain the notation 
consistently used for the tree representation in all security 
applications. Each node of the DT is represented by a 
box. Above the box appears the node name, labelled T 
(test), D (deadend) or L (leaf)as appropriate, along with 

the number of its learning states. (Remember, a leaf is a 
node where the states of different stability degrees have 
been well enough separated; a deadend is a node where 
the method decides that the learning subset has shrunk 
too much to allow its further splitting in a reliable way4.) 
The total number of different types of the tree nodes is 
indicated near the top-node. The node box itself is 
subdivided into upper and lower parts. Their relative 
height is proportional to the relative size of the learning 
and test sets at the node. The upper part is subdivided 
into differently shaded parts to indicate the ratio of 
learning states of the different stability classes. The lower 
part is subdivided into a white and black area, indicating 
the relative proportion of the test states correctly and 
incorrectly classified by the complete subtree corre- 
sponding to the node. 

Coming back to the tree of Figure 5 we note that out 
of the 57 candidate attributes the method has selected 
only 8 to formulate the tree. Some of these are discrete and 
characterize the topology (e.g. 'P4-Post.Fault =isol6e' is 
a logical attribute indicating whether a particular 
generation unit is isolated or not; 'P4= en-serv' indicates 
whether unit P4 is in service or not); some others are 
real valued ones, describing the operating state (e.g. 
'Q-P4' is the reactive generation of unit 'P4'; 'V-P4' 
denotes its EHV bus voltage magnitude). 

The tree building is summarized in Table 1. For each 
test node of the tree this table lists the number of its 
unstable and stable states, and the three most discrimi- 
nating attribute tests along with their 'score' Gc r (see (A.5) 
in the Appendix). Before commenting on Table 1, let 
us derive in detail the 'score' of the test 'P4-Post- 
Fault =isol6e' selected at the top-node, which splits the 
overall learning set into the two subsets corresponding 
to the nodes T2 and T3. It is obtained by using the 
formulae of the Appendix to successively calculate the 
following entropies and amount of information (in bits): 

252 lo 152 28481og 2 2848] 
Hc(LS) = - [_2000 gz 2000 + 2000 2000] 

= 0.388 (Top-node), 

[- 94 lo 94 19061ogz 1906] 
HT(LS) = - [2000 g2 2006 + 2.000 2-O00A 

=0.274, 

[-78 78 1-6 log, 26q = 0.658 (T2), 
Hc(LSv)= - L ~ l ° g 2 ~  + 94 "94] 

F 74 1o 74 18321og e 1832-] 
Hc(LSs)= -[_2906 g2 19()6 + 1906 i906J 

=o.237 (T3), 

94 + 1906 
gc..r(LS)= Hc(LSv) . . . . .  Hc(LSy)=0.257, 

' 2000 2000 

I[(LS) = Hc(LS)-  Hc/r(LS ) = O. 13 I, 

21~(LS) 
Gr(LS)= =0.397. 

Hc(LS) + Hr(LS) 

Scores, as those given in Table 1, provide valuable 
information about the relative importance of the attri- 
butes. They allow one to readily identify the significant 
ones and to assess their correlations or complemen- 
tarities. Attributes obtaining repeatedly similar scores at 



Table 1. Scores of the attributes during the building of the DT of Figure 5 

Node 
Nu,s~ Attribute 
Nst and test G[ 

Top P4-Post-Fault = isol6e 0.397 T2 
152 P-Per-L < 1853 0.309 16 

1848 Nb-L < 1 0.308 78 

T4 P-Per-L < 1255 0.445 T5 
109 Nb-L < 3 0.372 39 
39 Barnabas < 2 0.338 26 

T7 Rou2-Q < - 2 6 5  0.126 T8 
31 V-P4 <395 0.111 26 

1722 V-P2 <395 0.099 1717 

Node Node 
N,,st Attribute Nunst Attribute 
N~, and test G[ N~ and test G~: 

P4=en-serv 1.000 T3 Q-P4 < - 100 0.134 
P-PERT < 137 1.000 74 P-Per-L < 1232 0.129 
P-P4 <137 1.000 1832 V-P4 <396 0.112 

Remise < 2 0.603 T6 P-Decl < 2356 0.130 
Q-P4 < - 1 6 7  0.173 35 Rou2-Q < - 2 6 5  0.112 
Q-P2 < - 156 0.145 1723 P-Per-L < 1630 0.105 

V-P4 <394 0.103 T9 P-Per-L <1230 0.284 
Ter l -Q < - 7 8  0.097 19 Ter2-P <1137 0.179 
V-P2 <395 0.090 131 P-P4 <1197 0.129 

rop-No~° 2OOO 

P4 POM- FOUI~ : Iso[ee 
T294 Y N T31~o6 

- n- rv O-P4 < -leO 050 earning s o es .... /Y N\ . . . .  / N / ~  ~4 J~8 re 1758 

P-Per-L< 1255 500 P-DecI< 2556 500 

i ~  N o2 3e Rou2-O <-264 750 

9 test nodes (Top-node - T S )  
5 leaf nodes ( L I -  LS) v p4<394 5oo 

[ ]  Mpsclossified test states 14 
[ ]  Correctly classified test states: 986  p pe s L ~  ~ 4 
[ ]  CCT < 0 .155  152 unstable learning states 
[ ]  C C T >  O. 155 1848 stable leernlng states 

Figure 5. 61-machine system. Three-phase busbar 
fault. 2 classes. N=2000, M=1000, ~=1.0x10-% 
Pe= 1.4% 

several nodes of a tree are likely to be correlated, i.e. 
to provide similar information about the stability 
behaviour. Attributes obtaining high scores at different 
tree nodes reflect physically independent, complementary 
phenomena. 

Considering node T2, one observes that the three first 
attributes obtain an identical score equal to I, meaning 
that they classify the local learning set perfectly. In such 
a situation the method chooses the attribute appearing 
first in the list of candidate attributes, unless otherwise 
decided by the tree designer. Note that in the particular 
case of T2 the three tests are actually equivalent, from 
the physical point of view. 

Among the more discriminating attributes (i.e. those 
providing the larger classification ability) is probably the 
qualitative test attribute of the tope node; indeed, 
inspection of the tree parameters shows that this attribute 
allows one to classify about 1800 learning states out of 
the 2000 ones. This is corroborated by the information 
quantity Nnode*l~(S) provided by each one of the eight 
test attributes; we indeed find: 

P4-Post-Fault: 2000,0.131 = 262.6 (at the Top-node) 
P-Per-L: 148,0.406 (at T4)+  150,0.211 (at T9)=91.5 

Q-P4:1906 .0 .042=81 .0  (at T3) 
P4 :94 ,0 .655=61 .6  (at T2) 
V-P4:1743.0 .027=47.9  (at TS) 
Remiss: 65 ,0 .58=38.0  (at T5) 
Rou2-Q: 1753.0.0113= 19.9 (at T7) 
P-Decl.: 1758.0.0110= 19.4 (at T6). 

The total information quantity provided by the tree is 
the sum of the above eight numbers and equals 621.9. 
Note that the total information quantity potentially 
contained in the LS is 2000*0.388 = 775.9: thus, the tree 
classification has decreased the impurity (entropy) by 
about 80%. 

General observations 
• The tree building method shows itself to be an efficient 

attribute selection tool. (In the above example it 
selected 8 out of the 57 attributes to classify the states.) 

• The obtained tree is easily interpretable thanks to the 
elementary nature of the candidate attributes, its very 
low complexity and its hierarchical structure (which 
highlights explicitly the more significant relationships 
between the driving variables and the stability of the 
system). This is admittedly of paramount importance 
in practice, since it is a prerequisite to allow the stability 
experts to cross-validate a DT with respect to their 
own knowledge of the problem, and vice versa. 
Moreover, since the DT is directly formulated in terms 
of the operating variables, it can be easily understood 
by operators and can therefore effectively guide 
decision making in real time operation. 

• The method provides an effective data analysis tool, 
thanks to its quantitative information such as attribute 
scores and information quantities, together with the 
tree interpretability feature. 

• Although quite simple, the tree turns out to be very 
efficient in discriminating stable from unstable states: 
only 14, out of the 1000 unseen test states, are 
misclassified; moreover, this is achieved in spite of the 
rather high disproportion of stable (1848/2000) and 
unstable (152/2000) learning states. 

Let us focus on the misclassification rate P~ = 1.4%. 
A close examination shows that the misclassified states 
are concentrated in the three deadends D1, D3 and 
D4 of the tree of Figure 5: according to the class 
majority, D1 and D4 are labelled stable, D3 unstable. 
Thus, the states misclassified by D1, D4 are assessed 



to be stable whereas they actually are unstable; those 
misclassified by D3 are assessed as unstable whereas 
they are stable. A closer analysis, obtained by con- 
sidering the actual CCT values of the misclassified 
states, shows that among the 14 states, 10 fall into the 
+ 10% error range (140-170 ms) around the threshold 
of 155 ms; we will consider them as 'normal'  errors; 3 
states fall into the range of ( l l0-140)ms:  they are the 
'dangerous', 'abnormal'  errors; the last state falls above 
170 ms: i t  is an 'abnormal'  false alarm. 

Note that a more cautious strategy will consist of 
suitably weighting the diagnostic of a deadend by the 
class probability corresponding to its learning states, 
instead of simply considering its class majority. This 
will provide a more refined diagnostic, especially for 
the states falling in D3 and D4; this will be further 
discussed in section III.4. Another convenient and 
more accurate way of assessing stability, especially for 
borderline cases, could be provided by the attribute 
space representation of the tree by considering their 
distance to the boundary between stable and unstable 
regions of this space 9. Further investigations are being 
pursued to make this attribute space approach fully 
efficient. 

• Another issue of concern is the number of classes 
considered. Figure 6 illustrates a typical evolution of 
a tree with the number of classes: this 4-class tree is 
obtained under the same conditions as the 2-class of 
Figure 5. Observe the increase in complexity and in 
misclassification rate, as normally expected. This is 
further discussed in section III.4. 

After general considerations illustrated on particular 
trees, let us now give a statistical, global assessment of 
their behaviour. 

Effect of the parameter 
To explore the influence of c~, we have considered the 
31-machine system and have simulated disturbances 

consisting of 3-phase short-circuits, applied at machine 
nodes 4. Figures 7 and 8 describe the effect of the 
parameter ~ on the size and the accuracy of trees, for 2, 
3, and 4 classes. In each class the curves represent mean 
values for 12 different trees corresponding to 3 disturb- 
ances and different randomly selected learning sets of 
N = 5 0 0  states; each tree was tested by computing its 
error rate on the basis of an independent test set 
composed of M = 1500 states. 

From these figures, the following observations can be 
made: 

• the most important reduction of the tree complexity is 
obtained as soon as ct enters the range 10 -3 to 10-4; 
quantitatively, this effect is more marked in the 3- and 
4-class trees; 

• although further lower values of c~ still reduce (some- 
times notably) the tree size, the effect is generally less 
impressive; 

• the trees corresponding to ct = 5 × 10-5 can be two to 
ten times smaller than those corresponding to ~ = 1.0; 
besides 

• when ~ decreases from 5 × ] 0  - 2  to 5 × l0 -5, the tree 
accuracy varies very slowly, and generally insignificantly 
(cf. the statistical uncertainty of the error estimates). 

Similar results have been obtained in the context of 
other disturbances and other power systems. Table 2 
provides some typical figures for the obtained tree 
parameters. 

Finally, an important observation is that within a given 
application (here transient stability), the 'optimal' value 
of ct is quite independent of the learning set size and of 
problem specifics like disturbance type and location, 
number of classes and power system. Consequently, the 
test set error based tree selection of the pruning 
approaches of section II.4 is required only during 
preliminary studies, in order to identify the optimal ct 
value. Subsequent trees may use the same ct and can thus 
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Figure 6. 61 -machine system. Three-phase busbar fault. 4 classes. N = 2000, M =  1000, c~ = 1.0 × 10-4, po = 15.9% 
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Table 2. Elfect of  ~ on the tree s ize and error probability 

Nb. nodes/Pc 
Power system LS No. of . . . . .  
(Disturbance) TS classes c~=0.1 ~ =  10 -4 

31-machine 500 2 13/ 1.9% 7/ 1.7% 
(3-ph.sh.-circuit) 1500 4 55/ 5.8% 25/ 5.9% 
61-machine 2000 2 63/ 1.5% 19/ 1.4% 
(Busbar fault) 1000 4 341/16.0% 73/15.9% 

be constructed on the basis of all available states, no test 
set being required to select the best tree at the pruning 
stage. 

Influence of the learning set size 
Figures 9 and 10 have been drawn on the basis of 
simulations performed on a 31-machine system. The trees 
are built for a 3-phase short-circuit with a 4-class 
classification. The figures indicate the effect of the 
learning set size N on the total number of tree nodes and 
on the error estimate. It  is interesting to observe the 
slightly sublinear variation of the number of nodes with 
the learning set size; this confirms earlier analysis 16. 
Observe also that the improvement of the trees error rate 
saturates slowly, for large values of N. 

The above statistics are illustrated by Figures 11 and 
12 obtained for two different values of N. The top parts 
of the two trees are very similar, although not identical. 
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Figure 9. Influence of N on the total number of nodes 
(from Reference 4) 
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Figure 10. Influence of N on the error estimate (from 
Reference 4) 
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Figure 11. 31-machine system. Three phase short- 
circuit at a generator bus (postfault=prefault). 4 
classes; N = 250, M =  1750, ~ = 5.0 × 10-% Po = 12.1% 
(from Reference 4) 
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Figure 12. 31-machine system. Three-phase short-circuit at a generator bus (postfault=prefault). 4 classes. 
N=750 ,  M=1250 ,  c~=5.0 x 10 -5, ,°,=7.9% (from Reference 4) 

The above observations hold valid for all the other 
tested power systems. 

Effect  o f  the number  of  classes 
The simulations confirm the intuitive fact we mentioned 
earlier that the larger the n.umber of classes, the more 
complex are the obtained trees. At the same time, the 
accuracy of the trees decreases t, while the 'optimal' value 
of ~ slightly increases. Recall that using appropriate low 

values allows a drastic reduction in tree complexity, 
which largely contributes to their interpretability, by 
suppressing their non-significant parts. For  large number 
of classes, and for complex situations, when many 
parameters may affect the stability this feature becomes 
crucial. 

A mul t icont ingency  decision tree 
Figure 13 represents a multicontingency tree obtained 
for the 61-machine system. Three different contingencies 
were used, located in the same substation: (i) the above 
mentioned busbar fault (denoted 'BF', in the tree), cleared 
after 155ms; (ii) a single line fault (denoted 'SLF'), 
consisting of a short-circuit at one end of a line (close to 
the substation) cleared after 100 ms by tripping the line; 
(iii) a double line fault (denoted 'DLF') ,  consisting of a 
short-circuit on a double circuit line, cleared by tripping 
the two circuits after 100 ms. 

The three contingencies together with the 3000 operat- 
ing states of the data base yield a total number of 9000 

stability cases: a random sample of 6000 are used as 
learning set, and the remaining 3000 are used to test the 
tree. Comparing the multicontingency tree with the 
corresponding single-contingency ones, we observe that 
the multicontingency tree has: 

• a complexity of 47 nodes vs. 45, the total number of 
nodes of the three single contingency trees; 

• an error rate of 1.6% vs. 1.7%, the mean error rate of 
the single contingency trees; 

• 14 different test attributes (including the attribute 
'Fault ') vs. 18, the total number of different test 
attributes of the single contingency trees. 

Thus, without loss of reliability, a multicontingency 
tree appears to be able to provide a more synthetic view 
of the stability relationship than a set of single con- 
tingency trees. Moreover, similarities among contin- 
gencies are identified and highlighted by the tree (e.g. 
the operating states corresponding to the DT node D5 
are stable with respect to all three contingencies; states 
corresponding to node D15 are unstable only for the 
double line fault etc.). On the other hand, considering 
the information quantities of the test attributes, indicated 
in Figure 13, one can observe that the 'fault' attribute 
carries about 23% of the total information of the tree, 
although it appears generally at deep nodes. Thus the 
tree first extracts the information independent of the fault 
(e.g. carried by the 'P-Per-L . . . '  attributes, in Figure 13) 
and then only the more specific, fault dependent relations. 
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Figure 13. 61 -machine system. Multicontingency tree. 3 contingencies: BF, SLF and DLF. N=6000,  M=3000,  
~=1.0 x 10-4, Pe= 1.6% 

111.3.2 Preventive voltage stability assessment 
The trees built in this context concern the Britanny 
region of the EDF system which has in the past 
experienced voltage problems 31. A data base composed 
of 2000 prefault operating states was generated, using a 
320-bus, 55 generator, 614 branch model of EDF 
system, representative for the random modifications 
imposed in the Britanny region 6. The above states were 
obtained by imposing random variations concerning (1) 
the active power generation schedule in a large enough 
region surrounding Britanny, (2) the local reactive 
resources (power plant configuration, voltage setpoints, 
HV and MV compensation, synchronous condenser), (3) 
the regional active and reactive load level, (4) single 
400 kV 225 kV line or transformer outages. 

Figure 14 gives a typical tree; the contingency 
considered is loss of 600 MW generation in the region. 
(Remember, its characteristics were fixed by the example 
of section II.4, Figure 3.) On the other hand, to illustrate 
the influence of parameter ~, compare this tree with that 
of Figure 15, built under the same conditions (same 
contingency, list of candidate attributes and size of LS, 
apart from the ~ value (~=4.85x10 -5, vs. ~=1)). 
Observe that the upper parts of these trees are identical 
as is expected. Note also that the smaller tree of Figure 
14 provides better reliability, in addition to interpret- 
ability, than the tree of Figure 15. 

What happens if an important candidate attribute, 
initially selected as test attribute is afterwards discarded 
from the list of candidates? Before discussing reasons 
for such a 'masking', let us illustrate it in the particular 
case of almost equivalent candidate attributes, by means 
of the tree of Figure 16: this tree was grown under the 
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Figure 14.. Preventive voltage stability. Contingency: 
loss of 600 MW of generation. N =  1000, M =  1000, 
~=4.85 x 10-% Pe=5.2% (from Reference 6) 

same conditions as the tree of Figure 14, except that the 
top test attribute of this latter, Qatcor", was eliminated 
from the list of candidate attributes. This has led to the 
automatic selection at the top test of Figure 16 of the 
attribute Res-Comb v. (In Figure 14 this latter attribute 
appears twice at two quite high level test nodes.) Observe 
that masking the top test attribute Qatcor hardly affects 
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Figure 16. Preventive voltage stability, contingency: 
loss of 600 MW of generation. N =  1000, M =  1000, 
c~=5.0 x 10-% Pe=5.7% (from Reference 6) 

the overall tree accuracy. The explanation is given by the 
scores obtained by the test attributes at the root of the 
tree of Figures 14 and 16: Qatcor: 0.3856; Res-Comb: 
0.3830. 

Another interesting comparison concerns the informa- 
tion quantity provided by the higher (top) test nodes of 

• for the tree of Figure 14: Qatcor: 382.1; Res-Comb: 
154.6; Res-Bret: 134.3; total information quantity 
provided by the tree: 818.8; 

• for the tree of Figure 16: Res-Comb: 378.1; Res-Bret: 
188.0; Res-Bla: 99.1: total information quantity pro- 
vided by the tree: 818.4. 

Note that the total information quantity potentially 
contained in the tree is 990.3 bits. 

The above masking suggests a flexible way of replacing 
some attributes by others (e.g. by more controllable 
ones). Another reason for masking attributes could be 
to uncover additional important ones. 

Note, however, that masking the top test attribute 
often deteriorates the tree performances, apart from 
situations, as above, where a high redundancy allows one 
to replace it by another attribute of very similar score. 

111.3.3 Emergency voltage control 
The trees portrayed in Figures 17 and 18 have both been 
built for the purpose of emergency voltage control, 
following the procedure of section III.2.3. Figure 17 por- 
trays an academic type exampleT: Figure 17a is the 
single-line diagram of the academic type system which, 
however, contains all realistic ingredients and system 
parameters; Figure 17b represents the tree built under 
the conditions briefly described hereafter. A set of 500 
predisturbed states have been generated then subjected 
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to five contingencies, namely: 

• tripping of the 400-kV line 11-1 ; 
• tripping of the 400-kV line 11-2; 
• loss of two units at bus 7; 
• loss of three units at bus 7; 
• loss of three units at bus 7 and simultaneous tripping 

of line 11-2. 

The resulting 2500 JAD states have been assessed at 
20 s after the disturbances inception. Of them, 1250 have 
been used as learning states, the other 1250 as test states. 
On the other hand, 28 candidate attributes have been 
proposed to the automatic tree building procedure; out 
of them, it has retained only five. Moreover, two of them, 
viz. voltage V3 (or V4) and reactive power reserve Res7 
appear to carry the greatest deal of the tree information. 
From a physical viewpoint this result seems quite 
sensible: V3 quantifies how far the contingency has 
moved the system from its 'voltage stability' equilibrium 
point; Res7 evaluates the amount of available generation 
reserve to respond to the change in configuration and 
the subsequent on load tap changer dynamics (the latter 
will cause an increase in reactive demand and losses when 
pulling the MV and HV voltages back to a nominal 
value). 

The tree portrayed in Figure 18 relates to the Britanny 
region of the EDF system 8'32. The main difference 

between the corresponding two approaches essentially 
lies in the way of generating the sample of learning states: 
in the academic example, this generation conforms to the 
general pattern, seeking representativeness of the system 
behaviour: in the Britanny region on the other hand, a 
majority of "borderline' states (close to the stability 
boundary) were generated on purpose by a deterministic 
approach 33. This could explain the complexity of the tree 
of Figure 18. It also illustrates the robustness of the tree 
construction method: despite the stringent conditions 
imposed by the data base, it nevertheless yields a quite 
accurate tree. 

111.4 Discussion 
Structural parameters 
The trees obtained so far within the various security 
contexts exhibit quite similar features. 

• Curves of complexity vs. accuracy plotted for various 
~s show that the optimum c~ value lies around 10 -4. 
In this range, and for 2-class trees, the complexity 
amounts to about l0 to 40 nodes, involving generally 
less than 10 test attributes and yielding an accuracy of 
about 92 to over 99%. 

• Complexity and accuracy increase rather monotonically 
with N, the number of learning states; for N ~  1250 
the curves, especially the accuracy one, begin to 
saturate, showing that a number between 2000 and 
3000 for N should be quite sufficient. 

Accuracy 
We just mentioned that for 2-class trees the misclassi- 
fication rate ranges in between 1 and 8%. For large 
number of classes, this error increases. To get a better 
insight of the real meaning of this global assessment, 
consider at first 'normal'  errors, i.e. errors falling into 
the +1 0 % range around the threshold CCT. The 
decrease observed when the number of classes increases 
is apparent rather than real, in that the gravity of 
misclassification generally decreases. Indeed, this mis- 
classification generally affects states of adjacent classes; 
hence, an erroneous diagnostic is less misleading for, say, 
4-class than for 2-class trees. E.g., in transient stability, 
declaring stable a state which is actually unstable is less 
dangerous in a 4-class tree (classes labelled very unstable; 
unstable; stable: very stable), than in a 2-class tree (classes 
labelled unstable; stable). One could argue that the 
attribute space may anyhow provide a much more refined 
diagnostic than the crude 'stable unstable' one provided 
by the tree itself; in this space one could even recover 
the actual critical clearing time (within a tolerance), by 
defining appropriate distances 9"1°'1v. This is to the 
advantage of 2-class trees which provide more tractable 
attribute spaces; but anyhow the appropriate attribute 
space representation is still an open question. 

Let us now concentrate on the 'abnormal'  errors, or 
'outliers', and more specifically on the dangerous ones. 
The existence of such outliers corresponds to an in- 
complete data base, where all salient cases have not been 
covered well enough. This difficulty intrinsically exists 
in all pattern recognition type of security approaches, 
especially if applied to well designed power systems since 
there is an imbalance between the information contained 
in a 'normally' generated data base (much more stable 
than unstable cases) and the information required to treat 
'interesting' cases, i.e. unstable ones. 
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One way to circumvent this difficulty is to call upon 
the expertise of system designers and operators in order 
to cover abnormal cases as well. During our investi- 
gations on transient stability, they helped efficiently to 
take properly into account complex topological changes 
which were initially overlooked and had created outliers. 
Another in-depth investigation has recently been carried 
out in order to improve the trees' ability to handle 

dangerous outliers. Among the various explored direc- 
tions we mention the following. 

• Develop 'pragmatic quality 'w measures to evaluate the 
tree proportion of false alarms and of dangerously 
optimistic diagnostics. 

• Investigate and select methods to enhance the prag- 
matic quality both at the DT building stage and at the 



DT interpretation stage, in order to avoid that actually 
quite unstable states are classified stable, while main- 
taining the number of false alarms as low as possible. 

• Investigate the possibility of iteratively enhancing a 
tree, by incrementally developing its subtrees by: 

tuning the DT to remove its dangerous (overly 
optimistic) diagnostics; 

- identifying its 'weak' points, i.e. its terminal nodes 
corresponding to high proportions of false alarms; 

- generating a learning subset for each weak node and 
building the corresponding subtree; 

- modifying the initial tree by replacing each of its 
weak nodes by the corresponding subtree. 

Combination of (some of) the above techniques 
allowed one to reduce the dangerous diagnostics 
quite efficiently, without increasing the number of 
false alarms too much 5. 

Number of classes 
• The advantage of 2-class trees is their simplicity, which 

in turn allows easier interpretability and provides more 
tractable attribute spaces. 

• The advantage of having larger number of classes is 
the possibility for more refined assessment (for example 
by using a larger number of stability classes defined 
within narrower ranges), and/or richer exploration of 
multifacet phenomena (for example, an operating state 
found to be otherwise unstable, could be more finely 
assessed by distinguishing cases where appropriate 
actions can bring it back to security, from cases where 
these actions have insufficient influence). 

• Once again, there is no universal optimal solution: 
various applications (or operation strategies) may call 
for different, complementary types of trees. 

Candidate attributes 
• Various types of candidate attributes may be thought 

of. In general, the more complex and sophisticated the 
candidate attributes, the less complex the resulting tree 
will be but also the less tractable the information it 
contains. (An extreme typical example would be to use 
in the DTTS method the critical clearing time itself 
as an attribute: this would provide a sole two-level 
2-class tree, consisting of the top node and its direct 
successors.) 

Stated otherwise, the choice of candidate attributes 
may depend on the type of needs one wants a tree to 
meet. For example, attributes appropriate to interpret 
or describe a problem may be different from those 
appropriate to yield straightforward control actions. 

• For a given list of candidate attributes, the selection 
of the test attributes relies on their 'scores', i.e. their 
ability to provide the purest possible successor nodes. 
Masking an attribute which has a large score, is often 
likely to uncover other good attributes which otherwise 
could never appear; the resulting tree could however 
be somewhat less efficient. This offers interesting 
tradeoffs for exploring various mechanisms of the 
physical phenomena, and various parameters of the 
system and their relationships. In short, it offers the 
possibility to build several trees, each relating to a 
particular aspect. 

• Another piece of information is provided by the 
information quantity of the test attributes of a tree. 
Considering combinations of attributes carrying a 

good deal of information may also yield interesting 
trees. 

Benefits of attribute space representation 
A variety of remarkable outcomes may be thought of. In 
the field of analysis, the attribute space provides the 
possibility of recovering part of the information lost in 
the tree, especially for those states which are directed to 
deadends: their location in the attribute space may 
furnish much clearer and more accurate information. It 
may even be possible to recover or uncover the CCT 
value of all cases treated by a tree; this information, 
initially contained in the learning set, is subsequently 
'degraded', since the tree merely assesses cases within a 
range of CCTs (e.g. 'stable' or 'unstable'). Using 
appropriate distances in the attribute space may again 
furnish CCTs. In the fields of sensitivity analysis and 
control, the information is even more necessary and 
valuable to system operators. A first exploration of some 
such potentials of the attribute space was reported in 
References 9, 10 and 17. Nevertheless, further investi- 
gations are needed to handle suitable multidimensional 
spaces. Moreover, appropriate ways of handling qualita- 
tive attributes in the distance formulation remain to be 
devised. For instance, to model the effect of topology, 
different distance parameter values could be used for each 
of the different topology classes identified by a tree. 
Admittedly, this may not be an easy task, but it is full 
of promise for interesting practical applications. 

Computing requirements 
The following tasks may be identified: 
• the off-line bulk of simulations needed to generate the 

data base of preclassified states; depending upon 
the type of security considered, it amounts to days of 
CPU time; for example, the generation of the 3000 
learning states for the French 61-machine system 
requires about 4 days CPU on a 28-MIPS SUN 
computer; 

• the off-line building of DTs; with the same as above 
data, the computing time required to build a tree on 
the basis of 2000 states and 57 attributes is about 5 min; 

• the on-line use of a DT is truly straightforward and 
requires quite reduced memory to store it; with the 
same as the data above, it requires about 0.1 ms. 

IV. Overview of the tree-wise security 
approach 

IV.1 Properties of the tree method 
IV.1.1 What category does it fall into? 
By its principle, the DT methodology belongs to the 
broad class of pattern recognition approaches ('learning 
from examples'). It proceeds, however, in a very parti- 
cular way, where the features selection and the states 
classification are obtained in one shot, yielding the DT: 
the features are the test attributes selected at the test 
nodes, and the classifier is the tree itself. 

By its formulation, the DT methodology belongs to 
artificial intelligence; together with information theory 
and statistical tests, they succeed in extracting infor- 
mation, then compressing and organizing it in a tree 
fashion. 

By its sources of information, the tree methodology 
falls into the general category of expert systems. These 



sources are: quantitative expertise resulting from the use 
of 'system theory' methods and related computer pro- 
grams on the one hand, and human expertise used to 
elaborate appropriate scenarios on the other. Their 
combination aims at providing a representative sample 
of preclassified instances necessary to the tree building. 
Also necessary to achieve this, is the selection of 
appropriate candidate attributes; operation and planning 
expertise is again very valuable. 

IV.1.2 Which kinds of structures does it provide? 
The methodology yields a dual structure: the tree itself 
and its attribute space. The tree provides a hierarchical 
account of the phenomena: the more relevant the features 
(attributes) to these phenomena, the closer, in general, 
they appear to the tree top. Stated otherwise, the closer 
to the tree top, the larger the amount of information to 
be processed. Such a hierarchical, complex construction 
is likely naturally to suit the description of complex 
phenomena and those involved in power system 
security are complex, indeed. It provides both a powerful 
conditional class probability model 12'16 which may be 
exploited in many different ways 34, and also a simple 
deterministic classifier, easier to appraise and to use 
efficiently by human operators. 

The attribute space is another way of describing the 
same phenomena; yet, it offers different types of possi- 
bilities, complementary to those of the trees. 

In the pattern recognition terminology, the tree and 
its attribute space are two different, complementary 
although equivalent, classifiers. This dual classification 
is able to broaden significantly the field of applications. 

IV. 1.3 What kind of security information is available? 
One could argue that the DT 'spoils' part of the learning 
information used to construct it. Thus, for example, in 
the case of transient stability, the tree allows one merely to 
classify a state within a range of CCT values, whereas 
each state in the learning set is known with its precise 
CCT value. However, this refined information may 
indeed be restored in the attribute space (within the 
accuracy limits of the constructed DT) as was shown in 
References 9 and 17, where distances to the stability 
boundaries in the attribute space were also defined. 

In addition to refined diagnostic, the above distances 
in the attribute space also provide means to sensitivity 
analysis and control, and this may be crucial in real-time 
operation. Now, in order to yield a 'tractable' attribute 
space, a DT should be built on the basis of 'simple 
enough' attributes. This leads to the following question. 

IV.1.4 What types of attributes? 
Various types of candidate attributes may be con- 
sidered. Recall that this yields a tradeoff between simple 
directly controllable and/or interpretable attributes and 
more complex ones, less practicable, yet capable of 
providing more efficient trees. This kind of flexibility may 
be properly exploited. We believe that different uses call 
for different choices of types of attributes, depending in 
particular on the strategies sought. The great flexibility 
of the overall methodology with respect to the diversity 
of practical constraints is a particularly interesting 
feature. 

IV.1.5 What is a "good'data base, Le. a "good'sample 
of learning states? 
Generating a representative sample of cases is a necessary 
condition to the success of the tree methodology, as of 
any pattern recognition approach. 

Yet, rules guaranteeing the appropriateness of a data 
base could not exist especially for such complex problems 
as those involved in power systems security. The 
following general guidelines may however be of help: 

• to the maximum extent possible cover all foreseen 
plausible situations; 

• however, avoid bias that would arise by considering 
too many odd situations; 

• use a large number of simulations or of real life 
instances to test trees built on an initial learning set; 
if necessary adjust and augment this latter; this greatly 
helps to gain ones own experience; 

• call upon the expertise of human operators. 

However, our experience shows that generating a 
'good' data base is not so difficult after all: thanks to its 
robustness, as is redefined below, the tree itself is able to 
detect anomalies and suggest how to correct them. A 
cut-and-try approach at the beginning of the investi- 
gations helps the designer get his own expertise quite 
soon. 

IV.1.6 When and how to refresh the data base? 
The answer to this question may greatly depend on the 
specifics of the particular security problem at hand, as 
well as on the operating/planning strategies of the 
considered power system utility. Since it would be 
difficult to provide a single definite answer, we will merely 
outline a plausible strategy for maintaining a set of 
decision trees up to date, when some major changes arise. 

A distinction should be made between changes influ- 
encing the stability classification of scenarios (e.g. control 
law changes, revision of security criteria . . .)  and changes 
leading to new system operating states, not taken into 
account when building the initial data base (e.g. addition 
of new lines, power plants ...). 

l~a the first situation, a simple adaptation would consist 
of reclassifying the operating states of the existing data 
base according to the new assumptions, and rebuilding 
the trees, at least those parts which turn out to be less 
reliable. 

In the second case, we first note that the existing trees 
may still be used for situations where the new equipment 
is not in operation. On the other hand, a new data base 
should be easily obtained from the original one, to cover 
the situations with the new equipment in operation, e.g. 
by updating the base case file and the parameters used 
for the probability distributions, and making a new 
random sampling and classification of the data base. A 
set of updated trees may be generated therefrom. In a 
second step, one might prefer to merge the original and 
new data bases in order to build compound trees covering 
both kinds of situations. Admittedly, the overall data base 
should be kept to a manageable size and the information 
be excluded as soon as it becomes obsolete. 

IV.2 Features of the devised trees 
These features result from the properties discussed so far. 
Below we gather the more essential of them and identify 
three main aspects: flexibility and effectiveness from the 



viewpoint of the user; robustness from the viewpoint of 
both designer and user of the trees. 

IV.2.1 Flexibility 
A good deal of the method's attractiveness lies in the 
fact that the required information, both qualitative and 
quantitative, may be acquired off-line and, hence, embed 
any kind of desired refinements. Moreover, unlike other 
domain applications, this information is obtained by 
means of 'system theory' methods and relating numerical 
programs; there is therefore no difficulty in getting as 
much information as desired, provided that off-line CPU 
time is available. 

Another salient feature is its great flexibility, with 
respect to number of classes, value of c~ fixing the degree 
of tree's development, size of learning sets, possibility of 
refreshing and/or augmenting it, types of proposed 
candidate attributes and related applications, possibility 
of using the sole trees, or their attribute space, or both. 
A corollary of this great flexibility is transparency and 
interpretability of the phenomena. 

In respect of practical applications, the tree method- 
ology is able to comply with all three typical domains 
in security studies, viz. planning, operation planning and 
real time operation, depending on the type of security 
assessment sought. Of them, the real time imposes 
particularly stringent requirements not yet satisfactorily 
met by existing methods, if at all. Admittedly, this 
application domain is particularly well suited to the tree 
method. 

IV.2.2 Effectiveness 
The effective use of DTs implies that they are able to 
provide accurate security assessment and limited com- 
puter requirements. Below we comment further on these 
two aspects, already discussed in section III.4. 

IV.2.3 Accuracy 
The trees portrayed in Figures 5 to 17 reflect quite well 
the global accuracy assessed in a very large number of 
trees built so far within the three security contexts. The 
fact that the accurcy, ranging from 92 to over 99% in 
the 2-class trees, deteriorates for trees with larger number 
of classes is more apparent than real as discussed 
previously. On the other hand, a closer examination of 
the misclassification errors detected in 2-class trees shows 
that they mainly occur at deadends. This is also 
corroborated by the observation that these errors are 
essentially confined around the stability boundary and 
are hardly misleading. 

Generally speaking, as compared with other pattern 
recognition methods, in particular to artificial neural 
networks (ANN), the decision tree approach produces 
at least as reliable classifiers 3L36. In the practical context 
of power system security, it presents moreover the 
following two very important advantages. 

• As opposed to ANNs, where the structure and 
complexity of the classifier must be chosen a priori, i.e. 
'by hand', the tree method determines the optimal 
structure and complexity for a given problem, during 
the tree building and on the objective basis of the 
learning set. It is thereby able to simplify the resulting 
structure to a very large extent (remember, in general 
less than 10% of the candidate attributes are actually 
selected), without overlooking significant effects. 

• On the other hand, the explicit and hierarchical tree 
structure, together with its simplicity, enable its use for 
the purpose of control applications, which require to 
invert the attribute vs. security relationship. This 
intrinsically combinatorial problem could admittedly 
be difficult to tackle with 'black box' classifiers such 
as the ANN or the nearest-neighbour rule, to mention 
only the most popular ones. Bearing in mind the 
practical analysis and control requirements of most 
power system security problems, the decision tree 
approach thus appears to be particularly well suited 
for this kind of application. 

More fundamentally, in the context of power system 
security problems, for a pattern recognition technique to 
be accepted it should be able to integrate smoothly in 
the existing operation planning environment, where the 
off-line security studies would actually be carried out. 
Thus, to be really effective, the method should produce 
its information in an interpretable fashion, in order 
to allow operation planning engineers to understand 
and validate it, and eventually reformulate it for its 
integration into the operation environment. From this 
point of view, the simplicity and interpretability of the 
decision trees make them particularly attractive to utility 
engineers. 

IV.2.4 Computing requirements 
Both memory and computing time requirements are 
extremely parsimonious. The storage of a large number 
of trees, their possible coordination, and their interaction 
with other functions of a complete software package 
would be quite straightforward, within a given security 
strategy. This leaves open possibilities of the design of 
such appropriate strategies. The off-line computing 
burden, i.e. essentially the time required to generate the 
data base - accounting for the fact that a large number 
of contingencies must in general be considered to obtain 
a sufficiently rich set of decision trees, for on-line analysis 
and control purposes is certainly in the scope of 
currently available computer technology. 

IV.2.5 Robustness 
With respect to the data base, the trees are very robust 
indeed; they consistently uncover and properly describe 
the problem at hand, provided that 'sufficiently large' 
learning sets are used. Experience with the DTTS method 
shows that a reasonably representative learning set for a 
power system of the French system's size contains about 
2000 to 3000 learning states. The trees are even able to 
detect anomalies in the data base, relating to the 
plausibility of either the scenarios used to generate the 
operating points or the contingencies. This is quite 
normal after all and follows the general pattern according 
to which anomalies in the behaviour of a physical system 
are often reflected in the method and its numerical 
treatment. 

With respect to the list of candidate attributes the trees 
are also quite robust, i.e. able to handle correctly a 
security problem, provided that this list is comprehensive 
enough. To avoid missing salient attributes, it is advisable 
to use large lists, at least at the first stage of the tree design. 

Finally, the trees are very robust too with respect to 
the choice of their optimal parameters. Figure 3 suggests 
that the range of q(e) parameter providing a good 
'simplicity vs. reliability' compromise is quite large, 
indeed. 



V. Conclusion 
The objective of this paper was to give a global view of 
the tree methodology, shaped to handle power system 
security issues, and to highlight its essential facets. 

Among the salient features are effectiveness and 
flexibility. Effectiveness is combining real-time possi- 
bilities, accuracy and interpretability of the results. 
Flexibility in respect of domain specifics, power system 
size and configurations, type of system parameters, 
modelling sophistication and 'system theory' methods, 
types of diagnostics provided and ways of their formu- 
lation, to mention only a few. Robustness is another 
important feature: the trees show to adjust quite nicely 
to learning data bases and further to suggest proper 
changes to fit better the problem at hand. This makes 
the representativeness of the data bases a much easier 
issue than one could anticipate. 

Overall, it was shown that the method is by now 
mature enough to handle analysis aspects of security. 
Further research work is now needed, not so much in 
purely theoretical aspects of the tree methodology per se, 
but rather in the application domains of power system 
security. Such prominent progress would concern the tree 
attribute space (representations, definitions of distances, 
etc.) and the design of appropriate strategies for their 
use. This latter aspect points out once again the necessity 
of collaboration between designers of the method and its 
users, i.e. engineers in charge of power system operation. 
This will contribute to furnish original practical tech- 
niques missing today. The achievements accomplished 
so far are only a small sample of the potentials of this 
attractive, full of promise approach. 

Vl. References 
1 Quinlan, J R 'Induction of decision trees', Machine Learning 

Vol 1 (1986) pp81-106 
2 Wehenkel,  L, Van Cutsem, Th and Ribbens-Pavella, M 

'Artificial intelligence applied to on-line transient stability 
assessment of electric power systems" Proc. 25th IEEE Conf 
Decision and Control, Athens, Greece (1986) pp649-650 

3 Wehenkel,  L, Van Cutsem, Th and Ribbens-Pavella, M 
"An artificial intelligence framework for on-line transient 
stability assessment of electric power systems" IEEE Trans. 
Power Systems Vol PWRS-4 (1989) pp789-800 

4 Wehenkeh L and Pavella, M 'Decision trees and transient 
stability of electric power systems' Automatica Vol 27 No 1 
(1991) pp115-134 

5 Wehenkel, L, Pavella, M, Euxibie, E and Heilbronn, B 
'Decision tree based transient stability method - A case study' 
(to be presented at IEEE Winter Power Meeting (1993)) 

6 Wehenkel, L, Van Cutsem, TH, Gi l l iard, M, Pavella, M, 
Heilbronn, B and Goubin, M 'Decision trees for preventive 
voltage stability assessment' Proc. Int. Workshop on Bulk 
Power System Voltage Phenomena - Voltage Stability and 
Security Deep Creek Lake, McHenry, Maryland (1991 ) pp 217- 
228 

7 Van Cutsem, Th, Wehenkel,  L, Pavella, M, Hei lbronn, B 
and Goubin, M 'Decision trees for detecting emergency 
voltage conditions' Proc. Int. Workshop on Bulk Power 
System Voltage Phenomena - Voltage Stability and Security 
Deep Creek Lake, McHenry, Maryland (1991) pp229-240 

8 Wehenkel, L "Etude de la Stabilit~ du Plan de Tension au 
Niveau d'une Region. Exploitation des Ensembles d'Appren- 
tissage Fournis par le LAIH de Valenciennes' Internal Report, 
University of Liege (in French) (1991) 

9 Wehenkeh L, Van Cutsem, Th and Ribbens-Pavella, M 
'Decision trees applied to on-line transient stability assessment 
of electric power systems" Procs. IEEE Int. Symp. on Circuits 
and Systems Vol 2 Helsinki, Finland (1 988) pp 1 887-1890 

10 Wehenkel, L 'Artificial intelligence methods for on-line tran- 
sient stability assessment of electric power systems" Proc. 

Symp. on Expert Systems Application to Power Systems 
Stockholm-Helsinki (1988) pp 5.1-5.8 

11 Morgan,  J N and Sonquist, J A 'Problems in the analysis of 
survey data, and a proposal' J. Amer. Statist. Assoc. No 58 
(1963) pp415-434 

12 Breiman, L, Friedman, J H, Olshen, R A and Stone, C J 
Classification and Regression Trees, California: Wadsworth 
International (1984) 

13 Kononenko, I, Bratko, I and Roskar, E "Experiments in 
Automatic Learning of Medical Diagnosis Rules', Technical 
Report, Jozef Stefan Institute, Ljubljana, Yugoslavia, 1984 

14 Quinlan, J R "Learning efficient classification procedures and 
their application to chess endgames', in Machine Learning: 
An Artificial Intelligence Approach, R S Michalski ,  J G 
Carbonell and T M Mitchel (Editors) Springer, Berlin 
(1984) pp 463-482 

15 Wehenkel,  L, Van Cutsem, Th and Ribbens-Pavella, M 
'Artificial intelligence applied to on-line transient stability 
assessment of electric power systems' Proc. lOth/FAC World 
Congress, Munich, F.R.G. (1987) pp 308-313 

16 Wehenkel,  L 'A probabilistic framework for the induction of 
decision trees' (Submitted for publication, 1991 ) 

17 Wehenkel,  L Une approche de I'intelligence artificielle 
appliqu~e ~ I'evaluation de la stabilit(~ transitoire des r~seaux 
electriques PhD Thesis (in French), University of Liege, 
Belgium (1990) 

18 Wehenkel, L, Van Cutsem, Th and Ribbens-Pavella, M 
'Inductive inference applied to on-line transient stability 
assessment of electric power systems' Automatica Vol 25 
(1989) pp 445-451 

19 Kv~lseth, T O 'Entropy and correlation: some comments' IEEE 
Trans. Syst. Man. Cybern. Vol SMC-17 (1987) pp 517-519 

20 Toussaint, G T 'Bibliography on estimation of misclassifi- 
cation' IEEE Trans. Inf. Theory Vol. IT-120 (1974) pp 472-479 

21 Zhou, X J and Dil lon, T S 'Multi-branching decision trees 
for induction', Proc. 11th Int. Conf. on Expert Systems and 
their Applications Vol 1 Avignon, France (1991 ) pp 191-203 

22 Liu, C C, Wang, Shing-Ming,  Wong, L, Marathe, H Y and 
Lauby, M G 'A self learning expert system for voltage control 
of power systems" Proc. 2nd Symp. on Expert Systems 
Application to Power Systems, Seattle, Wa (1989) pp 462-468 

23 Liu, C C and Wang, Sh ing-Ming "Development of expert 
systems and their learning capacility for power system appli- 
cations' Academic Press Series on Advances in Control and 
Dynamic Systems (1991 ) 

24 Mingers, J 'An empirical comparison of selection measures 
for decision-tree induction' Machine Learning Vol 3 (1989) 
pp 319-342 

25 Mingers, J 'An empirical comparison of pruning methods for 
decision tree induction' Machine Learning Vol 4 (1989) 
pp 227 243 

26 Wehenkel, L 'An information quality based decision tree 
pruning method" Proc. of the 1992 IPMU Congress on 
Information Processing and Management of Uncertainty in 
Knowledge Based Systems Palma de Mallorca, Spain (July 
6 10 1992) 

27 Bergen, A R Power System Analysis Prentice Hall (1986) 
28 Ribbens-Pavella, M and Evans, F J 'Direct methods for 

studying dynamics of large scale electric power systems - A 
survey Automatica Vol 21 No 1 (1985) pp l -21 

29 Van Cutsem, T 'A method to compute reactive power margins 
with respect to voltage collapse' IEEE Trans. on Power Syst. 
Vol 6 No 2 (1991) pp145-156 

30 Lema~tre, C, Paul, J-P, Tesseron, J -M,  Harmand, Y and 
Zhao, Y S "An indicator of the risk of voltage profile instability 
for real-time control applications' IEEE Trans. on Power Syst. 
Vol 5 No 1 (1990) pp154-161 

31 IEEE System Dynamic Performance Subcommittee, 'Voltage 
stability of power systems: concepts, analytical tools, and 
industry experience' Report 90THO358-2-PWR (1990) 

32 Goubin, M 'Cadre d'une 6tude pour 6valuer la possibilit~ 
d'utiliser des arbres de d6cisions pour la d~tection des ~tats 
critiques en tension dans une r~gion' Internal document EDF, 
HR-46/833 (1989) 

33 Zhao, Y S "Conception d'un Systeme Expert Destin~ a la 
Caract~risation des Etats en Tension des R~seaux Electriques" 
Final report of contract EDF/LAI H No. R46L08/1 E71 84, (1990) 

34 Pearl, J Probabilistic Reasoning in Intelligent Systems - 
Networks of Plausible Inference Morgan- Kaufman, Ca (1 988) 

35 Weiss, S M and Kapouleas, I 'An empirical comparison of 
pattern recognition, neural nets, and machine learning classi- 



fication methods', Proc. of 11th Int. Joint Conf. on Artificial 
Intelligence, Detroit, MI (1989) pp781-787 

36 Atlas, L, Cole, R C, Muthusamy, Y, Lippman, A, Connor, 
J, Park, D, EI-Sharkawi, M and Marks II, R J, 'A 
performance comparison of trained multilayer perceptrons and 
trained classification trees' Proc. of lEEEVol 78 No 10 (1990) 
pp 1614-1619 

37 Zhou, X J and Dil lon, T S 'A statistical-heuristic feature 
selection criterion for decision tree induction' IEEE Trans. 
Pattern Analysis and Machine Intelligence Vol PAMI-13 
(1991) pp 834-841 

38 Zhou, X J and Dil lon, T S 'Learning multi-branching 
decision trees in noisy domains', Proc. TC-7 IFIP Int. 
Conf. Communications, Automation and Information Systems 
Rome, Italy (1990) pp205-212 

39 Goodman, L A and Kruskal, W H 'Measures of association 
for cross-classifications', J. Amer. Star. Assoc. Vol 49 (1 954) 
pp 732-764 

40 Darbczy, Z 'Generalized information functions', Information 
and ControlVol 16 (1970) pp36 51 

41 Devijver, P A 'Entropie quadratique et reconnaissance de 
formes" NATO AS/ Series, Computer Oriented Learning 
Processes, J C Simon (Editor) Nordhoff, Leyden (1976) 
pp 257-278 

Appendix-  Useful expressions 
Note." A sample of useful expressions are collected below. 
Although, for the sake of simplicity, they are given in the 
context of two-class classifications and binary trees, they 
are easily generalized to an arbitrary number of classes 
and test node successors. Their mathematical derivation 
may be found in one of the References 4, 16, 17. 

A.1 Gain of information 
Consider a tree node and let S be the subset of learning 
states at it. Moreover denote by p(+/S) (resp. p(-/S)) 
the probability of a state of S to belong to the class + 
(resp. - ).~ 

According to the information theory, the information 
gain (or entropy decrease) in S provided by the test T 
expressed by equation (6) may be quantified by 

l~(S) ~ Hc(S) - HC/T(S) (A. 1 ) 

Indeed, in equation (A. l), Hc(S ) is the prior classification 
entropy of S, measuring the impurity of S; HC/T(S ) is the 
mean posterior classification entropy of S given the 
outcome of T, measuring the residual impurity should 
S be split into Sws and SNo. 

Hc(S ) is expressed by 

Hc(S) & - [p( + iS) log2 p( + iS) + p( - iS)log2 p ( -  /S)] 

(A.2) 

Simi la r ly ,  HC/T(S  ) is expressed by 

HC/T(S) ~= p(Sws/S)Hc(SvEs) + P(SNo/S)Hc(SNo) (A.3) 

Hc(S ) ranges in between 0 and 1 : Hc(S ) = 0 corresponds 
to a perfectly pure subset (since then p ( + / f ) =  l or 0 
and correspondingly p ( - f ) = 0  or 1), while Hc(S)= 1 
corresponds to a perfectly impure subset (since then 
p ( + / S ) = p ( - / S ) =  1/2). 

Similarly, the information gain provided by the entire 
D T readily derives from (A.1) (replace sample S by LS 
and test T by DT): 

I~r(LS) = Hc(LS) - HCmT(LS) (A.4) 

Another way of quantifying the ability of test T to 
produce purified successors is the normalized information 

gain or 'score' proposed in Reference 3 

G~(S) ~= 2It(S) (A.5) 
Hc(S) + HT(S) 

where HT(S) measures the uncertainty of the outcome of 
T i n S  

H T(S) & - [p(SvEs/S) log2 p(SvEs/S) 
+ p(SNo/S)log2 p(SNo/S)] (A.6) 

Expression (A.5) is more efficient than (A.1) thanks to 
its normalized properties; in particular, it is dimension- 
less and varies in between 0 (no gain of information is 
provided by the test T) and 1 (the test provides the 
maximum of information and yields perfectly pure 
subsets SvEs and SNO). (At the same time, I~(S) ranges 
from 0 to Hc(S) respectively.) 

Note: In the context of variable branching factors, 
another important advantage of the normalized measure 
is that its sample estimate is relatively unbiased 19, and 
thus allows one to compare in a fair fashion tests with 
variable numbers of outcomes. This is in strong contrast 
with the behaviour of the unnormalized information (A. 1 ) 
used by ID3, whose positive bias, proportional to the 
number of successors, favours many-valued splits and 
often leads to more complex and less reliable trees 1.a, 17. 

In References 37 and 38 a similar argument is used 
to derive the so-called symmetrical z measure from 
Goodman-Kruskal 's  asymmetrical z 39. The resulting 
measure is actually very similar to our normalized 
correlation measure: instead of the logarithmic entropy 
( H = - ~ i p i l o g p i )  used in (A.5) it uses the so- 
called 'Gini' diversity index 12 or quadratic entropy 
( H2 = -- ~'~i P i ( P i -  1 ))40,41. 
Indeed, replacing H c in (A.2) by 

H2(S) ~- - [p(+/S)(p( + i S ) -  l) + p ( - / S ) ( p ( - / S ) -  1)] 

H T in (A.6) 

H2(S) ~= - [p(SvEs/S)(p(SvEs/S ) - 1 ) 

+ P(SNo/S)(p(SNo/S) - 1 )] 

Hc/T in (A.3) by 

H~/AS) ~= p(SvEs/S)H~(SvEs) + pISNo/S)H~IS~o) 
Ic r in (A.1) by 

1U IS) ~- H~IS)- H~/rIS) 
and defining by 

H~/c(S ) ~ p(S+/S)H~(S+ ) + p(S_/S)H~(S_ ) 

and by 

i2c(s) ~- H2r(S)_ H2/c(S) 

the analogue of formula (A.5) yields the symmetrical 
measure 

IZT(s) + I2C(s) 
(S) ~- 

HI(S) + H~(S) 

A.2 Information quantity 
The information quantity provided by a test attribute at 
a tree test node derives from (A.1) and equals 

T T I e = N,o~e * Ic (S) (A. 7) 



where Nnode denotes the number of learning states 
contained in S. Thanks to the additivity property of the 
above information quantity, the overall information 
quantity provided by a test attribute selected at different 
test nodes (with different threshold values) amounts to 
the sum of partial information quantities provided by 
this attribute at the different test nodes. Similarly, the 
overall information quantity provided by a tree amounts 
to the sum of the information quantities provided at all its 
test nodes. 

A . 3  "Quality" measure o f  a tree 

Reference 16 proposes to quantify the quality of a tree 
by means of the quality measure 

Q(DT ; LS) ~ N , IgT(LS) -  q .  C(DT) (A.8) 

where 

• I~r(LS) is the information gain in LS  provided by DT 
expressed by (A.4) 

• N* I~r(LS) is the total information provided by the tree 
on the learning states classification 

• C(DT) is its complexity: C(DT)= number of terminal 
nodes - 1 y 

• q is an appropriate weighting factor (generally in the 
range of [0. . .  20]). 

Section II.7 has pointed out interesting practical 
properties of the above measure, Below we mention some 
others, more theoretically oriented. 

A . 4  Usefulness and uses 

Let us specify the context within which the above various 
measures show to be particularly convenient. 
(1) The information quantity expressed by (A.7) allows 
one to quantify and compare the overall purification 
ability of the various test attributes at the various tree 
test nodes. (Also, remember that the overall information 
quantity of a given test attribute selected at more than 
one test node equals the sum of its partial information 
quantities.) 

On the other hand, the overall information quantity 
provided by a tree (totalling the partial ones provided 
by all the tree test nodes), as compared with that 
potentially contained in the learning set, allows one to 
assess conveniently the classification purity provided by 
this tree. 

(2) The normalized information gain or score (see 
equation (A.5)) allows one to compare objectively the 
ability of the various candidate attributes to produce 
purified successors at a given test node of the growing 
tree, and hence to select the one furnishing the local 
optimum test. 

(3) The quality measure Q expressed by (A.8) is 
particularly useful to identify objectively the range of 
'optimal tradeoff' between information quantity pro- 
vided by a tree and its complexity. Together with the 
corresponding test set error estimates, they allow one to 
fix an 'optimum' tree, for example during the backward 
pruning procedure described in section II.8. 

Interpretation. The above measure may be interpreted as 
the difference of the information quantity (number of 
bits) required to represent the classification of the LS  
explicitly, without any knowledge on the attribute-class 
relationship, and the number of bits required to represent 
the same information by using the DT (i.e. the sum of 
representation length of the tree itself, and of the residual 
classification information of the LS  not provided by the 
tree). Thus, the higher the tree quality, the higher the 
amount of 'information compression' that is achieved. 

Justification. From a theoretical point of view, the 
measure may be derived from Bayesian decision theory 16. 
One may show that maximizing the quality is equivalent 
to maximizing the a posteriori probability of a tree, given 
the LS, and assuming a prior probability of the tree 
decreasing exponentially with its complexity. Under this 
assumption, the weighting factor q would be inversely 
proportional to the prior complexity expectation. 

It is interesting to note that q is related to ~ used in 
the xZ-based stop splitting criterion of section II.4 by 
Reference 16 

q(ct) = - -  (A.9) 
21n2 

Note also that an expression similar to (A.8) may be 
used to assess the quality of part of a tree. In particular, 
the quality increment due to a node's development into 
the two successors provided by the test T takes on the 
form 

AQ(T;S) = N,ode * IT(S) -- q (A. 10) 
o;,~¢, tha, ~',nrra.onnrtAina ,',nmnlt=,,rlt'¢l in~rP~¢~ ~Oll~i~ l 

Notes 
a To fix ideas, in the context of transient stability the learning 

states are operating states; their classification is considered with 
respect to a preassigned contingency, as for example a three- 
phase short circuit; a handy means to classify a state with respect 
to this contingency is by assessing whether its corresponding 
critical clearing time lies above or below a threshold value, 
suggested by the current practice. 

b In our transient stability example, a state is an operating state 
of the system in its normal, precontingency configuration; its 
attributes are parameters of this state, presumed to drive transient 
stability phenomena, as for example, voltage magnitudes, 
active-reactive powers, etc. These "attributes" are proposed by the 
tree designer and automatically treated during the tree building. 
Later on, we wil l refer to these as the "candidate attributes'. 

c In our transient stability example, these could be the stable and 
unstable classes. 

d For example, in Figure 1 attribute 'PG112" and its threshold value 
1240MW are found to be optimal at the top-node. The test 
PG112< 1240 MW? contributes to increase the classification 
purity: the top node is composed of 41% stable and 59% unstable 
learning cases; its splitting according to the selected test yields 
83% stable and 17% unstable learning states at its LH successor 
and 100% unstable learning states at its RH successor. 

e In the example of Figure 1 the LH terminal node is a (stable) 
deadend (91% of the cases are stable), the remaining two 
terminal nodes are unstable leaves. 

f Apparent as opposed to real increase in accuracy, refers to that 
measured in the LS as opposed to that measured in the TS, i.e. 
for states not used during the tree building. 

g With one degree of freedom in the particular case considered here 
of a 2-class classification and dichotomic DTs. More generally, 
the number of degrees of freedom equals (n c -  1 ) (n t -  1 ), where 
n c is the number of classes and n, the number of possible issues of 
the test (6) ~9. 

h In the sequel the terms "test set error rate', "misclassif ication rate', 
or 'error probabi l i ty '  are used interchangeably. 

i These two terms wil l be used interchangeably. 
j Intuitively, complexity of a tree refers to the number of its nodes. 

In the context of the formulation used in this paper, it is more 
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k /c DT, the information provided by the DT, is upper-bounded by 
the prior entropy of the learning set, which is independent of N 
(see equation (A.4) in the Appendix); C(DT) represents the tree 
complexity and q an appropriate weighting factor (Appendix). 

i Inequality (8) derives directly from equation (A.10). 
m According to the definition of the complexity, C(DT)=IO 

corresponds to a total node number of 21, since, by construction, 
the total number of nodes of a binary tree equals twice the number 
of terminal nodes minus one, i.e. twice its complexity plus one. 

n Hence, the dimension of the attribute space equals the number 
of test attributes. 

o In addition to the normal (presumably secure) situations 
gathered from past records of the system real life, a sufficient 
number of hypothetical weakened situations should be con- 
sidered, in order to provide a data base representative of both 
secure and insecure situations. 
For example, in transient stability studies, one may use time- 
domain methods, integrating numerically the non-linear differ- 
ential equations of motion to assess the system dynamics, or 
direct, Lyapunov-type methods. In the sequel, we will conven- 
tionally refer to them as 'system theory' methods, as opposed to 
heuristic ones, keeping in mind that generally these methods 
require bulky numerical computations incompatible with real 
time constraints, at least for real life power systems. 

q Figure 4 readily illustrates how sensitivity can be assessed and 
control actions can be suggested using the attribute space. For 
example, operating state 0S1 is obviously more stable than 0S2; 

P 

to reinforce stability of this latter, one should descrease the power 
level at generator 112. 

r The description of the base case as well as the preselected 
probability laws used to generate the overall data base are 
available upon request. For more details the reader is kindly 
requested to refer to Reference 5. 

s More generally, t threshold values determine t + l  stability 
classes. 

t Th is-  more apparent than real decrease is discussed in section 
111.4. 

u Total reactive power flow through the 400/225 kV transformer 
at a given substation. 

v Total combined reactive power reserve of the power plants of 
Britanny. 

w Pragmatic quality, as opposed to the theoretic quality of equation 
(A.8), takes into account the fact that in power system practice 
overly optimistic errors are more dangerous than overly pessi- 
mistic ones; it accounts also for the "gravity" of the errors, e.g. 
in terms of the difference of the CCT of the misclassified states, 
with respect to the threshold value used to define the classes. 

x Note that these are apparent probabilities, in that they are 
assessed on the basis of the sample of learning subsets, as 
opposed to real probabilities on all the possible states which 
however are generally unknown. 

y Intuitively, the complexity of a tree generally refers to the number 
of its nodes. In the context of expression (A.8), it takes on the 
above more specific definition. 


