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Abstract — This paper proposes a novel approach to voltage se-
curity assessment exploiting non-parametric regression techniques to
extract simple and at the same time reliable models of the severity
of a contingency, defined as the difference between pre- and post-
contingency load power margins. The regression techniques extract
information from large sets of possible operating conditions of a power
system screened oft-line via massive random sampling, whose voltage
security with respect to contingencies is pre-analyzed using an effi-
cient voltage stability simulation. In particular, regression trees are
used to identify the most salient parameters of the pre-contingency
topology and electrical state which influence the severity of a given
contingency, and to provide a first guess transparent approximation of
the contingency severity in terms of these latter parameters. Multi-
layer perceptrons are exploited to further refine this information. The
approach is demonstrated on a realistic model of a large scale voltage
stability limited system, where it shows to provide valuable physical
insight and reliable contingency evaluation. Various potential uses in
power system planning and operation are discussed.

Keywords — Voltage security; load power margin; computer based
learning; regression trees; artificial neural networks.

1 INTRODUCTION

Many recent large-scale power system breakdowns have been
the consequence of instabilities characterized by sudden voltage
collapse phenomena.

One of the main reasons for this is that transient stability
limits of power flows have increased, consequently to the im-
provements of protections as well as static var compensators and
generator speed and voltage regulators. Thereby more power
may be transferred over longer distances and systems which
used to be transient stability limited become voltage stability
limited. This situation has been observed in North-American
and European power systems and has been a major incentive
to research on voltage stability. Although recent advances are
impressive there are still open questions, in particular as con-
cerning the definition of widely accepted models and security
criteria. We refer the reader to [1, 2, 3] for an overview of the
concepts and industry experience in this field.

Voltage security concerns mainly the ability of a system to
control its EHV voltage while submitted to various contingen-
cies, in particular to outages and rapid load build up. In power
system operation a useful concept is the load power margin
(LPM); this is a security margin expressed in terms of the
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amount of additional load (P and Q) which may be supplied
by the system under acceptable conditions. Various “exact” or
“approximate” approaches have been proposed in the literature
to compute this kind of margin [4, 5, 6, 7], with computing
times of the order of several power flow computations. The
direct physical interpretation of the LPM makes it an easily
accepted tool by operators. Note also that in practice there
is often a good correlation among LPMs obtained by different
ways, which suggests that they may be interpreted as a distance
to insecurity.

For a given power system, the available LPM depends on
its topology, load level, and available reactive generation and
compensation resources, while the amount of margin required
depends on the actual load trend. Thus, the system will be
considered as secure if it is able to withstand all credible con-
tingencies with sufficient post-contingency LPM. While many
factors may influence the pre- and post-contingency LPM, we
conjecture that for a given contingency in most circumstances
only a rather small number of system parameters will actu-
ally influence its severity, i.e. the difference of its pre- and
post-contingency LPMs. In other words, voltage security as-
sessment should be decomposed into (i) the computation of the
pre-contingency LPM once per operating state, using any of
the above computational techniques, and (ii) the evaluation of
contingency severities, where simplified approximate models
may be used. We shall discuss and illustrate this conjecture and
propose a systematic approach to derive a simple but reliable
assessment of the contingency severity.

In particular, to obtain a prediction of the impact of a contin-
gency on the LPM, without requiring on-line the recomputation
of the post-contingency margin, we propose to use statistical
regression techniques. These techniques exploit large random
samples of operating conditions simulated off-line (to precom-
pute pre- and post-contingency LPMs) in order to identify the
main factors which influence the severity of a contingency and
to build approximate simplified models of its post-contingency
LPM. These approximate models are easy to exploit on-line and
may thus be used for contingency ranking and evaluation, and
for determining dangerous combinations of contingencies and
even control actions for security enhancement.

The remainder of the paper is organized as follows. In sec-
tion 2 we introduce the overall regression based framework to
voltage security assessment, and briefly describe the comple-
mentary regression tree and multilayer perceptron techniques.
Section 3 provides an overview of a case study carried out on the
Brittany region of the EHV system of Electricité de France, so
as to assess the approach in the context of three typical contin-
gencies. Before concluding, we discuss in section 4 the various
possible uses of the approach for off-line studies and on-line
operation.

2 LOAD POWER MARGIN REGRESSION

Figure 1 highlights the overall voltage security framework.

For a given power system and voltage security problem, op-
erating states are first generated via random sampling, in a suf-
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Figure 1. Voltage security framework
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ficiently broad and diverse range so as to screen all situations
deemed relevant. Each case is characterized by pre-contingency
attributes, i.e. parameters describing its electrical and topolog-
ical normal state. Further, it is pre-analyzed in terms of voltage
security by computing its pre- and post-contingency LPMs, for
various contingencies. Typically, several thousand operating
states are drawn and several tens of contingencies are consid-
ered in a given study. Massive parallelism may be exploited to
speed up this otherwise lengthy off-line simulation phase.

At the second step, the non-parametric regression techniques
are applied, in a contingency by contingency fashion, to ex-
tract synthetic security information in the form of approximate
models expressing the relationship between the attributes and
the severity of a contingency, which is defined by the drop in
LPM from pre-contingency to the post-contingency state (see
Fig. 2). In this context, regression trees are used to identify
salient attributes which influence the severity of a contingency
and to provide a first guess transparent model, while multilayer
perceptrons are used to refine this model.

The third step consists of using this synthetic security infor-
mation on-line for security assessment.

2.1 Contingency severity for voltage security

We denote by (Tp, Xo) the pre-contingency topology and
electrical state and Mag (7T, X) the pre-contingency margin.

Further, we denote by Ma;(Ty, Xo) the post-contingency
load power margin when contingency ¢ is applied to the state
(T, Xo), and we thus define by

A -
AMa;(Ty, Xo) = Mao(To, Xo) — Ma;(Tp, Xo) (1)

the severity (in state (T, Xo)) of the contingency.

In the same fashion, denoting by (T0.i,,....ir 1> X041, i)
the topology and electrical state of a system following k — 1
outages, the severity of a sequence of k outages is derived by

AMa;, R 7 (Tov XO) = AMa;, s il—1 (T07 XO)
+AMaik(TO7ilv---yik717X07ily---7ik—l))' 2
The latter formula expresses the fact that if we are able to predict

the security margin for a single outage in terms of parameters
whose changes in the post-contingency state are easy to evaluate
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Figure 3. Principle of the data base generation

then we are also able to predict the effect of any sequence of
outages.

To construct automatically an approximation of the term
AMa;, (T, X'), we propose to use computer based learning tech-
niques in the form of non-parametric statistical regression meth-
ods, using representative learning sets of randomly generated
power system operating states, pre-characterized with respect
to voltage security by their pre- and post-disturbance LPM.

2.2 Random generation of a data base

Computer based learning techniques need a representative
sample of power system situations, for which topology 7}, elec-
trical state Xy and margins May and Ma; are pre-determined.
The construction of such samples calls for random sampling
techniques similar to those developed in the decision tree ap-
proach to power system security assessment [8], and exploits an
appropriate “system-theory” LPM computation method.

The overall principle of such a data base generation is de-
picted in Fig. 3, where we consider a total number of ¢ different
contingencies, n different candidate attributes, and an overall
sample of NV + M operating states, where /N denotes the num-
ber of states used in the learning set to derive the approximate
models, and M the number of independent test states used sub-
sequently to validate them.

The random sampling approach aims at screening all relevant
power system situations, and in particular normal (usual) states
as well as weak situations. The power system engineers are
generally able to provide valuable prior information helping to
determine the considered random variations (e.g. load level,
generation schedule, topology, voltage set points ... ).

2.3 Formulation of the regression problem

In the above equation (1) May is the contingency indepen-
dent term while the two other terms are in practice strongly
contingency dependent, and it is clearly appropriate to build
the regression models in a single-contingency approach so as to
exploit the latter specificity.

Thus, for a given contingency we select its learning set (L.S)
as the relevant operating states (denoted o below) for this con-
tingency among the NN first of the data base. Each state is
characterized by : (i) n candidate attributes a(0), ..., a,(0)
describing its topology (e.g. in/out indicators) and electrical
state (e.g. voltages, power flows, generation levels, reactive
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Figure 4. Regression tree for line tripping contingency

reserves . ..) which are deemed to influence the severity of the
contingency and in terms of which it is desired to express the re-
gression models; (ii) its difference AMa; (o) of its pre-computed
values of Mag(0) and Ma; (o).

Then the learning objective is to build an approximate model,
AMa;(0) = Fi(a1(0), . .. ,an(0)), (3)

where the function F; is determined so as to “explain” as much
as possible the variance of AMa; observed in the learning set,
e.g. such that the Mean Square Error (MSE)

MSE(F) = Y ||AMai(0) — Fi(ai(0), ...
o€LS

san(0))II?, (4)

is as small as possible. Notice that this calls for the identifi-
cation among the candidate attributes of a subset of attributes
which are actually relevant, i.e. which actually influence the
severity of the particular contingency under consideration. We
conjecture that for each contingency it is possible to identify a
small number of attributes able to explain most of the variance
of its severity. Obviously, these salient attributes are liable to
change significantly from one contingency to another.

24 Non-parametric regression techniques

It would be hopeless to use a simple parametric (e.g. linear or
quadratic) family of regression functions F; in order to treat the
wide variety of voltage security problems, which are highly non-
linear. Thus we turn to non-parametric regression techniques
able to cope with a broad range of non-linearities. According to
our experience, regression trees and multilayer perceptrons are
two efficient and complementary such approaches [9]. Below
we describe the former and merely summarize the advantages
and drawbacks of the latter better known approach.

2.4.1 REGRESSION TREES [10]

Similarly to decision (or classification) trees, regression trees
decompose the attribute space into a hierarchy of regions. In our
application they will decompose the pre-disturbance operating
space of a power system into regions where the severity of a
contingency is as constant as possible. In each such region the
severity will be estimated by its expected value determined in
the corresponding learning sub-sample.

Similarly to decision trees, regression trees are built in a top-
down approach : starting with the top-node (e.g. see Fig. 4)

and the complete learning set, an attribute a; and a threshold
value v; are selected to decompose the learning set into two
subsets, corresponding to states for which a; < v; and a; > v;
respectively. The split is determined so as to reduce as much as
possible the severity variance in the subsets, or in other words
to provide a maximum amount of information on the severity.

The procedure continues splitting until either the variance has
been sufficiently reduced or it is not possible to reduce it further
in a statistically significant way. The latter may happen due to
either a reduced subsample size or a low predictive value of the
candidate attributes at a tree node.

In our simulations we have used the method described in [8]
together with its post-pruning algorithm to avoid overfitting.

For prediction, the regression tree is used similarly to a deci-
sion tree : a new state is directed through the tree, by starting
at the top-node and applying the encountered tests to direct the
state towards the appropriate successor. When a terminal node
is reached, the there stored mean value (or confidence interval)
is used as an estimate of the severity. It thus provides a piecewise
constant model which is particularly well adapted to represent
the effect of topology as well as electrical state. On the other
hand, due to its interpretability and capability to identify the
attributes which influence most strongly the severity, it is an
appropriate data analysis tool for validation.

The main practical difference between decision and regres-
sion trees is that the latter determine automatically the appro-
priate quantization of the severity into subintervals, whereas the
former merely reproduce a predefined classification.

2.4.2 MULTILAYER PERCEPTRONS [11, 12]

Multilayer perceptrons provide an easy to use and flexible
technique for non-linear regression. They are defined by their
topology,in terms of layers of neurons,and the values of weights
and thresholds. A potential difficulty may result from their black
box nature and corresponding lack of interpretability, especially
if the number of input parameters is large. For this reason, as
well as for computational efficiency, we deem it appropriate to
preselect a reduced number of input attributes for the multilayer
perceptron by first building a regression tree for the considered
contingency. On the other hand, multilayer perceptrons show
potential in reducing the approximation error of regression trees,
due to their continuous modelling capabilities.

Due to space limitations, we refer the interested reader to
[11, 12] for further information on this by now popular tech-
nique. We merely mention that in our experiments we have used
single hidden layer perceptrons with sigmoidal activation func-
tions and a batch quasi-Newton “Broyden-Fletcher-Goldfarb-
Shanno” (BFGS) iterative optimization algorithm to minimize
the MSE of eqn. (4).

3 CASE STUDY

Below we summarize a broad study carried out on the EHV
system of Electricité de France (EDF), commenting briefly on
the physical problem and the overall scope of the study, in terms
of operating conditions and contingencies, before discussing the
case of three contingencies of increasing complexity.

3.1 A real-life voltage security problem [13]

Figure 5 depicts the one-line diagram of part of the EDF sys-
tem, covering the study region of Brittany and the surrounding
relevant part. A broad voltage security study is in progress on
the basis of this model, for which a data base composed only of
5000 normal operating states was generated.
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3.1.1

To save space, we merely quote the independent variables
used during the random sampling of the pre-disturbance states :
topology (single or double line (400kV or 225k V) or transformer
outages); load level (including randomization of individual HV
load distribution, power factors, compensation and voltage sen-
sitivities); regional unit commitment (with variable active power
generation levels in Plant 1); reactive support (synchronous con-
denser; EHV and HV shunt compensation; gas turbines) and
secondary voltage control set-points.

OPERATING CONDITIONS AND CONTINGENCIES

A total of 13,513 random variants were drawn to yield 5000
pre-disturbance states. (The remaining 8,513 variants led to
power flow computation divergence or non-convergence.) For
each state about 200 attributes were computed, corresponding
to key variables such as topological indicators, important EHV
power flows, 400kV voltages, numbers of units in operation in
power plants, total load demand, reactive shunt compensation
reserves in the study region, and reactive generation reserves.

All in all 26 different contingencies were considered in this
broad study, corresponding to synchronous condenser, generator
or line tripping and busbar faults. Thus, in addition to the
pre-contingency LPM, the corresponding 26 post-contingency
LPMs were computed for each operating state, yielding a total
number of 135,000 LPM computations!

3.1.2 ELECTRICAL MODELLING AND MARGINS

The electrical static and dynamic models, the voltage se-
curity criterion and the LPM computation procedure used are
discussed in detail in [7]. We merely outline their salient char-
acteristics to indicate their highly realistic character.

A 1200-bus modelling including subtransmission levels and
distribution feeders is used while secondary voltage control is
modelled both in the static and dynamic computations. As con-
cerns the latter, a simplified mid-term voltage stability simula-
tion is carried out to track the on-load-tap-changers, automatic
shunt compensation, machine overexcitation limiters and coor-
dinated secondary voltage control behavior, subsequently to a
disturbance.

Pre- and post-disturbance LPMs are computed by simulating
the system response if submitted to a steady load increase until a
voltage instability is reached. The latter is identified according
to the change in sign of the sensitivity of total reactive power
generation to individual HV reactive demands.

The standard deviation of the numerical computation error

Table 1. LPM computation error vs classification error

Noise Classification error rate
standard deviation | Gaussian distribution | Uniform distribution
10MW 1.23% 1.45%
15MW 1.71% 1.88%
20MW 2.17% 2.28%
30MW 333% 3.40%
100MW 10.67% 11.54%

of the margin was estimated to about 1SMW. Further, for a
fixed regional load level, the standard deviation of the margin
variation due to uncertainty in the load distribution as modelled
in the data base is larger than 60MW. This estimates the LPM
accuracy obtained via “exact” numerical computations. Using
the latter to classify operating states of the data base, this un-
certainty translates into classification errors in a way depending
on the density of states in the neighborhood of the classifica-
tion threshold. E.g., Table 1 shows the relationship between
LPM computation noise and error rates, for a contingency cor-
responding to the loss of a generator in Plant 1, and classification
with respect to a LPM threshold of 255 MW. The error rates are
obtained by comparing the classification obtained by the com-
puted margin, with the classification obtained by adding a noise
term (assuming either a Gaussian or a uniform random distri-
bution) to the computed margin. The figures are mean values
and their standard deviation resulting from 20 passes through
the data base with different random seeds.

3.2 Contingency severities

Table 2 summarizes the statistical information concerning the
post-contingency margins of 3 contingencies discussed below,
as well as their severity measured by AMa; = May — Ma;.
The first column describes the contingency, the second column
shows the number IV + M of relevant states for this contingency
among the 5000, while the third and fourth (resp. fifth and sixth)
columns indicate the mean and standard deviation of the post-
contingency margin (resp. severity) in the data base.

As a ground for comparison, the first line of Table 2 shows
the mean and standard deviation of the pre-contingency margins
computed for the 5000 states of the data base. We mention that
the overall load level in the region shown in Fig. 5 varies
between 5000MW and 7700MW, while the pre-contingency
LPM in this region varies between 0 and 1750MW, with a mean
of 756MW and a rather high standard deviation of 325MW,
indicating the diversity of situations covered in the data base.

The scatter plots shown in Fig. 6, show the distribution of
pre- vs post-contingency LPM in the data base. Each point
represents an operating state, and its vertical distance from the
diagonal is equal to the severity of the contingency for this
state. Thus the farther the location of the cloud center below the
diagonal the higher the mean severity of the contingency and
the higher the spread of the points the more variable the severity
from case to case.

3.3 Severity assessment

331

Clearly, the tripping of the (300M VA) synchronous condenser
is a rather mild and quite simple contingency (see Fig. 6a). Its

SYNCHRONOUS CONDENSER TRIPPING

Table 2. Statistics of post-contingency margins and severities

F9

Description Relevant Margin Severity
of states Ma; MW) | AMa; (MW)
Disturbance N+ M I o I o
No disturbance 5000 756 325 0 0
Synch. Cond. tripping 4527 667 316 99 38
Line tripping 4610 662 340 97 105
Generator tripping 4041 439 302 | 355 88
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Figure 6. Scatter plots of pre- vs post-contingency margins (MW total in the study region)

mean severity is of 99MW and its standard deviation is only
38MW. Considering the standard deviation of 316MW of the
post-contingency margin for this contingency (see Table 2) we
observe that it is indeed much simpler to “explain” the severity
than the post-contingency margin in this case.

Actually, given the lower bound on precision of the margin
computation itself (15MW) and taking into account the random
influence of the load distribution (up to 60MW) it would not
make sense to try to further refine this information; thus the
regression model reduces here to its most simple constant shape :
Fi(ai(0),...,an(0)) = 99MW.

3.3.2 LINE TRIPPING AND CORRESPONDING REGRESSION TREE

Unfortunately, all contingencies are not so simple. For ex-
ample, considering the scatter plot corresponding to the line
tripping contingency (loss of Circuit 1 of the double circuit line
shown in Fig. 5), we observe that its variability is much higher
although its mean severity (97MW) is similar to that of the pre-
ceding contingency. In particular, the operating states shown on
the lower part of the scatter plot of Fig. 6b correspond to very
large severities (e.g. A(Ma;) > 500MW). Thus, in the present
case a less trivial model is required to predict the severity.

To illustrate the regression trees, we will describe in detail
their application. However, for the sake of simplicity,and noting
that the lost line is an important one allowing to import power
to the load region from Plant 2, we will use only two candidate
attributes : the total reactive reserve in Plant 2 and the logical
status (in or out) of Circuit 2.

We consider the 4610 relevant states (i.e. where Circuit 1 is in
operation) and put aside 1835 test states to assess the reliability
of the tree. The remaining 2775 states are used as a learning set
to build a regression tree, yielding the 3-level tree represented in
Fig. 4. Each node of the tree is represented by a box containing
a graphical representation of the distribution of values of AMa;
in the learning set at this node, together with its sample mean
value and standard deviation, and the number of its learning
states (e.g. N = 2775 at the top-node).

The tree is built in a top-down fashion, starting at the top-
node, where the reactive reserve in Plant 2 is automatically
selected as the best test attribute, together with its threshold
value of 191Mvar. This test is determined by the tree building
method so as to provide a maximum amount of information of
the contingency severity in the learning set. Once the test has
been selected, the learning set is split into two subsets, corre-
sponding respectively to 1219 and 1556 states. This reduces the
variance from 1062 = 11236 at the top-node to a mean value of

1219472 |, 15561142 _ :
m67 + 3551 16- = 9517 at its successors.

Proceeding at both successors, we see that the selected test
consists of checking whether Circuit 2 is in operation or not,

which allows us to further reduce significantly the overall vari-

11469124 13 @2 1464202 92 2 _
ance to a mean value of 55-221°+ 575580~ + 5772 38°+ 5752 1557 =
1817. Thus, the regression tree explains 100 x (1 — $21%) =

84% of the variance of the severity.

Once the tree has been constructed, it may be used to estimate
the contingency severity of an unknown state : to this end, we
direct the state from the top-node to the appropriate successor
according to its reactive reserve and further to a terminal node
according to the status of Circuit 2. There, the severity is
estimated by the mean severity of the corresponding learning
states.

Let us discuss the physical interpretation of the tree.

L1. The left most terminal node corresponds to 1146 pre-
contingency states whose reactive reserve is smaller than
191Mvar while both circuits are in operation. The tree tells
us that under these conditions the loss of one circuit is not se-
vere at all, yielding a mean severity of 37MW with a standard
deviation of 21MW, i.e. of the same order than the margin
computation error.

L4. Conversely, the right most terminal node tells us that if the
reserve is rather high and already one circuit is out of opera-
tion, then the loss of the other circuit is a very severe contin-
gency, leading to an expected reduction in load power margin
of 547TMW.

L3. The slightly higher mean value and standard deviation of
the severity at this node as compared to node L1, translates the
fact that higher reactive reserves lead also to higher severities
of the loss of a single circuit out of two.

L2. This node is similar to L4, in that the only circuit in oper-
ation is lost; it tells us however that in this case the severity is
not so important since not so much reactive reserve is available
in Plant 2.

Although it might admittedly be further improved by further
developing some of its terminal nodes on the basis of other
attributes able to reflect complementary information, we will
see that this tree, as simple as it is, provides a quite accurate
estimate of the post-contingency load-power margin. To assess
its accuracy, we apply it to estimate the contingency severity
of the 1835 independent test states not used to build the tree.
The difference between this estimate and the “actual” value pre-
computed by simulation yields an overall mean error of -0.5SMW
and standard deviation of 43.6MW.

Of course, the same error distribution is also obtained if we
subtract the estimated severity from the pre-contingency LPM
o as to estimate the post-contingency LPM, according to eqn.
(1). This is illustrated in Fig. 7a showing the scatter plot of the
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Figure 7. Computed vs estimated post-contingency LPMs

test states in terms of their “actual” post-contingency load power
margin and the estimated value of the latter. We notice that the
estimated and actual LPMs are highly correlated. The correla-
tion coefficient of 0.9923 indicates that overall the estimate is
able to “explain” 98.5% of the variance of the post-contingency
margin. This suggests that a very simple model may indeed
provide valuable information about complex quantities such as
post-contingency margins. To further fix ideas, we indicate that
when using the estimated margin to classify the test states with
respect to a threshold of 300MW (considering as unsecure the
states for which the post-contingency margin is smaller than this
threshold) leads to a classification error rate of 2.56%.

Giving a closer look at Fig. 7a, we observe that where the
“actual” margin values are zero (i.e. if the contingency leads to
a mid-term voltage instability without load increase), the esti-
mated margin values become negative. Such negative margin
values could for example be interpreted as the amount of emer-
gency load shedding required to prevent a voltage instability.

To illustrate the possibility of exploiting the regression mod-
els to asses the impact of multiple contingencies, we use the tree
to estimate the severity of the loss of two circuits.

We start with the hypothesis that the circuits are both in
operation, and apply the tree to determine the severity of the
first outage. If a new mid-term steady state is reached before
the second circuit is lost, yielding in particular a change in the
reactive reserve in Plant 2, we may apply the regression tree a
second time in order to evaluate the impact of the loss of the
second circuit. Notice that if the reactive reserve was initially
smaller than 191Mvar, we might assume that it will remain
smaller than this threshold after the loss of a circuit. Thus, in
this particular case it is not necessary to recompute the steady
state reached after the first outage to predict the effect of the
second one; the severity of the double circuit outage is then
estimated to 37 + 292 = 329MW. Remarkably, this is actually
very close to the true mean severity (327MW) of the double
circuit outage, as obtained in the same conditions by direct
margin computation.

3.3.3 GENERATOR TRIPPING AND CORRESPONDING REGRES-
SION TREE AND MULTILAYER PERCEPTRON

The third contingency - illustrated in Fig. 6c¢ - consists of
the loss of a generator (=x700MVA) in Plant 1 shown in Fig.
5, which is located in the “center” of the load region. We
observe from the scatter plot that this contingency is much
severer than the two preceding ones ((AMa;) = 355MW) and
rather variable (o(AMa;) = 88MW). Moreover, in contrast to
the line tripping contingency it is difficult to suggest a priori a
small number of parameters liable to “explain” this contingency.

Thus we will illustrate the overall systematic approach sug-
gested in §2, combining regression trees and multilayer percep-
trons. To validate the model F;(a;(0),...,an(0)), we keep

aside 796 test states among the 4041 relevant states of this con-
tingency, and we use the remaining 3245 states as learning set.
So as to avoid missing some important information, a rather
large list of 138 pre-disturbance candidate attributes is used.

The first step consists of building a regression tree. This se-
lects among the 138 candidate attributes those which are most
strongly correlated with the severity. In the present case, 15
test attributes are selected, comprising by decreasing order of
importance the reactive flow through the 400/225kV transform-
ers in substation 2, the total reactive EHV compensation of the
region, the active flow through 400/225kV transformers in Plant
1 substation and the reactive reserve available in this plant. The
regression tree remains however quite simple, since it is com-
posed of 18 test nodes and 19 terminal nodes.

The model is further refined by exploiting the continuous
modelling capabilities of multilayer perceptrons. To this end,
we use a multilayer perceptron with 15 input neurons, corre-
sponding to the 15 attributes selected by the tree,20 (this number
is arbitrarily fixed) hidden neurons, and a single output neuron
corresponding to the severity appropriately normalized in the
interval [—0.5...0.5]. The BFGS procedure, applied to adjust
the 340 weights of the latter model so as to reduce the overall
MSE in the learning set, converged after 305 passes through
the learning set. Using the multilayer perceptron to approxi-
mate the value of the severity of the test states yields a mean
error of -0.8MW and standard error deviation of 43MW. Figure
7b shows the scatter plot of the pre-computed post-contingency
margin vs. the estimated one using eqn. (1).

Further, the use of this margin to classify test states with re-
spect to to a threshold of 255MW (see Fig. 7b) yields an error
rate of 49%. Given the lower bound of the margin compu-
tation accuracy (and the thereby induced error rates shown in
Table 1), we conclude that the proposed approach yields a very
satisfactory level of accuracy, for all three contingencies.

4 DISCUSSION

We will first discuss computational feasibility and then con-
centrate on potential uses of the approach.

4.1 Computational feasibility

It is appropriate to distinguish among the three steps of the
approach indicated in Fig. 1. The most bulky part concerns the
data base generation and the pre-computation of the LPMs. For
example, the computation of the 135,000 LPMs of our data base
took all in all about 1 month CPU on a SUN Sparc10 workstation
(18MFLOPS). However, using several high-end workstations in
parallel, the elapsed time may be easily reduced to less than one
day. The second step, consisting of extracting the regression
models from a data base, is much faster, although it remains off-
line task. To fix ideas, on the same hardware it would typically
take some minutes to build a regression tree and some hours to
optimize the weights of a multilayer perceptron. Finally, the
on-line use of the trees or the perceptrons is extremely fast,
and would typically take less than a millisecond per margin
estimation.

4.2 Potential uses

In the off-line study environment (planning or operational
planning) the above approach enables security experts to gain
valuable insight into the physical behavior of their system, by
allowing them to identify the predominant factors and conditions
which determine contingency severities. This is, by itself, a very
important outcome of the method. On the other hand, once the
synthetic models have been extracted and validated they may
be used for security analysis and control, in particular in the
on-line operation context as is further discussed below.
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42.1 ANALYSIS
Security assessment is decomposed into successive steps.

1. General system robustness is assessed by the pre-contingency
LPM, which we suggest to compute using one of the “system
theory” approaches proposed in the literature.

2.If the latter margin is sufficiently large, we propose to analyze
each contingency in terms of its impact on the LPM, using
the above approximate models. The regression trees provide
also sensitivity type of information about the most influencing
system parameters.

3. If all post-contingency margins are large enough, we should
search for combinations of contingencies most likely to lead to
voltage collapses.

The last problem may be reformulated as the search for the
shortest path to insecurity, where the length of the path is de-
termined by the probability of the corresponding combination
of contingencies leading from the present state to a situation
where the LPM is reduced below an acceptable threshold. This
latter analysis aims thus at completing “classical” security as-
sessment, which often leads to rather uninformative answers,
by a more informative identification of the system weak points.
This is the adaptation to voltage security assessment of the
means-ends analysis proposed by Talukdar and Christie [14].

422 CONTROL

Since the regression trees provide means to identify the vari-
ables which influence most strongly the severity of a contin-
gency, they may suggest which preventive control alternatives
the operator could apply to reduce the latter severity. However,
at the present stage it is not clear how this could be achieved so
as to actually increase security, i.e. without leading to simulta-
neous reduction of pre-contingency LPM for example.

On the other hand, once the most dangerous events or se-
quences of events have been identified, more refined simulations
may be applied to pre-determine possible corrective control ac-
tions, e.g. according to the approach proposed in [7].

5 CONCLUSION

In this paper we have proposed a novel approach to volt-
age security assessment. It exploits non-parametric regression
techniques to extract simple and at the same time reliable mod-
els of the severity of a contingency, in terms of the incumbent
reduction in LPM.

The soundness and computational feasibility of the idea have
been illustrated on a realistic model of a large voltage stability
limited power system, showing very promising results and in
particular the ability to furnish interesting security information.
It is however too early to draw definite conclusions about the
possible uses of the above regression approach in planning and
operation. In particular, we quote the following, still open
questions.

Which kind of attributes may provide appropriate accuracy /
flexibility compromises for regression models ?

In particular, is it possible to use attributes which are indepen-
dent or controllable system parameters ?

How sensitive are the regression models to the way load power
margins are defined, e.g. to stability criteria, models and indi-
vidual load participations ?

How to devise a search strategy exploiting the approximate
models to identify dangerous combinations of outages ?

On the other hand, we recall that the flexibility of the computer
based learning approach allows us to account for any required
modelling sophistication, and to study the influence on security

of any kind of system parameters and models. The regression
trees provide interpretable information, which may receive var-
ious interesting uses. In this respect the proposed method is
a natural complement to the decision tree based approach to
voltage security assessment previously proposed [15].

ACKNOWLEDGEMENTS

This work was accomplished in collaboration with Electricité
de France. I am pleased to acknowledge the valuable discussions
with my colleagues Yannick Jacquemart, Jean-No&l Marquet,
and Patrick Pruvot of Electricité de France.

REFERENCES

[1] IEEE System Dynamic Performance Subcommittee of the power
system engineering committee of the PES. Voltage stability of power
systems : concepts, analytical tools, and industry experience. Techni-
cal Report 90TH0358-2-PWR, IEEE, 1990.

[2] North American Electricity Reliability Council. Survey of the
voltage collapse phenomenon - Summary of the Interconnection Task
Force. Technical report, NERC, 1991.

[3] C.W.Taylor. Power System Voltage Stability. McGraw-Hill, 1993.
[4] C. Lemaitre, J. P. Paul, J. M. Tesseron, Y. Harmand, and Y. S.
Zhao. An indicator of the risk of voltage profile instability for real-
time control applications. IEEE Trans. on Power Syst. PWRS-5, no.
1, pp. 148-0.861, Feb. 1990.

[5] T.Van Cutsem. A method to compute reactive power margins with
respect to voltage collapse. IEEE Trans. on Power Syst. PWRS-6,no.
2, pp. 145-0.856, Feb. 1991.

[6] F.L. Alvarado, Y. Hu, C. Rinzing, and R. Adapa. Vizualization
of spatially differentiated security margins. In Proc. of the 11th Power
Systems Computation Conf., pp. 519-525, Aug-Sept 1993.

[71 T. Van Cutsem, Y. Jacquemart, J.N. Marquet, and P. Pruvot. A
comprehensive analysis of mid-term voltage stability. Paper # SM94-
056 to be presented at the IEEE PES Summer Meeting 1994. To appear
in IEEE Trans. on Power Syst., 1995.

[8] L. Wehenkel and M. Pavella. Decision tree approach to power
system security assessment. Int. J. of Elec. Power and Energy Syst. 15,
no. 1, pp. 13-36, 1993.

[9] L.Wehenkel, T. Van Cutsem, M. Pavella, B. Heilbronn, and P. Pru-
vot. Machine learning, neural networks and statistical pattern recog-
nition for voltage security : a comparative study. In Proc. of ISAP’94,
1994.

[10] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and Regression Trees. Wadsworth Int., 1984.

[11] J. M. Zurada. Introduction to artificial neural systems. West
Publishing, 1990.

[12] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the theory
of neural computation. Addison Wesley, 1991.

[13] Y. Harmand, M. Trotignon, J. F. Lesigne, J. M. Tesseron,
C. Lemaitre, and F. Bourgin. Analyse d’un cas d’écroulement en
tension et proposition d’une philosophie de parades fondes sur des
horizons temporels différents. In CIGRE Report 38/39-02, Paris, Aug.
1990.

[14] R.D. Christie and S. N. Talukdar. Discrete approximations and
means-ends analysis for static security assessment. In Proc. of the
2nd Symposium on expert systems application to power systems, pp.
177-0.882, July 1989.

[15] L. Wehenkel, T. Van Cutsem, M. Gilliard, M. Pavella, B. Heil-
bronn, and M. Goubin. Decision trees for preventive voltage stability
assessment. In Proc. of the 2nd Int. NSF Workshop on Bulk Power Sys-
tem Voltage Phenomena - Voltage Stability and Security, Deep Creek
Lake, Ma, pp. 217-228, Aug. 1991.

Louis Wehenkel was born in Niirnberg, Germany, in 1961. He re-
ceived the Electrical (Electronics) engineering degree in 1986 and the
Ph.D. degree in 1990 both from the University of Liege, Belgium,
where he is a senior research assistant of the Fonds National de la
Recherche Scientifique. His research interests lie mainly in the appli-
cation of artificial intelligence methodologies to power system security
assessment.

F.12



