

Assessing the effects of compositional heterogeneity on phylogenomic analyses

Denis Baurain^{1,2,3}, Robert G. Beiko², and Mark A. Ragan²

¹ Université de Liège / FNRS, Belgium
 ² University of Queensland / ARC Centre in Bioinformatics, Australia
 ³ Université de Montréal

November 4th, 2005

Beiko et al. (2005) PNAS 102:14332-14337

LGT or methodological issues?

- tests for systematic biases
 - clustering strategy (e.g. cluster size)
 - alignment quality (e.g. sequence length variation)
 - phylogenetic inference (e.g. alignment size)
- conflicting signals in the data

« Any signal having experienced convergence in nonsister lineages will affect recovery of the historical signal. »

998

concord

Phylogenetic assumptions

- sites evolve independently and identically using a Markov process given by *R* (e.g. GTR model)
- for practical reasons, we assume that the sites have evolved under reversible, homogeneous and stationary conditions
- note new models allow to safely violate some of these assumptions

$$R_{k} = \begin{bmatrix} -\sum_{j \neq A} \pi_{j} \alpha_{Aj} & \pi_{C} \alpha_{AC} & \pi_{G} \alpha_{AG} & \pi_{T} \alpha_{AT} \\ \pi_{A} \alpha_{AC} & -\sum_{j \neq C} \pi_{j} \alpha_{Cj} & \pi_{G} \alpha_{CG} & \pi_{T} \alpha_{CT} \\ \pi_{A} \alpha_{AG} & \pi_{C} \alpha_{CG} & -\sum_{j \neq G} \pi_{j} \alpha_{Gj} & \pi_{T} \alpha_{GT} \\ \pi_{A} \alpha_{AT} & \pi_{C} \alpha_{CT} & \pi_{G} \alpha_{GT} & -\sum_{j \neq T} \pi_{j} \alpha_{Tj} \end{bmatrix}$$

 $\pi_A, ..., \pi_T$ – nucleotide frequencies α_{kii} – conditional rates of change

 $\alpha_{kij} = \alpha_{kji}$ – reversibility $R_1 = R_2 = ... = R_6 = R_7$ – homogeneity $\pi_{kj} = f_{0j}$ – stationarity

adapted from Lars S. Jermiin, University of Sydney; Lio and Goldman (1998) Genome Res 8:1233-1244

Statistical tests for stationarity

- \mathbf{S}_1 ATGGTACAATGCGGCATGTACTCGCGATATCGACGATACG
- \mathbf{S}_2 ATCGAACGATGTGGCGTACACTCACGTTACCGACACGACG
- matched-pair tests of homogeneity
 - Bowker's (1948) test for symmetry

$$\chi^2_{bowker} = \sum_{i < j} rac{(x_{ij} - x_{ji})^2}{x_{ij} + x_{ji}}$$

	А	С	G	Т	Σ
А	7	0	3	1	11
С	1	8	1	2	12
G	2	0	7	1	10
Т	1	1	0	5	7
Σ	11	9	11	9	40

two-way contingency table

Stuart's (1955) test for marginal homogeneity

$$\chi^2_{stuart} = d'S^{-1}d \quad with \; d = x_{i\cdot} - x_{\cdot i} \ and \; s_{ii} = x_{i\cdot} + x_{\cdot i} - 2x_{ii}, s_{ij} = -(x_{ij} + x_{ji}), i
eq j$$

- 'traditional' homogeneity tests
 - compositional χ²

$$\chi^2_{compos.} = \sum_{i=1}^K rac{(x_{i\cdot}-e_i)^2}{e_i} \qquad with \; e_i = rac{x_{i\cdot}+x_{\cdot i}}{2}$$

Tavaré (1986) Lect Math Life Sci 17:57-86; Jermiin et al. (2004) Syst Biol 53:638-643

Correlations among all three tests

Ranking of the worst players

rank	fail. (#)	pairs (#)	fail. (%)	organism a	organism b
1	317	1274	24.88	Synechococcus WH8102	Prochlorococcus MED4
2	269	1245	21.61	Prochlorococcus MIT9313	Prochlorococcus MED4
3	204	835	24.43	Thermosynechococcus BP-1	Prochlorococcus MED4
4	203	749	27.10	Gloeobacter violaceus	Prochlorococcus MED4
5	168	868	19.35	Synechocystis PCC6803	Prochlorococcus MED4
6	160	390	41.03	Wigglesworthia brevipalpis	Pseudomonas PA01
12	152	1301	11.68	Synechococcus WH8102	Prochlorococcus SS120
29	131	774	16.93	Gloeobacter violaceus	Prochlorococcus SS120

[Bowker's χ^2 , AA, n = 2815041, 10296 organism pairs]

Who are the picocyanobacteria?

- both *Prochlorococcus* and *Synechococcus* are part of the picophytoplankton (tiny organisms: cell Ø < 1 μm)
 - they account for 1/3 of Earth's primary biomass production
 - all known members of this group are 96% similar at the rRNA level (but have quite different gene contents)
 - Synechococcus found 25 ya / Prochlorococcus found 15 ya

we had 4 genomes in our 144-species dataset

Bryant (2003) PNAS 100:9647-9649; Hess (2004) Curr Opin Biotech 15:191-198

Is Prochlorococcus monophyletic?

7 rooted trees...

alignments of [size \geq 6] for which the monophyly of the four picocyanobacteria is highly supported (n = 819) only fully resolved topologies are considered (n = 310)

blue stars (*) denote *really* discordant topologies

7

Prochlorococcus MIT9313

Synechococcus WH8102

Prochlorococcus SS120

. fold to 2 unrooted topologies

same dataset + all alignments of $[4 \le size \le 5]$ that include the four picocyanobacteria (n = 304) all topologies are considered (n = 1123)

having binned all alignments leading to one given topology, we look for features of the compositional signal (compositional bias) that would be characteristic of that topology

Signals that work together

$$\chi^2_{bowker} = \sum_{i < j} rac{(x_{ij} - x_{ji})^2}{x_{ij} + x_{ji}}$$

only bins of [size \geq 6] are considered bars denote standard error

topologies are sorted on y values

GC bias at the protein level?

adapted from Foster et al. (1997) J Mol Evol 44:282-288

GC bias at the protein level? (2)

The case for a closer look

compositional χ^2 broken down by amino acid

(pairwise genome comparisons based on a supermatrix approach)

59.4% GC

50.7% GC

36.4% GC

30.8% GC

'supergene' made of 1,485 genes found in at least two (out of four) organisms (469,682 positions; 15% missing)

Conclusions

- the compositional heterogeneity definitely has an impact on phylogenomic analyses
 - here, the compositional signal likely exaggerates the historical signal (i.e. non-monophyly of *Prochlorococcus*)
 - in other circumstances, it could be the opposite
- while the compositional heterogeneity is obvious at both the DNA and protein levels, the propagation of the GC bias is not limited to FYMINK / GARP codons
- in their 'holy war' against systematic biases, phylogenomic analyses would certainly benefit from newer evolutionary models that can deal with the violation of the stationarity assumption
 - e.g. Galtier and Gouy (1998) Mol Biol Evol **15**:871-879

Acknowledgments

- data, help and advice
 - Robert Charlebois (NeuroGadgets Inc.)
 - Nick Hamilton (UQ)
 - Tim Harlow (UQ / ACB)
 - Lars S. Jermiin (USyd)
- funding
 - FNRS / ULg (Belgium)
 - ACB (Australia)

FNRS Fonds National de la Recherche Scientifique

Australian Research Council Centre in Bioinformatics