STABILITY OF PERTURBED DELAY DIFFERENTIAL EQUATIONS
AND STABILIZATION OF NONLINEAR CASCADE SYSTEMS
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Abstract. In this paper the effect of bounded input perturbation on the stability of nonlinear
globally asymptotically stable delay differential equations is analyzed. We investigate under which
conditions global stability is preserved and if not, whether semi-global stabilization is possible by
controlling the size or shape of the perturbation. This results in a general framework, in which the
stabilization of partial linear cascade systems using partial state feedback can be treated systemat-
ically.
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1. Introduction. The stability analysis of the series (cascade) interconnection of
two stable nonlinear systems described by ordinary differential equations is a classical
subject in system theory [13, 14, 17].
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Contrary to the linear case, the zero input global asymptotic stability of each
subsystem does not imply the zero input global asymptotic stability of the inter-
connection. The output of the first subsystem acts as a transient input disturbance
which can be sufficient to destabilize the second subsystem. In the ODE case, such
destabilizing mechanisms are well understood, since the seminal work by Sussmann
and Kokotovic [15]. They can be subtle but are almost invariably associated to a finite
escape time in the second subsystem (Some states blow up to infinity in a finite time).
The present paper explores similar instability mechanisms generated by the series in-
terconnection of nonlinear DDEs. In particular we consider the situation where the
destabilizing effect of the interconnection is delayed and examine the difference with
the ODE situation.

Instrumental to the stability analysis of cascades, we first study the effect of
external (affine) perturbations w on the stability of nonlinear time delay systems

(1.1) 2= f(z,2(t— 7))+ ¥(z,2(t — 7))w, z€R", weR,

where we assume that the equilibrum z = 0 of 2 = f(z,2(t — 7)) is globally asymp-
totically stable. We consider perturbations w = n(t) which belong to both L; and
L., and investigate the region in the space of initial conditions which give rise to
bounded solutions under various assumptions on the system and the perturbation.
These results are strenghthened to asymptotic stability results when the perturbation
is generated by a globally asymptotically stable ODE.

We consider both global and semi-global results. In the ODE-case, an obstruc-
tion to global stability is formed by the fact that arbitrarily small input perturbations
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can cause the state to escape to infinity in a finite time, for instance when the inter-
connection term ¥(z) is nonlinear in z. This is studied extensively in the literature
in the context of stability of cascades, see e.g. [15] [13] and the references therein.
Even though delayed perturbations do not cause a finite escape time we explain a
similar mechanism giving rise to unbounded solutions, caused by nonlinear delayed
interconnection terms.

In situations where unbounded solutions are inevitable for large initial conditions,
we investigate under which conditions trajectories can be bounded semi-globally in
the space of initial conditions, in case the perturbation is parametrized, i.e. n = 7(t, a).
Hereby we let the parameter a control the L; or L., norm of the perturbation. We
also consider the effect of concentrating the perturbation in an arbitrarily small time-
interval. The study of controlled perturbations is motivated by the situation where
the perturbation is the output of a controlled system, see Figure 1.1.

u NL ’controlled perturbation” | NL
stable stable
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Fic. 1.1. Partial state feedback as a way of controlling the input perturbation to the second
subsystem

In the second part of the paper, we assume that the perturbation to (1.1) is
generated by a controlled linear system and study the stabilization of the cascade,

z= f(Z,Z(t— T)) + \IJ(Z,Z(t - T))y
(1.2) £ = A¢ + Bu
y = C¢, EER, u,yeR

with the pair (A4, B) controllable, using a feedback law of the form
(1.3) u=F¢.

In the ODE-case this stabilization problem has been extensively studied in the liter-
ature, for instance in [16][1][15][8]. Because the output of the linear subsystem, which
acts as a destabilizing disturbance to the nonlinear subsystem, can cause trajectories
to escape to infinity in a finite time, one typically tries to drive the ’perturbation’ y
quickly to zero. However, a high-gain control, placing all observable eigenvalues far
into the left half plane, will not necessarily result in large stability regions, because
of the fast peaking phenomenon [15] [13]. Peaking is a structural property of the ¢-
subsystem whereby achieving faster convergence implies larger overshoots which can
in turn destabilize the cascade. Semi-global stability results are obtained when impos-
ing structural assumptions on the £-subsystem (a nonpeaking system) or by imposing
conditions on the z-subsystem and the interconnection term ¥: for instance in [13,
Theorem 4.41] one requires a nonpeaking linear susbhsysem and the conditions of [15,
Theorem 9,1] are a trade-off between peaking and growth.

The structure of the paper is as follows. After some preliminaries (Section 2),
we study the effect of bounded input perturbations in Sections 3 and 4 and use the
obtained results to study the stabilization of partial linear cascades with partial state
feedback in Section 5.



2. Preliminaries. The state of the delay equation (1.1) at time ¢ can be de-
scribed as a vector z(t) € R™ or as a function segment z; defined by

z(0) =z(t+86), 8 €[-T, 0]

Therefore delay equations form a special class of functional differential equations
3]151[6)

We assume that the right-hand side of (1.1) is continuous in all of its arguments
and Lipschitz in z and z(¢t — 7). Then a solution is uniquely defined by specifying
as initial condition a function segment zo whereby zo € C([—7, 0], R"), the Banach
space of continuous bounded functions mapping the delay-interval [—7, 0] into R™
and equipped with the supremum-norm ||.||s.

Sufficient conditions for stability of a functional differential equation are provided
by the theory of Lyapunov functionals [3] [6], a generalization of the classical Lyapunov
theory for ODEs. For functional differential equations of the form

(2.1) 2= F(z),

according to [3, Definition V.5.3], a mapping V' : C — R is called a Lyapunov func-
tional on a set G if V' is continuous on G and V' < 0 on G. Here V is the upper-right-
hand derivative of V along the solutions of (2.1), i.e.

V(z) = limsup 3 [Vzn) = V().
h—0+

The following theorem, taken from [3, Corollary V.3.1], provides sufficient conditions
for stability:

THEOREM 2.1. Suppose z = 0 is a solution of (2.1) and V : C — R is continuous
with V(0) = 0. When there exist nonnegative functions a(r) and b(r) with a(r) > 0
as T >0 and a(r) - oo as r — oo such that,

a([lz(O) <V(z), V() < =b(llz(D)]])-

Then the zero solution is stable and every solution is bounded. If in addition, b(r)
18 positive definite, then every solution approaches zero as t — oo. Instead of
working with functionals, it is also possible to use classical Lyapunov functions when
relaxing the condition V < 0. This approach, leading to the so-called Razumikhin-
type theorems [6], is not considered in this paper.

In most of the theorems of the paper, the condition of global asymptotic stability
for the unperturbed system (equation (1.1) with = 0) is not sufficient. When the
dimension of the system is higher than one, we sometimes need precise information
about the interaction of different components of the state z(¢). This information
is captured in the Lyapunov functional, associated with the unperturbed system.
Therefore, when necessary, we will restrict ourself to a specific class of functionals,
satisfying the following assumption:

ASSUMPTION 2.2. The unperturbed system z = f(z,z(t—7)) is delay-independent
globally asymptotically stable (i.e. GAS for all values of the delay) with a Lyapunov-
functional of the form

(2.2) Vi) = k(z) + /t =00



whereby k(z) > 0, I(z) > 0, k(z) radially unbounded and such that the conditions
of theorem 2.1 (with b(r) positive definite) are satisfied. This particular choice
is motivated by the fact that such functionals are used for a class of linear time-
delay systems [3][6]. Furthermore choosing a delay-independent stable unperturbed
system also allows us to investigate whether the results obtained in the presence of
perturbations are still global in the delay. Note that in the ODE-case (2.2) reduces to
V = k(z) and hardly forms any restriction because under mild conditions its existence
is guaranteed by converse theorems.

The perturbation n(t) € L, ([0, oo)) when 3M such that ||n||, = [ [~ |n(s)|pds]1l’ =
M < o0, (t) € Lo when [[n]|sc = supy>q [n(t)] < oo.

We assume 7 in (1.1) to be continuous and to belong to both L; and L,,. When
the perturbation is generated by an autonomous ODE, ¢ = a(§), n = b(&) with a and
b continuous and locally Lipschitz, with 5(0) = 0, which is globally asymptotically
and locally exponentially stable (GAS and LES), these assumptions are satisfied.

In the paper we show that when the unperturbed system is delay-independent
stable and the initial conditions bounded (i.e. ||z0]|]s < R < 00), arbitrarily small per-
turbations may cause unbounded trajectories provided the delay is large enough, hence
arbitrarily small perturbations may destroy the delay-independent stability property.
For such cases it is instructive to investigate whether semi-global stabilization in the
delay is possible: with a parametrized perturbation n(t,a), we say that the traject-
ories of (1.1) can be bounded semi-globally in z and semi-globally in the delay if for
each compact region @ C R”, and V7 € RY, there exists a positive number @ such
that all initial conditions zy € C([—7, 0], R™), with z(¢) € 2, 6 € [-7, 0], V7 < 7,
give rise to bounded trajectories when a > a.

A C° function v : R — R belongs to class , if it is strictly increasing and
~v(0) = 0. The symbol ||.|| is used for the Euclidean norm in R™ and by ||z, y| we

1
mean (||z[|* + [|y[|?) *.

3. The mechanism of destabilizing perturbations. In contrast to linear
systems, small perturbations (in the L; or Ly, sense) are sufficient to destabilize non-
linear differential equations. In the ODE-case, the nonlinear mechanism for instability
is well known: small perturbations suffice to make solutions escape to infinity in a
finite time, for instance when the interconnection term W is nonlinear in z. This is
illustrated with the following example:

—z+ z2n
—an,

z

(3.1) ;

which can be solved analytically for z to give

et et

3.2 zZ(t) = = .
( ) ( ) 1 fot e_sn(S)ds Z(lo) _ T](O) f[)t e—(1+a)sd5

If 2(0)n(0) > 1 + a, z escapes to infinity in a finite time ¢, which is given by

_ 1 z(0)n(0)
(3.3) te_1+a1g<2(0)n( )—(1+a)>'

This last expression shows that the escape time becomes smaller as the initial condi-
tions are chosen larger, and, as a consequence, however fast 7(t) would be driven to
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zero in the first equation of (3.1), z(0) could always be chosen large enough for the
solution to escape to infinity in finite time.

In the simple example (3.1), the perturbation is the output of a stable linear
system. Its initial condition n(0) dictates the L.-norm of the perturbation, while
the parameter a controls its Li-norm. Making these norms arbitrarily small does not
result in global stability. This is due to the nonlinear growth of the interconnection
term.

One may wonder whether the instability mechanism encountered in the ODE
situation (3.1) will persist in the DDE situation

o (1=t

In contrast to (3.1), system (3.4) exhibits no finite escape time. This can be proven by
application of the method of steps, i.e. from the boundedness of z(6), 8 € [(k—1)T, k7],
we conclude boundedness in [k7,(k 4+ 1)7] of 2(f) and thus of z(f). Nevertheless
the exponentially decaying input 5 still causes unbounded solutions in (3.4): this
particular system is easily seen to have an exponential solution z.(t) = ZZB? e2aTeat,
The instability mechanism can be explained by the superlinear divergence of the
solutions of 2 = 2%(t — 7) for a > 1:
ProrosiTION 3.1.

z=z(t—7)% a>1

has solutions which diverge faster than any exponential function.

Proof. Take as initial condition a strictly positive solution segment zy over [—7, 0]
with z(0) > 1. For ¢ > 0, the trajectory is monotonically increasing. This means that
in the interval [k7, (k+ 1)7] for k > 1,

2((k—1)1)* < 2 < z(k7)“.
The solution at point k7,k > 1 is bounded below by the sequence satisfying

Zhyr = 2k + T2h_q, 2o = 2(0), z1 = z(7).

which has limit +oco. The ratio R, = ZZ: satisfies

Rk+1Rk =Ri + TZ?;II.

and consequently (Ri11 — 1) Ry tends to infinity. However for an exponential function
e, R=¢e% and (R — 1)R is constant. O

Because of the faster than exponential growth of z in (3.4), arbitrarily fast expo-
nential decay of 1 cannot counter the blow-up caused by the nonlinearity in z(t — 7),
and hence the system is not globally asymptotically stable.

The instability mechanism illustrated by (3.1) and (3.4) can be avoided by im-
posing suitable growth restrictions on the interconnection term ¥. When the unper-
turbed system is scalar, it is sufficient to restrict the interconnection term to have
linear growth in both of its arguments, i.e.

(3.5) dey, c2 > 0 such that ||¥(z, 2(t — 7))|| < e1 + 2|z, z(t — T)]|.

This linear growth condition is by itself not sufficient however, if the unperturbed
system has dimension greater than one. In that case, the interaction of the different
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components of the state z(t) can still cause “nonlinear” effects leading to unbounded
solutions. An illustration of this phenomenon is given by the following system

21 = —z1+ zn(t)
(36) ,’é’Q = —zy+ 2%22
no= -

which was shown in [13] to have unbounded solutions, despite the linearity of the
interconnection. The instability is caused by the mutual interaction between z; and
zo when n # 0.

The following theorem, inspired by Theorem 4.7 in [13], provides sufficient condi-
tions for bounded solutions. To prevent the instability mechanism due to interacting
states, conditions are put on the Lyapunov functional of the unperturbed system.

THEOREM 3.2. Assume that the system 2 = f(z,z(t—7))+¥(z, z(t—7))n satisfies
Assumption 2.2 and that the interconnection term V(z, z(t — 7)) grows linearly in its
arguments, i.e. satisfies (3.5). Furthermore if the perturbation n(t) € L1(]0,00)) and
k(z) satisfies:

(i) aq]|z||” < k(2z) <as]z||", 0<a; <az<oo, 1<7v< o0,

(ii) 119£ ] |12 < ck(2),
then all trajectories of the perturbed system are bounded, for all values of the time
delay. Condition (ii) is sometimes called a polynomial growth condition because it is
satisfied if k(2) is polynomial in z, but not satisfied if k(z) is exponential in z.

Proof. Along a trajectory z(t) we have:

Vo <IN (2, 2(t = )ll]n]

<A (o1 + e/ TEPF = DIP) In

37)  ScayTk(z)'7) ( + \/ e o k<z<j;;3>“”) Il
< Ca;/”f (clk(z)l—l/’Y + 02041_1/7\/]{;(2)2 + k(z)2*2/7k(z(t _ 7—))2/7) In|
<cay? (VU ey VY VE A VERDRG(E - )27 ) Jal.

For t € [0, 7], z(t) cannot escape to infinity because k(z(t — 7)) is bounded
(calculated from the initial condition) and the above estimate can be integrated over
the interval since the right hand side is linear in V and n € Ly.

For t > 7 we can use the estimate k(z(t — 7)) < V(z(t — 7)):

V < cad/” <01V11/7 + czocl_l/w\/V2 + V22V (t — 7’)2/”> -

Because this estimate for V is increasing in both of its argument, an upper bound for
V(t) along the trajectory is described by

W = ca;/w <01W11/7 + 02a1_1/v\/W2 + W2—2/7W(t — 7-)2/7> |n]

with as initial condition W(z;) = V(z;). Via the method of steps, it is clear that
W cannot escape to infinity in a finite time. From ¢ = 7 on, W is monotonically
increasing. As a consequence, for t > 27, W(t) > W(t — 7) and

W< caé/v (01W1_1/7 + czafl/V\/ﬁW) [n(t)],
6



and this estimate can be integrated leading to boundedness of lim;_,, sup V(t) be-
cause n(t) € Ly. Hence the trajectory z(t) is bounded. O

REMARK 3.3. When the interconnection term is undelayed, i.e. ¥ only depends
on the argument z, condition (i) in Theorem 3.2 can be dropped, and as a special case
(also f undelayed), Theorem 4.7 of [13] is recovered. The presence of a delay in the
unperturbed system does not provide extra complications compared to the ODE-case
and the proof is analogous to the proof of Theorem 4.7 of [15]:

Along a trajectory, we now have,

. dk
Vo<l I er + ezllzlinl

When ||z|| > 1 it follows from ||2£| < cﬁiﬁ) that V' < ¢(er + e2)Vn|. When

Izl < 1, we have V < M|n| with M = SUp||,| <1 1€ (c1 + e2ll2]]), and when in

addition V > 1, we have V. < MV ||.
Hence the following estimate holds whenever V- > 1,

V < max (c(c1 + ¢3), M) Vn).

From the explicit integration of this estimate the boundedness of V' and the trajectory
1s proven. [

4. Semi-global results for controlled perturbations. Although no global
results can be guaranteed in the absence of growth conditions, the examples in the
previous section suggest that one should be able to bound the solutions semi-globally
in the space of initial conditions by decreasing the size of the perturbation. Therefore
we assume that the perturbation is parametrized,

n= 77(75: a)'

We will consider two cases: a) parameter a controls the L;- or the L,,-norm of  and
b) a regulates the shape of a perturbation with fixed L;-norm.

4.1. Controlling the L; and the L., norm of the perturbation. We first
assume that the Li-norm of 7 is controlled. We have the following result:
THEOREM 4.1. Consider the system

zZ= f(sz(t - T)) + ‘IJ(Z,Z(t - T))n(taa)a

and suppose that the unperturbed system is GAS with the Lyapunov functional V(z)
satisfying Assumption 2.2. If furthermore ||n(t,a)|[1 — 0 as a — oo, then the traject-
ortes can be bounded semi-globally both in z and the delay T, by increasing a.

Proof. Let 7 > 0 be fixed and denote by € the desired stability domain in R™, i.e.
such that all trajectories starting in zo with zo(0) € Q for 6 € [—7, 0] are bounded.
Let V. = sup_ cq V(20). We have

V(z) < K(2)f(z2(t = 1)) +1(2(0) = U=(t = 7)) + K (2)U(z, 2(t = T)n(t, @)
< K (2)¥(z, 2(t — )| n(t, ).

As long as V(t) < 2V,, z(t) and z(t — 7) belong to a compact set. Hence 3M > 0
such that |k'(z)¥(z,2(t — 7)| < M and

V(t)~V(0) < M / " s, a)lds = Milnt, ).
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When a — oo, the increase of V' tends to zero. As a consequence the assumption
V(t) < 2V, is valid for V¢ > 0. Hence the trajectories with initial condition in Q are
bounded.

Note that for a fixed region 2 € R”, V, increases with 7 and this influences both
the value M in the estimation of |k'(z)¥(z, z(¢t — 7)| and the critical value @ of a in
order to bound the trajectories. However when 7 belongs to a compact interval [0, 7],
we can take a > sup. ¢, 7 a(7) and hence bound the trajectories semi-globally in
both the state and the delay. O

The result given above is natural because for a given initial condition, a certain
amount of energy is needed for destabilization, expressed mathematically by ||n];.
However global stability in the state is not possible because the required energy can
become arbitrarily small provided the initial condition is large enough, see for instance
example (3.1). Later we will discuss why the trajectories cannot be bounded globally
in the delay.

Now we consider the case whereby the L.,-norm of the perturbation is controlled.

THEOREM 4.2. Consider the system

5= f(z 2t = 1)) + U(z, 2(t = T)n(t, )

Suppose that the unperturbed system is GAS with the Lyapunov functional V(z¢) sat-
isfying Assumption 2.2. If ||n(t,a)]|lcc = 0 as a — oo, the trajectories of the perturbed
system can be bounded semi-globally in both z and the delay T.

Proof. Asin the proof of Theorem 4.1, it is sufficient to prove semi-global stability
in the state for a fixed 7 > 0. Let Q and V_. be defined as in Theorem 4.1. Define
D ={z€R": k(z) <4W,.} and Q. = {z : ||z]| < €} C Q, with € > 0 small.

The time derivative of V satisfies

(4. 18/ zt) =k'(2)f(z,z(t — 7)) +1(2(t)) = U(z(t — 7)) + K'(2)¥(z, 2(t — 7))n(t, a)
< b (Iz1) + K" (2)¥ (2, 2(t — 7))[n(t, a).

Let M =sup, ,cq, |K'(2)T(z, )|

When z(t) € Q2\ Q. we have, since b is positive definite, V < —b(||z||)+ M |||« <
—N for some number N > 0 provided ||n||oc is small enough. Only when z(t) € .,
the value of V can increase with the estimate V < M||7]|oo.

Now we prove by contradiction that all trajectories with initial condition in Q
are bounded for small ||n||o: suppose that a solution starting in Q (with V < V,) is
unbounded. Then it has to cross the level set 2V.. Assume that this happens for the
first time at t*. Note that for small ||n]|c, t* is large. During the interval [t* —7, t*], V
can both increase and decrease, but V(¢*) > V(t* — 7). While V increases, z(t) € Q.
and the increase AV is limited: AV < M||n||eo7- When z(¢) would be outside Q. for
a time-interval At C [t* — 7, ¢*], whereby V < —N, we have:

(4.2) NAE< M.

Hence by reducing ||7(t, a)||o We can make the time-interval At arbitrarily small. On
the other hand (for large a),

|| || SF(z,2(E = 7)) + (2, 2(t = 7))n(t, a)|| < L < oo

when z; is inside 25, because f and ¥ map bounded sets into bounded sets. Hence
with [to — t1| < At we have ||z(t1) — z(t2)|| < LAt. Because of (4.2) we can increase
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a (reduce ||n(t,a)||) such that LAt < € and consequently we have:
lz(®)|| <2, tet"—r, t7].

If € was chosen such that Q5. lies inside €2, we have a contradiction because this implies
W (t*) < W.. Hence a trajectory can never cross the level set 2, and is bounded. O

The results of Theorems 4.1 and 4.2 are not global in the delay, even though
the unperturbed system is delay-independent stable. Global results in the delay are
generally not possible: we now give an example where it is impossible to bound the
trajectories semi-globally in the state and globally in the delay, even if we make the
size of the perturbation arbitrarily small w.r.t. the L; and L.,-norm.

EXAMPLE 4.3. Consider the following system:

(4.3)

Z‘l = —221+Zl(t—7')
Z‘ZZ

—%22 + 23n(t, a)

The unperturbed system, i.e. (4.3) with n = 0, is delay-independent stable. This is
proven with the Lyapunov functional

¢
1

V:zf—l—/ 22dO + =22
t—r1 2

Its time derivative

. -3 1 Z1
V = [21 Zl(t—’T)]|: 1 _1:| |:21(t—7') :|
21—2)%—1
—Zg( lzg+)1
2 _ 2(x1—2)°1
S —221 —22%.

is negative definite: when z; & [1, 3], both terms are negative and in the other case
the second term is dominated, because it saturates in zo. From this it follows that the
conditions of Assumption 2.2 are satisfied.

With the perturbation

(4.4) n(t,a) =(t— to)zeia(tfto) t>ty =a®
' 0

t <to ’

whereby increasing a leads to a reduction of both ||n|l1 and ||n||e, we can not bound
the trajectories semi-globally in the state and globally in 7: for each wvalue of a we
can find a bounded initial condition (upper bound independent of a), leading to a
diverging solution, provided T is large enough: the first equation of (4.3) has a solution
2z (t) = 2.5e7%t whereby —a is the real solution of equation

A= -2+,

Clearly « — 0 as T — o0o. Since z1(—7) = 2.5¢*™ — 5 as T — 00, uniform bounded-
ness in T of this solution over the interval [—7, 0] (initial condition) is guaranteed.
Choose z5(0) = 1.

The above solution for z; satisfies:

21 () € [1.5, 2.5]
9



when t € [0, Llog2] and thus
4.5 o> 7L
(4.5) 722 g

A rather lengthy calculation shows that with z2(0) = 1 and the perturbation (4.4), the
solution of (4.5) always escapes to infinity in a finite time ty(a). Hence this also holds
for the solution of the original system when the delay is large enough such that

1 5
——log = > ts(a).

a(r) 3

This result is not in contradiction with the intuition that a perturbation with small
Li-norm can only cause escape in a finite time when the initial condition is far away
from the origin, as illustrated with example (3.1): in the system (4.3) with = 0, 2
is driven away from the origin as long as z; € [1, 3]. By increasing the delay in the
first equation, we can keep z; in this interval as long as desired. Thus the diverging
transient of the unperturbed system is used to drive the state away from the origin,
far enough to make the perturbation cause escape.

4.2. Controlling the shape of the perturbation. We assume that the shape
of a perturbation with a fixed L;-norm can be controlled and consider the influence of
a concentration of the perturbation in arbitrarily small time-intervals near ¢ = 0. In
the ODE case this does not allow to improve stability properties. This is illustrated
with the first equation of example (3.1): instability occurs when z(0) > m
and by concentrating the perburbation the stability domain may even shrinlz, because
the beneficial influence of damping is reduced. In the DDE-case however, when the
interconnection term is linear in the undelayed argument, it behaves as linear during
one delay interval preventing escape. Moreover, starting from a compact region of
initial conditions, the reachable set after one delay interval can be bounded independ-
ently of the shape of the perturbation (because of the fixed Li-norm). After one
delay interval we are in the situation treated in Theorem 4.1. This is expressed in
the following theorem. As in Theorem 3.2 the polynomial growth condition prevents
a destabilizing interaction between different components of the state vector z(t).

THEOREM 4.4. Consider
(4.6) 2(t) = f(2(t),2(t — 7)) + W(z(t), 2(t — 7))n(t,a)

and suppose that the unperturbed system is GAS with the Lyapunov functional V(z;) =
k(z)-{—ft: 1(2(0))d0 satisfying Assumption 2.2. Let k(z) satisfy the polynomial growth
condition || 2 ||||z|| < ck(z). Assume that ¥ has linear growth in 2(t), ||n(t,a)||; < oo
is independent of a and lim,_, ftoo [n(s,a)|ds = 0,V¢ > 0. Then the trajectories of
(4.6) can be bounded semi-globally in z and for all T € [11, 2] with0 < 1 < T3 < 0.

Proof. Consider a fixed 7 € [11, 72] and let Q be the desired stability domain in
R™ and let R be such that zo(f) € Q, V8 € [-7, 0] = ||20]|s < R.

The interconnection term has linear growth in z, i.e. there exist two class-k

functions «; and 75 such that

19 (2, 2(8 =TI < 7 (ll2(E = D) + 7212 =7)DII=]-
10



The time-derivative of the Lyapunov function V satisfies
Vo< ||Zt|| 1¥(z, 2(t = 7))|-In(t, a)|
< - (=@ = DI +y2(llz(t = 7)) ||Z||) |77(t a)|
< ch(z). (U5 L=t = I Ince

< V() n(t, a)] (2USED 4 (|2 (e - >||>)

During the interval [0, 7], z(¢t — 7) belongs to Q. Therefore, when | z|| > R, one can

bound (W + 72 (]|2(t — 7')||)) by a factor ¢y independent of a. Thus

V < cerVin(t,a)l,
and when a trajectory leaves the set {z: ||z|| < R} at t*, because n € L,

V(t) < Vipax€©©? f{{* In(s,a)|ds
< Veeeezlnlls = a1

for some constant M, independently of a. In the above expression, Vinax = supj.,|.<r V(z).
As a consequence, also k(z) and ||z(¢)]| can be bounded, uniformly in ¢t € [0, 7]
and a. Hence at time 7 the state z,, i.e. z(t), t € [0, 7] belongs to a compact region
Q5 independently of a.
Now we can translate the original problem over one delay interval: at time 7 the
initial conditions belong to the bounded region 2, and with ¢ =t — 7 we have:

In(t', @)l = / In(s,a)lds < / In(s,a)|ds = 0 as a — oo.

1

Because of Theorem 4.1, we can increase a such that all solutions starting in 5 are
bounded.

Until now we assumed a fixed 7. But because [r1, 73] is compact, we can take
the largest threshold of a for bounded solutions over this interval. 0

REMARK 4.5. Whenever the perturbation in (1.1) is generated by a GAS ODE,
the boundedness results are strengthened to asymptotic stability results. This can be
shown following the lines of the proof of Proposition 4.1 in [13]. Stability follows from
a local version of Theorem 4.1 and attractivity from the application of a generalization
to the time-delay case of the classical LaSalle’s Theorem [3, Theorem V.3.1].

5. Stabilization of partially linear cascades. In the rest of the paper we
consider the stabilization of the cascade (1.2) with the control law (1.3)

From the previous sections it is clear that the input y of the z-subsystem can
act as a destabilizing disturbance. However, the control can drive the output of the
linear system fast to zero. We will investigate under which conditions this is sufficient
to stabilize the whole cascade. An important issue in this context is the so-called
fast peaking phenomenon [15]. This is a structural property of the {-system whereby
imposing faster convergence of the output to zero implies larger overshoots which can
in turn destabilize the cascade and may form an obstacle to both global and semi-
global stabilizability. We start with a short description of the peaking phenomenon
and then apply the results of the previous section to the stabilization of the cascade
system.

Our presentation of the peaking phenomenon is inspired by [15] but, following
[13], we place the phenomenon in an input-output framework rather than an input
state framework. We also emphasize the relation with between a peaking system and
the Li-norm of its output.

11



5.1. The peaking phenomenon. When in the system,

f = Af+ Bu
y = C§,

the pair (A, B) is controllable, one can always find state feedback laws u = F¢ res-
ulting in an exponential decay rate with exponent —a. Then the output of the closed
loop system satisfies

(5-2) Iyl < I1€(0)]le™,

where v depends on the choice of the feedback gain. We are interested in the lowest
achievable value of v among different feedback laws and its dependence upon a. This
will be determined by the so-called peaking exponent, which we now define.

Denote by F(a) the collection of all stabilizing feedback laws u : £ — F¢ with the
additional property that all observable* eigenvalues A of (C, Ap), with Ap = A+ BF,
satisfy Re(A) < —a. For a given a and F € F(a), define the smallest value of + in
(5.2) as

(5.1)

kr(a) = sup {[ly(t)le”},

where the supremum is taken over all ¢ > 0 and all initial conditions satisfying
1€(0)]| < 1. Now denote by s(a) = infpcr,) kr. The output of system (5.1) is
said to have peaking exponent s when there exists constants a;, as such that

(5.3) a1a® < k(a) < aza®

for large a. When s = 0 the output is said to be nonpeaking.

The peaking exponent s is a structural property related to the zero-dynamics:
when the system has relative degree r, it can be transformed (including a preliminary
feedback transformation) into the normal form [4][1]:

€0 = Ao& + Boy
(54 {5

which can be interpreted as an integrator chain linearly coupled with the zero-dynamics
subsystem fo = Ap&p. Using state feedback the output of an integrator chain can be
forced to zero rapidly without peaking [13]. Because of the linear interconnection
term, stability of the zero-dynamics subsystem implies stability of the whole cascade.
On the contrary, when the zero dynamics are unstable, some amount of energy, ex-
pressed by [ ||ly(t)||dt, is needed for its stabilization and therefore the output must
peak. More precisely we have the following theorem, proven in the appendix.

THEOREM 5.1. The peaking exponent s equals the number of eigenvalues in the
closed RHP of the zero-dynamics subsystem. The definition of the peaking exponent
(5.3) is based on an upper bound of the exponentially weighted output, while its L;-
norm is important in most of the theorems of Section 4. But because the overshoots
related to peaking occur in a fast time-scale (~ at), there is a connection. For instance
we have the following theorem, based on a result of Braslavsky and Middleton [10]:

THEOREM 5.2. When the output y of system (5.1) is peaking (s > 1), ||y(¢)]|1
can not be reduced arbitrarily.

*In [15], where the peaking phenomenon is rather studied in an input-state framework, one places
all eigenvalues to the left of the line A = —a.
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Proof. Denote by 2z, an unstable eigenvalue of the zero-dynamics of (5.1). When
a feedback u = F¢ is stabilizing the relation between y and w = w + F¢ in the
Laplace-domain is given by

Y(s) =C(sI —A)~'BW(s)+C(sI — A)~'£(0)
— H(s)W(s) + C(sI — 4) '€(0),

with A = A + BF. The first term vanishes at zy because the eigenvalues of the zero
dynamics appear as zeros in the corresponding transfer function H(s) and since the
feedback F' is stabilizing, no unstable pole-zero cancellation occurs at zo. Hence

Iyl > f° y(t)e="|de
(5.5) > | [ y(t)etd]
= |C(z0] - A)7'(0)]

5.2. Nonpeaking cascades. When the ¢-subsystem is minimum-phase and
thus nonpeaking, one can find state feedback laws u = F, £ resulting in

ly(t)] < aze™™

and the Li-norm of the output can be made arbitrarily small. So by Theorem 4.1,
the cascade (1.2) can be stabilized semi-globally in the state and in the delay.

5.3. Peaking cascades. When the &-subsystem is nonminimum phase, the
peaking phenomenon forms an obstacle to semi-global stabilizability, because the
Li-norm of the output cannot be reduced (Theorem 5.2).

For ODE-cascades, we illustrate the peaking obstruction with the following ex-
ample:

EXAMPLE 5.3. In the cascade,

i=—z4 2%y
G =6+& )
L=u, y=-&

the peaking exponent of the &-subsystem is 1 (zero dynamics 51 = ¢ ). The cascade
cannot be stabilized semi-globally since the explicit solution of the first equation is
given by

e—t

2(t) =
ﬁ - fot e sy(s)ds

whereby fooo e %y(s)ds = £ (0). Hence the solution reaches infinity in a finite time
when 0 < 5%(0) < z(0).

For DDE-cascades, we consider two cases:

Case 1: Peaking erponent=1. We can apply theorem 4.4 and obtain semi-global
stabilizability in the state and in the delay, when the interconnection term is linear
in the undelayed argument: besides (5.5) the Li-norm of y can also be bounded from

above since there exists feedback laws u = F,£ such that

Iyl < / asae™™ = ay,
0

13



and because of the fast time-scale property, the energy can be concentrated since
vt > 0:

/ ly(s)|ds < / azae” **ds — 0 as a — oo.
t t

Case 2: Peaking exponent > 1. In this case, we expect the Li-norm of y to grow
unbounded with a, as suggested by the following example:
EXAMPLE 5.4. When & is considered as the output of the integrator chain,

512527 522537"'7571:”7

the peaking exponent is k — 1 (Theorem 5.1) and ||z (t)]]1, k = 2,n cannot be reduced
arbitrarily by achieving a faster exponential decay rate. In Proposition 4.32 of [13],
it is shown that with the feedback-law v = K(a)¢ = =Y ;_, a™ " lq_1&, where
all solutions of EZ;; @ AF + A" = 0 satisfy Re(\) < —1, there ewists a constant c
independent of a such that

()] < ca™ e lE(0)]],

hence the particular feedback uw = K(a)é is able to achieve an upper bound which
corresponds to definition (5.8), for each choice of the outputy = &. It is also shown
in [13] that with the same feedback and with as initial condition £1(0) = 1, &(0) =
0, k = 2,n, there exists a constant d such that s, = sup,~, |&k(t)| > da*~1. Define
tr, k =2,n such that |&,(ty)| = si. As a consequence,

= |1 (tp—1)| > da* 2, k=3,n

ol > | [ " ()

while the peaking exponent of output y =& is k — 1.

With the two following examples, we show that when the energy of an exponen-
tially decaying input perturbation (~ e~%') grows unbounded with a, an intercon-
nection term which is linear in the undelayed argument, is not sufficient to bound
the solutions semi-globally in the state. Because it is hard to deal in general with
outputs generated by a linear system with peaking exponent s > 1, we use an artifi-
cial perturbation a*e %', which has both the fast time-scale property and the suitable
growth-rate of the energy (a*!) w.r.t. a.

EXAMPLE 5.5. The solutions of equation

(5.6) Z=—bz+ zz(t — T)%ae™™, a>0

can not be bounded semi-globally in z by increasing a, for any T > 0, if the ’peaking
exponent’ s is larger than one.
Proof. Equation (5.6) has an exponential solution z(t),

e« .
as

O =

Consider the solution z(¢) with initial condition zg = L > 0 on [—7, 0]. For ¢ € [0, 7],
z(t) satisfies:
2 =—bz+ zL% e

14



and consequently coincides on [o, 7] with
(5.7) y(t) = Lek @™ (1me™™)—be

For large a, expression (5.7) describes a decreasing lower bound on [r, 27], since y(t)
reaches its maximum in t*(a) with t* — 0 as @ — co. Thus imposing y(27) > z.(27)
implies that z(t) > z.(t),t € [r, 27] and from this one can argue ' that z(t) >
ze(t), t > 7. Thus the trajectory starting with initial condition L on [—7, 0] is
unbounded when

e «

1
LeLaa,ﬂfl(l_e—ZaT)_QbT >z (27_) _ |:% + b} @ 3a

€ as .
When s > 2, for each value of L, the solution is unstable for large a, thus the attraction
domain of the stable zero solution shrinks to zero. When s = 2, a solution starting

from L > [%] x is unstable for large a. O

Even when the interconnection term contains no terms in z(t), but only delayed
terms of z, semi-global results are still not possible in general, as shown with the
following example.

EXAMPLE 5.6. The solutions of the system

(5.8) 2= —sat(z) + e* (" afe ™,

with sat(z) = z when |z] < 1 and sat(z) = sign(z) otherwise, can not be bounded
semi-globally in z by increasing a, for any T > 0, when the ’peaking exponent’ s is
greater than one.

Proof. When z > 1, equation (5.8) reduces to:

2’: — _1 + ez(t—‘r)ase—at,

which has the following explicit solution,

S

zi(t) = at +b, b=ar — log(

).

When the initial condition of (5.8) is L on [—7, 0], during one delay-interval, one can

a+1

find an lower bound of the solution by integrating
t=—z+elate ™
with solution

S
z(t) = Le * + efteLa—(l — e (a7,
a—1
When a is chosen such that b > 1, the expression for z;(t) is valid for ¢ > 0. When
zu(27) > 2/(27), one can argue that for large a, z,(t) > z/(t), t € [1, 27] and z,(t)
describes a lower bound for the solution starting in L for ¢ € [0, 27] (z,(¢) reaches is
maximum in t*(a) with t* — 0 as a — 00). Consequently, the trajectory with initial
condition L on [—7, 0], is unbounded when

S

S
Le ™ + 672TeLa—(1 — e~ (e7D27) 5 307 — log(
a—1 a+1

).

TIntersection at t* would imply 2(t*) > Ze(t*)
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5.4. Zero dynamics with eigenvalues on the imaginary axis. The situ-
ation where the zero dynamics possess eigenvalues on the imaginary axis but no ei-
genvalues in the open RHP deserves special attention. According to Theorem 5.1, the
system is peaking, that is, the L; norm of the output cannot be reduced arbitrarily.
However this energy can be ’spread out’ over a long time interval: it is indeed well
known that a system with all its eigenvalues in the closed LHP can be stabilized with
a low-gain feedback, as expressed by the following theorem, taken from [13]:

THEOREM 5.7. If a system fo = Ap&o + Boy is stabilizable and the eigenvalues
of Ay are in the closed left half plane, then it can be stabilized with a low-gain control
law y = Ko(a)éo which for large a satisfies:

y(®)] < 2l ()]

The infinity-norm of such a low-gain control signal can be arbitrarily reduced, which
results, by Theorem 4.2, in satisfactory stabilizability results when it also acts as an
input disturbance of a nonlinear system. This suggests not to force the output of (5.1)
exponentially fast (~ e~*") to zero, which results in peaking, but to drive it rapidly
without peaking to the manifold y = Ko(a), on which the dynamics are controlled
by the low-gain control action. Mathematically, with e = y — Ko(a)& and a feedback
transformation v = u + M &, the normal form of the {-subsystem is transformed into

€0 = Aoko + BoKo(a)t + Bye _

e =

Using a high-gain feedback driving e(t) to zero without peaking, as proven in [13],
proposition 4.37, one can always force the output to satisfy the constraint

(59) )] < (e + DIEO)]

with v independent of a. A systematic treatment of such high-low gain control laws
can be found in [8].
For instance the system,

51 = 52
(5.10) { b=u, y=&

is weakly minimum-phase (zero-dynamics él = 0). With the high-low gain feedback
u = —& — a&s the explicit solution of (5.10) for large a can be approximated by:

(5.11) [ &iy } =cie” [ _%1 } +egeat { _1 ] .

Perturbations satisfying constraint (5.9) can be decomposed in signals with van-

|=

ishing L; and L.,-norm. This suggests the combination of theorems 4.1 and 4.2 to:
THEOREM 5.8. Consider the interconnected system

Z.: = f(Z, Z(t - T)) + \I’(Za Z(t - T))y
& = A€ + Bu
y=0C¢
Suppose that the z-subsystem is GAS with the Lyapunov functional V(z;) satisfying
Assumption 2.2 and the zeros of the &-subsystem are in the closed LHP. Then the
16



interconnected system can be made semi-globally asymptotically stable in both [z, &]
and the delay, using only partial-state feedback.

Proof. As explained in Remark 4.5, the origin (z,£) = (0,0) is stable. Let Q be
the desired region of attraction in the (z, &)-space and choose R such that for all
(20,€) € Q, |I&ll < R. Because of the assumption on the &-subsystem, there exist
partial-state feedback laws such that

Iyl < AN + ) < YR + ),

with v independent of a.
Consider the time-interval [0, 1]. Because

1
/ ’)/R(eiat +
0

one can show, as in the proof of theorem 4.1, that by taking a large, the increase of
V' can be limited arbitrarily. Hence for ¢ < 1, the trajectories can be bounded inside
a compact region 25. We can now translate the original problem over one time-unit

) =0, a— oo,

ISR

and since

ISR

sup yR(e™" +
t>1

) =0, a— oo,

we can, by Theorem 4.2, increase a until the stability domain contains {25. Hence all
trajectories starting in §2 are bounded and converge to the origin, because of LaSalle’s
theorem. O

6. Conclusions. In this paper, we first studied the effect of bounded input-
perturbations on the stability of nonlinear delay equations of the form (1.1).

Global stability results are generally not possible without structural assumptions
on the unperturbed system and the interconnection term, because arbitrarily small
perturbations can lead to unbounded trajectories, even when they are exponentially
decaying. In the ODE-case this is caused by the fact that superlinear destabilizing
terms can drive the state to infinity in a finite time. Superlinear delayed terms cannot
cause a finite escape-time but can still make trajectories diverge faster than any
exponential function.

We also considered semi-global results when the size or shape of the perturbation
can be controlled. We assumed that the unperturbed system is delay-independent
stable. When the L; or the L., norm of the perturbations is brought to zero, tra-
jectories can be bounded semi-globally in both the state and the delay. By means of
an example we explained why global results in the delay are generally not possible.
Next we considered the effect of concentrating a perturbation with a fixed Li-norm
in arbitrarily small time-intervals. This leads to semi-global stabilizability in both
the state and the delay (compact delay-intervals not containing 7 = 0), when the
interconnection term is linear in its undelayed arguments.

Using these boundedness results, we studied the stabilizability of partial linear
cascades (?7) using partial state feedback. When the interconnection term is non-
linear, output peaking of the linear system can form an obstruction to semi-global
stabilizability because the Li-norm of the output cannot be reduced by achieving a
faster exponential decay rate. If we assume that the interconnection term is linear in
the undelayed argument and the peaking exponent is one, we have semi-global stabil-
izability results, because the Li-norm of the output can be bounded from above while
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concentrating its energy. Even with this assumption on the interconnection term,
higher peaking exponents may form an obstruction. When the zeros of the linear
subsystem are in the closed left half plane, satisfactory stability results are obtained
when using a high-low gain feedback, whereby the output of the linear subsystem can
be decomposed in two signals with vanishing I.; and L., norm respectively.

The main contribution of this paper lies in generalizing the classical ODE results
to a class of functional differential equations. Instrumental to this generalization is
the observation that the way bounded input input perturbations affect a nonlinear
system mainly lies in the way the L; and the L., norm of the perturbation can be
controlled.
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Appendix. Proof of Theorem 5.1. We transform the system (5.1) into the normal
form:

€0 = Aok + Boy
Y=y
(A1) C

:ljr:u

wherey = C[¢L YT)T with Y = [y y; - - - y,]7 is the output and Ay € R™*™ represents
the zero-dynamics. We consider two cases:

Case 1: all eigenvalues of Ay lie in the closed RHP.

For the stabilization of the system (A.1), we use a state feedback

u = Fofo + F1Y

The closed loop matrix is:

Ap By
Ay = 0 1
0 .- 0 1
L FO Fl -

For asymptotic stability, the observability of (Fp, Ap) is required. In the other
case (unstable) eigenvalues of Ay will still be present in the closed loop system. Math-
ematically, when (Fy, Ag) would not be observable, one can perform a similarity trans-
formation on &y leading to:

As  Ar Ba]

Ao | By [
[Fo ]—) 0 A, | B,

whereby A; contains the unobservable modes of Ag. These unstable eigenvalues are
still present in the closed loop matrix A.;, which contradicts the stability assumption.
As a consequence the whole system is observable since the observability matrix
of (C, Ay) is given by
Ocl = |: 0 0172 :| )
O21 | Oz

whereby O, » is the unity matrix in R" and

1 F
fn 1 Fy A
O21 = : } : : ’
o 1 FoAp—t

with f, the last component of F;. From this it follows that the observability of
(C, Aup) is implied by the observability of (Fp, Ao).
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Consequently, in order to achieve an exponential decay of the output (~ e=%%),
we need to place all eigenvalues to the left of the line A = —a. But now we are in
the situation considered by Sussmann and Kokotovic[15]. From Theorem 8.1 in [15],
it follows that in this case the peaking exponent equals the dimension of the zero-
dynamics.

Case 2: Ay has eigenvalues A with Re(A\) < 0
With another similarity transformation we split off the asymptotically stable part Ags
of Ap: equation (A.1) becomes:

5:03 = Aps&os + Aosuou + Bosy
&ou = Aoubou + Bouy
y(T) =u

Because £ps is linearly coupled with the other states, it is sufficient to consider state-
feedback laws for the (£g,, Y )-subsystem (which render the eigenvalues of Ags unob-
servable). O
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