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SECURITYASSESSMENT ISAMAJO
concern in planning and operating electric
power systems. It consists of evaluating the
power system’s ability to face various con-
tingencies, and proposing ways to counter|its
main weaknesses when necessary. Contin-
gencies may be external or internal events (for
instance, faults subsequent to lightning ver-
sus operator-initiated switching sequences)
and may consist of small/slow or large/fast
disturbances (for example, random behavior
of the demand pattern versus generator or |ine
tripping).
Usually, numerical (for example, time-

domain) simulation of the corresponding sce-

nario assesses the effect of a contingency on

a power system in a given state. However, thedaptation to the specific needs of power-g

MAIN FE

nonlinear nature of the physical phenomengem security assessment. In particular,

and the growing complexity of real-life powerdescribe a framework that integrates seve

systems make security assessment difficulbf these techniques so that users can ext

For example, monitoring a power systenrelevant information tailored to their deg

every day calls for fast analysis, sensitivitysion-making needs. Among the many oth

analysis to identify the salient parameters drpotential applications of automatic learnir

ving the phenomena, and suggestions on haw power systems, security assessmen

to act on the system so as to increase its levalobably the most needed and versatile.

of security. On the other hand, increasing eco-

nomic and environmental pressure make the

conflicting aspects of security and economyfhe machine-learning

even more challenging. To meet these ¢ aframework

lenges, we need methods different from the

standard time-domain simulation approaches. Figure 1 shows the framework for appl
This article describes ongoing researncing machine-learning methods to secur

and development of machine learning andssessment. Random-sampling techniq

other automatic-learning techniques and thescreen all relevant situations in a given cg

A FRAMEWORK USES MACHINE LEARNING AND OTHER
AUTOMATIC-LEARNING METHODS TO ASSESS POWER-SYSTEM
SECURITY. THE FRAMEWORK EXPLOITS SIMULATION MODELS
IN PARALLEL TO SCREEN DIVERSE SIMULATION SCENARIOS OF

A SYSTEM, YIELDING A LARGE DATABASE. USING DATA-
MINING TECHNIQUES, THE FRAMEWORK EXTRACTS
SYNTHETIC INFORMATION ABOUT THE SIMULATED SYSTEM’S

ATURES FROM THIS DATABASE.

y$ext, and existing numerical-simulation tools
are exploited—in parallel, if necessary—ta
>rdlerive  detailed security information.
rddiachine-learning methods, the heart of th
i-framework, extract and synthesize relevan
einformation and reformulate it in a suitable
ngway for decision making. This involves trans
t ferming the database of case-by-case nume
ical simulations into a power-system secu
rity knowledge base. As Figure 1 illustrates
the framework integrates a large variety o
automatic-learning methods in a data-min
ing toolbox, according to the type of infor-
mation that these methods exploit or pro
y-duce. The final step involves using the
tyextracted synthetic information (decision
uéees, rules, statistical or neural networl
ynapproximators) either in real-time, for fast
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and effective decision making, or in the
offline study environment, so as to gain nev
physical insight and derive better system- g
operation-planning strategies.

How will this automatic-learning-based
framework complement classical system
theory-oriented methods (relying on ana
lytical power-system models such as nume
ical simulation) for security assessment? W

Y
Random Extraction of Use of
database synthetic synthetic
generation information — information
Decision
Study Several Machine trees Fast decision
definition preanalyzed learning and rules |  making
securit . it .
Random scenarigs Statistical Statistical Physical
i i and ANN i ;
sampling analysis interpretation
. models .
Numerical Neural Uncertainty
simulations networks management
N - -
Offline, automatic, Offline in study Online or
in parallel environment offline

can expect important contributions along

three dimensions: computational effi-Figure L. Machine-learning framework for security assessment.

ciency, interpretability, and managemen
of uncertainties.

Computational efficiency. By using syn-
thetic information extracted by automat
learning rather than using analytical me

ods, the framework enables much faster reatontrol applications.
time decision making. Moreover, regarding

data requirements, analytical methods
quire a full description of the system mod
however, the framework lets users tail
approximate models constructed throu
automatic learning, letting them exploit on
the significant input parameters. Compu

tional efficiency was actually the motivatianin the context of unusual system stateappraise useful synthetic information are
of Tom Dy Liacco, when he first envisionedreached after major disturbances, where relstrongly needed and, at the same time, tech-
(in the late 1960s) the use of automatic learrable real-time information is generally lack-nically feasible.

ing (at that time, statistical pattern recog

tion) for real-time security assessment. Eyenohanges will probably lead to a higher aneéxpect additional progress in learning meth
today, despite the significant increase in camphysically more irrational distribution of ods and application methodologies, we be
puting power in the last 25 years, this remajndecision making, and thus to more uncerlieve that some important electric powe

a strong motivation.
However, the synthetic information e

tracted by automatic-learning methods maguch as Facts (flexible alternating-currenapproach more or less routinely for security

itself be complementary to and general

more powerful than that provided in a caseinteractions among remote componentg of

by-case fashion by existing analytical me

ods. In particular, power-system engineeriand, increased competition among ecoAspects of automatic learning
are providing much more attention nowanomic actors may further reduce their will-

days to interpretability and management
uncertainties.

Interpretability. The use of automatic lear
ing to provide physical insight into nonline

system behavior was first proposed by Yohwork based on automatic learning.

Han Pao, Tom Dy Liacco, and Isil Bozma

the mid-19802.In the meantime, others have

shown that machine learning is indeed
effective way to generate reliable and int

pretable security rules from very large bod-

ies of simulated examplésyven for complex,
large-scale power systems. The extrac
rules express explicitly problem-specifi

properties, as a human expert might do. Engsystem security assessment. The main rea-

neers in charge of security studies can m
easily appraise, criticize, and eventually ad
these rules. This means the framework

also help maintain and enhance utility experstudies was limited by available simulation

tise. The machine-learning framework’s flex-hardware and software.
icibility lets users tailor the resulting informa- Today, however, all the required condi+
htion to analysis, sensitivity analysis, andiions are met. Present-day computer net
works along with fast simulation tools help
generate many detailed studies. At the same
eManagement of uncertaintiesThe need to| time, researchers have recently made much
eldevise a rational way to make decisionprogress in applying automatic-learning
omwhenever there are major uncertainties abontethods to large-scale power systems.
ghthe power-system state is becoming increastence, automatic information-synthesis
yingly more apparent. Today, for exampletools to help engineers compare and interpret
aeperators are often sorely missing guidancextensive elementary results and extract and

niing. Tomorrow, technological and economic Therefore, while my colleagues and |

tainties in routine operation and planningcompanies—for example, in North Amer-
-activities. On the one hand, new devicesica or Europe—will soon start using this

Ilransmission systems), may cause strongstudies.

hvery large interconnections. On the other

oingness to share information on their respec- Now we introduce classes of potentially
tive subsystems, despite the stronger physicaseful automatic-learning methods for syn
interactions. Such circumstances will creatéhesizing security-assessment information
- an urgent need for approaches that can mafsee the “Aspects of power-system security
arage uncertainties, such as the above framproblems” sidebar). We first give a definition
of the generisupervisedearning problem
and introduce three important classes of algo
rithms for this problem. Then we commen
on the use afinsupervisetearning methods.

in

aApplying the framework to
3fsecurity assessment ] ) )
Supervised learning problemThe generic

Despite repetitive attempts, there are stilproblem of supervised learning from exam
tenb large-scale industrial applications of theles can be formulated as follows:
cmachine-learning framework to power-

Given a learning set of examples of associated

- : L input/output pairs, derive a general model fo
oson is that, until recently, the existing auto- the underlying input/output relationship, which

pphatic-learning methods were not powerful may be used to explain the observed pairs ¢
caenough, and the amount of possible security predict output values for any new unseen input.

=
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Al< V1?

Yes No Al dures that can learn from exampl@sncept
learning from examplegenotes the process

Conclude of deriving a logical description of the
Classl Al<Vv2? Class1 ! Class2 necessary and sufficient conditions corre
V' L sponding to a class of objects—that is, a rul

ves wo\ in some given representation language.

/ major concern is finding adequate compro
Conclude conclude Class1 mises between rule complexity and data fit
Class1 Class? S0 as to avoid overfitting and to privilege
— interpretability.

v2 A2 Top-down induction of decision trepsp-
ularized by J. Ross Quinl&ris one of the
most successful classes of such method
Figure 2 shows a hypothetical binary deci
sion tree: to infer the output information cor-
For security assessment, an example correzeaning of the synthesized model andesponding to given input attribute values
sponds to a given operating situation. The inputetermining its range of validity. They in- we traverse the tree, starting at the top nod
attributes would (hopefully) be relevant patavolve testing the model on a set of unseeand sequentially apply the dichotomous tes
meters describing this situation’s electricatest examples and comparing its informatioencountered to select the appropriate su
state and topology, and the output could bwith prior expertise about the security prob€essor. When a terminal node is reached, t

Figure 2. Hypothetical decision tree and its corresponding input-space decomposition.

information concerning its security in the formlem. From the interpretation-and-validationoutput information stored there is retrieved,

of either a discrete classification (for instancepoint of view, some supervised learning Tdidt approaches decision-tree learning i
secure, marginal, or insecure) or a numericahethods provide information that is difficult a divide-and-conquer fashion, progressivel
value derived from security margins. to interpret, while others provide explicit andbuilding up a decision tree, starting with the
The solution of this learning problem hasvery transparent models that are easy to cortep node and ending with the terminal node:
several subtasks, which we now discuss.| pare with prior knowledge. At each step, the algorithm considers a tip (@
pending) node of the growing tree anc
RepresentatioThis involves choosing appra- Model useThis subtask involves applying decides whether it will be a terminal node o
priate input attributes to represent the powethe model to predict the security of new sitshould be further developed. To develop
system state, defining the output securityiations on the basis of the values assumenbde, this method first identifies an appro
information, and choosing a class of modelby the input parameters and, if necessargriate attribute, along with a dichotomy on its
suitable to represent input/output relations. inverting the model to provide information values. The method then splits the subset
The representation problem is left to theon how to modify input parameters tothe learning examples corresponding to th
engineer, who must compromise betweenchieve a security-enhancement goal.| Inode into two subsets corresponding to th
using very elementary standard operating parasing the model for fast decision making, weurrent node’s successors, according to th
meters and sophisticated compound featuresotice speed variations of several orderg afichotomy. The method gives the termina
magnitude between various techniques, butodes appropriate information on the outpu
Feature selectiorThis subtask aims at reduc-most of the methods are sufficiently fast|invalues derived from learning examples—fo
ing the input space’s dimensionality by disthe context of power-system security analyexample, the majority class label or proba
missing attributes that do not carry usefusis for control centers. bilities—or expected value and standard dev
information to predict the considered secu- ation of numerical output information.
rity information. This lets us exploit the local Supervised learning methodsNow we The right part of Figure 2 shows how the
nature of many security problems. consider only nonparametric automatic-decision tree decomposes its input space in
learning method$Parametric methods may nonoverlapping subregions. The number @
be useful in some particular circumstancesuch regions should ideally be as small a

Model selectionLearning typically identi-

fies, in the predefined class of models, théut they are not powerful enough to treat thpossible; at the same time, the states con-

one that best fits the learning states. Thiwide variety of practical security problems.tained by each region should belong to th
generally requires choosing model structur&/e discuss three classes of methods preame class. Thus, to build good decisio
and parameters, using an appropriate searefding three complementary types of infar-trees, an algorithm must rely on appropriat
technique. mation. Although we have selected thenoptimal-splittingandstop-splittingrules.

The distinction between feature selectiprirom three different paradigms (machine Optimal splitting has to do with selecting
and model selection is somewhat arbitraryjearning, neural nets, and pattern recognia dichotomy at a test node so as to provide
and some of the methods actually solve theg®n), we insist on the type of information maximum amount of information on the out-

two problems simultaneously rather tharprovided rather than on the paradigm itselfput value (that is, separate states of different
classes), whereas stop splitting must identify

successively.
Symbolic knowledge via machine learningsituations where further splitting would
Interpretation and validatiorThese are very Machine learning is the subfield of Al con-either be useless or lead to performang
important for understanding the physicakcerned with the design of automatic procedegradation because of overfitting.
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Aspects of power-system security problems

This sidebar is a guided tour on power-system security, for the unfaniilrered energy by resynchronizing lost generation as soon as possible
iar reader. We focus on security problems involamge disturbances picking up the disconnected load, in the order of priority. (The main tex
corresponding to nonlinear system behavior. Although such disturbances this article focuses only on preventive and emergency aspects.)
are generally very unlikely to happen, their potential consequences can be
extremely important and may lead to complete system blackouts, freezing
the economic activity of a whole country for many hours. Physical classification of security problems

Various security problems are distinguished according to the time

Classifying operating states scales of the dynamics, the characteristic symptoms (low voltage, lar

angular deviations, and so on), and the control means (reactive power,

Tom Dy Liacco has defined the different operating modes of a powswitching, and so forth) to alleviate problems.
system. Figure A shows a more detailed description of the Dy Liacco
state diagram. Transient stability. This concerns the ability of a power system’s gen-
Preventivesecurity assessment raises the question of whether a systerators to recover synchronous operation following the electromecha
in its normal state can withstand every plausible disturbance. If it cannegl oscillations caused by a large disturbance. In this context, dynam

preventive control would involve moving this system state into a securgrerformance is a matter of seconds and is mainly affected by switching

operating region. Because predicting future disturbances is difficult, preperations and fast power controls (such as fast valving or high-voltg

ventive security assessment aims essentially at balancing the reductiob@fconverters), and voltage support is affected by the automatic volt-
the probability of losing integrity with the economic cost of operation. age regulators of synchronous generators and static VAr compensators

Emergencytate detection aims at assessing whether the system ig8VCs). To determine the degree of stability, we evaluate a fault’s cri
the process of losing integrity, following an actual disturbance incep- cal clearing time, which is the maximum time it may take to clear the
tion. This is a more deterministic evolution, where response time is cifdwlt without the system losing its ability to maintain synchronism.
ical and economic considerations become temporarily secondary.

Emergency control aims at taking fast last-resort actions to avoid parvoltage security. The fastest voltage instabilities, characterized by sud-

tial or complete service interruption. den voltage collapses, may develop at the same or even higher spee
When both preventive and emergency controls have failed to bring than loss of synchronism. More common is the midterm voltage insta

system parameters back within their inequality constraints, automatic bility, which corresponds to a typical time frame of one to five minutes.

local protective devices preserve power-system components operatingn this case, voltage collapse is mainly driven by automatic transform

under unacceptable conditions from undergoing irrevocable damages.on-load tap changers trying to restore voltage nearby the loads. The!

This leads to further disturbances, which may result in system splittinga third, even slower time frame, corresponding to the so-dalhed

and partial or complete blackouts. Consequently, the system enters théermvoltage instability, which involves a gradual buildup in load

restorative mode, where the operator must minimize the amount of undemand. This interacts with classical static security and is well within

the scope of operator intervention.
Although a voltage collapse may

result in wide-spread degradation of the
B ] voltage profile and subsequent loss of
] Preventive state : synchronism, it is normally initiated by
Normal E, | Lo alocal deficiency in reactive power
] ‘ - S . . . '3 reserves or a reduced reactive-power
] Maximize economy and minimize the effect of uncertain contingencies "D - o .
' o) transmission capability into a given
] load area. A load power margin, the
B it maximum additional amount of power
: Preventive | that may transfer safely from the gener-
Restorative -, | Alert g1 ) control o ation to a given load area, may evaluate
; Resynchronization Trade-off of ; 3 the distance to voltage insecurity.
] Load pickup reventive versus D&
] orrective control = Static security. This concerns essen-
; tially thermal overload problems of
- Y B ettt B deleiiniuieintaiintiely”. 0 (it ' generation-transmission system com-
7777777777777777777777777777 Rt R ponents, where phenomena span over
| I extremis ; Emergency E’Eg;%fglcy o significantly longer periods of time.
E Partial 1 Protections Overloads (corrective) § Foreempls, e ovgrloads may be tol-
: or total Undervoltages 2 erated for 30 to 60 minutes under favor-
! service ) - Underfrequency... able weather conditions.
i interruption -, -l | Split Instabilites  E, -
- ' Load
O SEEELNEES + shedding Practical application domains
E Equality constraints | Inequality constraints Table A shows the practical study con-
|:> Control or protective actions <:| Foreseen or unforeseen disturbances R L
assessment applications. The first col-
umn identifies the study context; the

Figure A. Operating states and transitions. Adapted from Lester Fink and Kjell Carlsen.t

second specifies how long in advance
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Table A. Security assessment environments (adapted from Wehenkel and Pavella?).

ENVIRONMENT TIME SCALE PROBLEMS OPERATOR ExPERT

System planning 1-10 years Generation No Yes
Transmission
Protection

Operation planning 1 week—1 year Maintenance No Yes
Unit commitment
Protection settings

Online operation 1 hour-1 day Preventive mode Yes Partly
Security assessment

Real-time* monitoring Seconds-minutes Emergency control No** No
Protective actions

Training Days—-months Improve operator skill Yes No

which considers static predisturbance situations.
**Except for static security corrective control.

(with respect to real time) studies may be carried out; the third indicatescriteria, machine leal

security is available.

In the first three contexts, we rely mostly on the intervention of human

matic procedures.

for several load patterns, with many contingencies possible for each. Anrange of topologies,

reliability.

mal situations, and setting of protection delays and thresholds. The

mation and exploit the system more economically. readily available sys
Similarly, for a closer real-time determination of operating security emergency-control r

*Here we distinguish real-time monitoring, which considers dynamic situations following a disturbance inception, from mere online monitoring,

rning is particularly well-adapted. It would let engi-

the type of subproblems generally considered in a given environment; theers screen more systematically representative samples of situations, to
fourth indicates whether an operator is involved in decision making; anddentify critical operating parameters and determine their security-limit
the last column indicates whether an expert in the field of power-systentables needed for online operation. This would involve automating and
enhancing the manual approaches that many utilities use.

experts exploiting the numerical simulation tools. In real-time monitorin@nline operation. In the context of this framework, we would exploit

and emergency control, the reduced time available calls for more auto-online the security knowledge bases set up offline (for instance, in opera-
tion planning). Appropriate strategies are necessary to update this infor-
mation when major changes happen in the system. For example, several
System planningMultitudinous system configurations must be screenedweeks in advance, we could design routine security criteria for a forecast

load levels, and generation schedules. Then, closer

order of magnitude of 100,000 different scenarios per study would be reé&d-real time (perhaps a day or a few hours before), we might refresh these
istic for a medium-sized system. Although enough time might be availabtziteria to handle previously unexpected situations. To be compatible
to run so many security simulations, there is still room for improved datawith the way operators usually appraise their system, it is particularly
analysis methods to exploit the results more effectively in order to identifymportant for the synthetic information extracted by automatic learning
structural system weaknesses and to provide guidelines in order to imprtavee as simple as possible to interpret.

Real-time monitoring. Here, the purpose is to design criteria to more or
Operation planning. As Table A suggests, operation planning concerngess automatically trigger emergency-control actions, so as to prevent a
a broad range of problems, including maintenance scheduling (one yedisturbed system state from evolving toward a blackout. An important
to one month ahead), design of operating strategies for usual and abrespect in designing the security criteria is the use of appropriate models
to reflect the disturbed power-system behavior. (Depending on the con-
number of combinations of situations that must be considered for maitext, we use the term “model” either to denote the physical-power sys-
tenance scheduling is also generally very large, and automatic-learniigm model or the synthetic information extracted by automatic learning.)
approaches would be equally valuable to better use the available infof~urthermore, along with minimal data requirements and ultrahigh speed,

tem measurements as inputs to the derived
ules is often an operational constraint.

Researchers have extensively studied deei- regression treeshich infer information
sion trees in the context of various security-
assessment problerfid main asset lies i
the explicit and logical representation of the
induced classification rules and the resulting
unique explanatory capability. In particular,

fuzzy treeswvhich use fuzzy logic instea
of standard logic to represent outp
information smoothly.

the method provides systematic correlatioBoth approaches let us infer informatic

analyses among different attributes and iderabout security margins, as do the techniq
tifies the most discriminating attributes atdiscussed belo?
each tree node. From a computational view-

point, it is efficient at the learning stage asSmooth nonlinear approximations via artif

well as at the prediction stage. cial neural networksThe field of artificial

Two generalizations of decision trees useneural networks has grown, since the eg

ful for security assessment are work on perceptrons, to an important a

about a numerical output variable, and

productive research field. In this article, |
focus on only multilayer perceptrofs.
d The single-layer perceptron is basically a
usimple linear threshold unit with an error-
correcting learning algorithm. This percep
tron can represent a linear boundary in it
ninput space. Its limited representation capa
udslities have motivated the consideration o
more complex models composed of multiple
interconnected layers of perceptrons. Figur
i- 3 illustrates the classical feed-forward MLP,
compared with a single perceptron. The firs
rlgr input, layer in the MLP corresponds to the
nchttribute values; the last, or output, layer co

A
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Training. During operator training, the security criteria derived in eitherby time-domain methods. Some of them can thus provide a rich stability
of the preceding contexts might be usefully exploited as guidelines, prassessment (margins, sensitivities, and mode of instability) within a fra
vided they're presented in an intelligible way. In addition, these modelstion of the time required for a single time-domain simulation. A major
might be used internally in a training-simulator’s software, to set up padrawback is their difficulty in accurately exploiting models of generators
ticular scenarios that present particular insecurity modes. and control loops as well as nonlinear or dynamic loads. However, since
the first multimachine direct methods of the late 1960s, researchers haye
made much progress in incorporating more realistic models.

Analytical tools
Voltage stability and security.Tools for voltage-security assessment
Many numerical methods are available for security assessment in theange from static load-flow calculations to full short-term or midterm
different time frames mentioned. We call thanalyticaltools, because  time-domain simulations. Because of the rather recent emergence of volt-
they exploit analytical power-system models, in contrasymthetic age-security problems, modeling practices have not yet reached maturity,
tools, which are extracted by automatic-learning techniques. Some of compared with those used in transient-stability studies. In particular, one
them are based on general-purpose power-system dynamic simulatiorintrinsic difficulty of analyzing voltage collapses is that overall system
packages and have a very broad scope. Others are based on simplifiedehavior depends strongly on the load behavior, for which good models
models or approaches representing only those features that are relevaate generally missing.
for the particular study. The latter methods might be significantly more
efficient, although at the expense of being restricted to some particularShort-term or mid-term dynamic simulatioBecause voltage collapses
physical phenomena or some particular (types of) power systems. We may involve time constants ranging from a fraction of a second to a fe
briefly discuss the analytical tools, because they provide the raw input minutes, a variable step-size numerical integration method with stiff-
data exploited by the automatic-learning methods to synthesize the higlystem simulation capability is preferable for the sake of efficiency and
level security information. accuracy, in contrast to transient stability, where fixed step-sized methpds|
have been widely used.
Transient stability. There are two main classes of analytical tools for tran-
sient stability assessment: a time-domain (or step-by-step) simulation Simplified simulationsBecause many voltage-security problems are
approach and the direct methods, which are based on the second Lyapusissentially driven by automatic on-load tap-changer mechanisms, it is
method. possible to sometimes neglect the faster interactions among load and ger)-
eration dynamics. Equilibrium equations then replace the differential
Time-domain simulatiorthe general power-system dynamic model conequations corresponding to the faster phenomena, and we model only|the
tains mixed algebraic and differential equations, strongly nonlinear, andlower dynamics. With the intrinsic limitation of neglecting problems
typically involving a few thousand discrete or continuous time-state var¢aused by the fast dynamics, this kind of approach can drastically rediice
ables. To assess transient stability, the time-domain approach involvescomputing times.
simulating the system’s during- and post-fault behavior for a given distur-
bance, and observing its electromechanical angular and voltage swingeost-contingency load flow further simplification involves totally
during a few seconds. Practical criteria vary from one utility to another,neglecting the dynamics and using only purely static postcontingency
but an unacceptable performance would generally imply too large or  |oad-flow calculations. Typically, this lets us compute maximal loading
undamped angular deviations (for example, pole slips) or excessively limits on the basis of successive computations or even direct optimization.
large variations of voltage or frequency.
To obtain stability margins, we must run repetitive simulations for var-
ious prefault operating states or various assumptions concerning the
delays of protection devices. Although this approach is still considered
CPU-intensive, within the last three years the time required for a typicaReferences

power-system simulation with high-order models has shrunk from one
hour to a few minutes. 1. L.H. Fink and K. Carlsen, “Operating under Stress and Sti&BFE

SpectrumVol 15, No. 3, Mar. 1978, pp. 48-53.

Direct Lyapunov-type methodthese methods identify when the system 5 | \wehenkel and M. Pavella, “Advances in Decision Trees Applied to
leaves its stability domain without further integration of the system trajec-  power System Security AssessmeRtgc. IEE Int| Conf. Advances
tory. By not simulating the post-fault trajectory, they reduce the simulated in Power System Control, Operation and Manageniast. Electrical
time period to a fraction of a second instead of the several seconds taken Engineers, Hong Kong, 1993, pp. 47-53.

responds to the desired security classificang examples. In recent years, researcheeslinear transformation of the input space,
tion or margin information. Intermediate lay-have made much progress in improving thevhich, in subsequent layers, approximate
ers let the network arbitrarily approximateefficiency of optimization techniques for theoutputs. However, one of the difficulties with
complex input/output mappings, providediearning procedures of MLPs, but MLPs areMLPs comes from the very high number of
the network’s topology and weights are chostill very slow at the learning stage, which mayveights and thresholds related in a nonlinea

@)

=

sen appropriately. prevent extensive experimentation for datafashion, which significantly limits any insight
The discovery of the back-propagatiorbase sizes typical of security assessment ifto the relationship learned—the input/out
algorithm has been central to the success ofalistic power systems. put model corresponding to the MLP after the

MLPs. This algorithm lets us efficiently and As with decision trees, an interesting proqpMLP’s weights have been adapted by back
locally compute the gradient of the network’serty of MLPs is their ability to achieve fea-propagation. All in all, MLPs offer a func-
output error with respect to its weights andure extraction and learning in a single stegion-approximation approach that is flexible
thresholds. We may exploit this algorithm iterthe weights connecting the input layer withand easy to apply, but difficult to interpret.
atively to adjust the weights so as to reducthe first hidden layer essentially project the Many similar methods exist, such as
the total mean-square output error for learnnput vector in particular directions, realizingradial-basis functions and projection-pursuit
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regression techniques. They offer the possities (and redundancies) among the differeritiow can we generate a database®pro-
bility of translating the case-by-case infar-attributes used to characterize objects. Inthdgde a representative sample of voltage
mation provided in the learning sets into greontext of power-system security, both applisecurity scenarios for the above problems,
approximate but closed-form numericalcations may be useful as complementarwe would first talk with planning and oper-
model. The latter might be useful for quicklydata-analysis and preprocessing tools. | ation-planning engineers and system opera:
assessing unseen situations and directly com-Researchers have proposed unsupervisgéats to gather information about known sys
puting sensitivities. learning methods under the three umbrellagm weaknesses and operating practices.
given above to classify supervised learning From this information, we would design
Memory-based reasoning via statistical patmethods, termeduster analysign the sta-| database-building software to generate ran
tern recognitionThe previous two approachestistics literature conceptual clusteringn | domized samples representative of norma
essentially compress detailed informatiorthe machine-learning community, aself- | operating conditions, including a sufficient
about individual simulation results into gep-organizing map®r vector quantizatiorin | number of unusual situations, deemed rele
eral, global security characterizations. We c¢athe neural net community. vant for security characterization. In partic
provide additional information, however, inja ular, with respect to real-life operating sta:
case-by-case fashion, by matching an unseen tistics, this sample would typically be biased
(for example, real-time) situation with simi- Applying automatic learning toward the insecure regions of the state spage.
lar situations found in the databa8&Ve do tO power-system security According to that sampling procedure, we
this by defining generalized distances so as t would generate an initial database, typically
evaluate similarities among power-system |t- Here, we describe a hypothetical applicacomprising several thousand states. The secu-
uations, along with appropriate fast databaséion of the automatic learning-based framerity of each state would be preanalyzed with
search algorithms. work to a hypothetical security problem.respect to the studied disturbances. For exam-

One such technique is the well-knokin| Then we provide a short overview of somele, we could compute post-contingency
nearest neighboreK-NN) method, which| real-life applications to large-scale securjtjoad-power margins for real large-scale
can complete decision trees and multilayeproblems. power-system models on existing computer
perceptrons. The method classifies a state networks within some hours of response time,
into the majority class among iksnearest| A hypothetical illustration of the frame- | by using efficient simulation software and
neighbors in the learning set. This method’svork. The machine-learning framework |sexploiting trivial parallelism. In addition to
main characteristics are high simplicity yefflexible enough to be applied to a large varithis information, we could predetermine
sensitivity to the type of distances used.| Ity of security assessment problems, rangppropriate preventive or emergency-contrg
particular, to be practical, ad hoc algorithmsng from system planning to the design jofnformation for the insecure states, and secufe
are needed to choose the distances on| tepecial protection schemes. In this section,dconomic-generation dispatch for the secure
basis of the learning set. Although in the paswill describe its application to voltage secu-ones.
this generally involved exploiting a few rity assessment, which is one of the areas Furthermore, we would compute a cery
sophisticated ad hoc input features manuallwhere we can expect systematic, real-lifeéain number of attributes, which we would
selected on the basis of engineering judgapplications in the near future. propose as input variables to formulate
ment, today the emphasis is more on the security criteria. In the preventive-mode
research of automatic distance design mett security problemLet us imagine that in security-assessment problem, these attni
ods exploiting the learning states. our hypothetical power system voltage seclbutes would typically becontingency-
rity is limited in some reactive power-weakindependenprefault operating parameters,
Clustering and unsupervised learningln | area. Let us also suppose that this securiguch as voltages, reactive power generation
contrast to supervised learning, where thproblem was discovered in a preliminaryand compensation reserves, power flows,
objective is clearly defined in terms of mod-screening security study, where possibly corand topology indicators. For the emergency
eling the underlying correlations betweerstraining disturbances were also identified.state-detection problem, we would rather
some input variables and some particular qut- A practical problem would be to charac-use raw system measurements (for exan
put variables, unsupervised learning methterize security regions with respect to thesple, voltage magnitudes, power flows, trans
ods are not oriented toward a particular predisturbances, so as to provide operators wittormer ratios, or breaker status) of the inter
diction task. Rather, they try to identify preventive security-assessment criteria anthediate state that immediately follows the
existing underlying relationships among a setffective preventive control to alleviate potendisturbance. In contrast to the preventive
of objects characterized by a set of variahlettal insecurities, such as optimal reschedulmode attributes, the emergency-state attrj
or among a set of variables used to charna@g of available reactive power resources.| butes would depend on the disturbance and
terize a set of objects. Another, different problem would be theon the short-term system modeling, in addi

Thus, one of the purposes of clustering islesign of emergency-state indicators to/bBon to the prefault operating state. Car
to identify homogeneous groups of similarapplied in case of a disturbance. Ideally, thesmust be taken to appropriately take intg
objects, to represent many objects by a femdicators would be highly anticipative andaccount uncertainties about this informatio
representative prototypes. Graphical, 20eliable, and would provide information onby adding random-noise terms whereve
scatter plots may help in analyzing the datappropriate emergency-control means suahecessary (load distribution and sensitivity
and identifying clusters. Another applicationas on-load tap-changer blocking and loatb voltage, external systems, measurement
of the same techniques is to identify similarshedding. noise, and delays).

T =2
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Unsupervised learning for data
preprocessing. In practical

security problems, many differ-
ent attributes provide equivalent

NG
O
information because of the very .

strong physical correlations \O c
o m
among a power system’s geo- 0= 1 —exp(= B=f) o A
graphically close components. 1 +exp(- B=i) Output
Thus, clustering methods can layer

help define a few representative
attributes from a larger number
of elementary variables.

For example, let us consider
the case of voltage magnitudes
We can easily compute correla-
tion coefficients among any pair
of bus voltages on the basis o
the database statistical sample
A clustering algorithm search-
ing for a reduced number of
voltagecoherentregions can then use themthe security information predicted by thenrity margin. If there are too many false alarms,
as similarity measures. For each region, we'diith the “real” information determined by we should use additional candidate attribute
use an equivalent (for example, mean) voltthe simulation. Along with the unseen tesbr learning states.
age as an attribute instead of individual bustates generated automatically with the learn- The DTs provide a simplified view of
voltages, and we would reduce the compung states, a test sample that is representatigecurity in terms of a discrete model relatin
tational burden of the subsequent superviseaf actual operating statistics from historicala few security classes and thresholds @
learning of security criteria yet improve online records should be collected. attribute values. We might also wish to pror
robustness and interpretability. For example, We must first define security classes byide a continuous security margin—at least,
we can exploit 2D Kohonen feature maps tsetting appropriate thresholds on the securiiy the neighborhood of the threshold value
visualize the relationships among voltagenargin. Then, the decision-tree buildingused to define security classes. As I've men
regions and easily compare them with théncludes tioned, one of the strong points of the MLR
geographic location of busbars in the power is its nonlinear modeling capability. On the
system. * the automatic identification of the subsebther hand, the decision tree identifies the

In addition to the above feature-extraction of attributes among the candidate oneattributes in strong correlation with the secu
application, researchers have proposed more relevant for the prediction of the securityrity class. Thus, in a hybrid approach, we
conventional clustering techniques thatiden- class (say ten to twenty among one or twanight use the latter attributes as input var
tify groups of similar power-system operat- hundred), and ables to an MLP model, and a normalized
ing states. One possible purpose is to parti- the definition of appropriate thresholdsecurity margin as output information.
tion a very large database into smaller subsets values for these attributes so as to provide In practice, we might need to proceed b
for which the security-assessment problem an approximate model of the voltagge4rial and error to determine an appropriat
could be easier to solve. Another interesting security region of the area of the powenumber of hidden neurons and topology fg
application would be to condense the full system studied. the MLP structure. Once its structure an
database into a reduced number of represen- weights have been adapted on the basis of
tative prototypes, thereby decreasing thé addition to a global DT covering all dis- learning states, the MLP provides a closec
number of required security simulations andurbances simultaneously, single-contingencform and differentiable security approximator,
shortening the associated computation delay®Ts can also be constructed to provide mpnehich we can use for fast margin prediction
specific information and additional insight.for any seen or unseen state and to compute
Supervised learning of security criteria. Furthermore, we can construct DTs for varimargin sensitivities to attribute values. Practi
Given a database of examples, with securitgus security-margin threshold values, to diseal experiments with various security problem
margins determined for several contingeneriminate between marginally secure and verghow that this leads to richer and more reliab
cies and several candidate attributes consecure situations. Depending on whether nosecurity-assessment information.
puted, supervised learning would derivanal predisturbance or only after-disturbance With the previous two approaches, we
appropriate security criteria. First, thoughattribute values are used, we can use the DEssentially compressed detailed information
we would partition the database into disjojntn either a preventive or an emergency-wjsabout individual simulation results into gen-
learning and test samples. We'd use the learapproach. If there are too many nondetectioresal global-security characterizations. This let
ing sample to build the synthetic security cri-of insecure states, then before rebuilding as provide the required physical understand-
teria. We'd use the test states to assess ttree we can increase the threshold value usedy, thanks to the data-analysis component of
security criteria’s reliability, by comparing to define the secure class in terms of the secdecision trees and attribute-clustering tech-

Figure 3. Comparison of single- and multilayer perceptron models: (a) single-layer perceptron; (b) feed-forward multilayer
perceptron.
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One-line diagram (735 kV) Global decision tree
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Figure 4. Transient stability assessment of the Hydro-Québec system.

niques. In addition, we can efficiently use thale France (EDF), we initiated a first large-unstable classification. Hydro-Québec imple
derived models for online security analysis.scale feasibility study in early 1990, for pre-mented the limit tables on the real-time com
In this latter context, we can get furtherventive transient stability assessment of|aputer via an ad hoc database tool called Lin
information via memory-based reasoningimportant generation plant within the large-sel. The purpose of our investigation was tp
exploiting appropriate distances to find thescale extra-high-voltage (EHV) system pfevaluate the automatic-learning approach
most similar preanalyzed situations to th&DF! (EHV is 225 kV to 400 kV; HV (high| ability to provide a more systematic and
real-time state. Once identified, we can useoltage) is 63 kV to 90 kV; MV (medium potentially more efficient methodology to
these situations in many ways. For example/oltage) is less than or equal to 20 kV) Maralerive these operating guidelines.
their distance to the current state would prorecently, a detailed study was carried outjon We generated a database of 12,500 normal
vide a measure of confidence of the securitthe Hydro-Québec system. operating states via random sampling and
information provided by any model derived The 735-kV system of Hydro-Québec ischained load-flow computations; it com-
from the database (DT or MLP). If the latterillustrated in Figure 4. Its normal operatingprises more than 300 different combination
were too large, we would then conclude thatondition is considered secure if it withstand®f up to six line outages, about 700 different
for the current state, no reliable securityany permanent single-phase-to-ground faulcombinations of reactive voltage-support
information may be derived from the datafollowed by line tripping, fast reclosure, andequipment in operation, and a wide variety
base. If, on the contrary, the nearest neigtsubsequent permanent tripping. This systewf power-flow distributions. The dashed lines
bors were sufficiently close to the currenis mainly constrained by its transient stahilin Figure 4 show the variable-topology part
state, then we could extrapolate various kindsy limits, caused by the very large powerof the 735-kV system. For each state, we
of detailed and specific security informationflows and long transmission distances. | obtained the corresponding classification,
from these states to the current situation and More specifically, in our investigations, we stable/unstable, from Limsel, running on the
show them to the operator, along with| aconsidered only faults occurring within thebackup online computer. The results werge
detailed contingency analysis and preventivdames Bay transmission corridor in the WesB,939 stable states and 8,561 unstable ones,
or emergency controls. ern part of the system. With respect to sucamong which 393 were marginally unstable
faults, the stability is mainly influenced by and 8,168 were fairly unstable.
Overview of some real-life applications.| the power flows and topology within the samme To describe the operating states and char-
Below, we provide more specific informa- corridor. A manual approach had previoushacterize their stability, we computed the fol
tion about feasibility studies of the auto-developed transient stability limits; operationdowing types of candidate attributes: active
matic-learning approach, made for actuaplanning engineers determined offline, on th@ower flows through important lines and cut
power-system security problems. basis of carefully chosen simulation scenarsets in the James Bay corridor; total active
ios, approximate limit tables relating the syspower generated in the four La Grande (LG)
Transient stabilityTogether with Electricité| tem topology and power flows to a stablepower plants and various combinations; sev-
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Crisp tree

B /nstances with CCT < .240: 181/2,000
Instances with CCT >.240: 1,819/2,000

Fuzzy tree

<1,034 ~"Ps/Ns [.76] > 1,303

o 2/Ps/Ns [.83

Ps/Ns[.89]
< 1,091 >1,001 <

Ps < 5,066
N

. T101 T110

3|
TO11 T100 Ti1

B 0.417 <= stability < 0.583: 50 instances
B 0.583 <= stability < 0.750: 52 instances
B 0.750 <= stability < 0.917: 57 instances
{1 0.917 <= stability < = 1.0: 1,710 instances

1 T010

Learning-set classification
W 0.0 <= stability < 0.083: 54 instances
W 0.083 <= stability < 0.250: 34 instances
B 0.250 <= stability < 0.417: 43 instances

Figure 5. Crisp decision trees and fuzzy decision trees.

eral SVCs in operation within the six su
stations in the James Bay corridor; and |
ical indicators (in/out) for important lines
We determined this set, composed of 67 ¢
didate attributes, with the help of an exp
in charge of transient-stability studies
Hydro-Québec. From previous studies,
already knew that, along with the topologic
information and the total number of SVC
the total power flow through the corrida
would be an important attribute.

We built the tree that is partially repre
sented in the right-hand part of Figure 4
the basis of the database'’s first 10,000 stz
(8,000 to grow the DT and 2,000 to dete
mine its optimal degree of pruning) and
candidate attributes—including, in additig
to the above 67 ones, four linear-combin
tion attributes and some other combin
ones. Figure 4 shows its most important pa
near the top node. The notation used fq
typical node is also represented at the
left-hand side of the tree: each node is r
resented by a box, the upper part of wh
corresponds to the proportions of stable &
unstable learning states relative to this no
Test nodes are identified by the labélof
St, the latter corresponding to subtrees t
have not been drawn on the picture. Termi
nodes are identified by a label for leafs
and D for dead ends. A leaf is a termin
node that contains a strong enough majo
of learning states of a single class (the al
rithm expressed this in terms of an entrg
measure), whereas a dead end is a node
corresponds to a subtree pruned to av
overfitting. The label indicates the type of
node, and the node’s number of learni
states is indicated next to it.

All'in all, the tree comprises 57 test nod

b-and 58 terminal ones. This tree has identifjeel 5e
bgamong the candidate attributes the 24 most
. relevant ones. Among others, at several test
amodes (including the top node), the algorithm
erhas selected a linear combination of the total
apower flow Trbj in the James Bay corridor
vand the number of SVCs in operation,
alNb_ Comp, which thus confirms prior knowl Researchers have also investigated deco
sedge. Thus, the threshold values of Trbj arposing the database into various topolog
rfunctions of Nb_comp. For example, if| classes and obtaining simpler and more inte
Nb_Comp = 12, then the leftmost terminal pretable tree$%13
2-node L1 in Figure 4 corresponds to a limit
owalue of max{6,271 + (121120), 5,656 + (12| Fuzzy decision tree%o illustrate the poten-
atés215), 5,533 + (121269)} = 8,761 MW. | tial of fuzzy decision trees in the context o
2rAbove this value, the tree declares a stateecurity assessment, let us consider a si
87unconditionally unstable for at least one linglified problem derived from the transient
nfault in the corridor. stability study carried out on the EDF syst
a- To evaluate the tree’s generalization capdem?!! Here, we measure a fault’s degree g
edbility, we tested it with an independent tesstability, using its critical clearing time. Thus,
artset comprising the 2,500 states of the datave define stability classes for crisp trees
r base not used for growing or pruning the treeysing thresholds on the CCT.
topielding an overall error rate of 4.3%. (The The left side in Figure 5 gives a partia
epgower part of each node box in Figure|4view of such a crisp decision tree; its righ
cllepicts the proportion of erroneous classifiside shows a corresponding fuzzy tree. Th
anchtions of each subtree’s test states. Of|tHermer was built for a classification threshold
dd.,622 fairly unstable states, the tree classifiedf 0.240 seconds. The fuzzy tree was built 0
only 30 as stable, yielding 1.85% dangerouthe basis of a fuzzy classification: the stabil
hatrrors. On the other hand, the tree classifieitly degree of a state varies continuously fron
nal3 marginally unstable states as stable, lea@-to 1 as its CCT increases from 0.215 t
ing to small nondetection errors. There wer@.265 seconds. The crisp tree uses attribu
alalso 52 false alarms—that is, stable test statdwesholds to propagate a state either to right
itthat the tree classified as unstable. or left successors, and the fuzzy tree uses
go- To improve accuracy, we exploited thetransition regions defined by two thresholds.
pgame database further by building a multiOutside the transition region, a state propa
theger perceptron (with a single hidden layegates only to one successor, but inside it ¢
oidf 20 neurons) on the basis of the samboth successors, with a weight varying pro
al0,000 learning states, leading to a reducegtessively as a function of the attribute valu
ngest-set error rate of 2.4%. Computationaand the thresholds.
requirements (in CPU time), determined pn The fuzzy-tree growing algorithm is very
es Sun Sparc10 workstation, are similar to the crisp Tdidt methddt auto-

about 1 week to generate the databa
generation;

1 hour to build the decision tree, and 1
second for testing; and
60 hours to learn the MLP weights, anc
10 seconds for testing.
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matically determines the transition regiongower-flow computation divergence or noh<{1,817/11,236)) = 84% of the severity’
at each test node, recursively partitioning theonvergence.) For each state, we computedriance.
learning set, though in a fuzzy way. We deabout 200 attributes, corresponding to Key Once we've constructed the tree, we can
signed a pruning technique similar to thaseariables such as topological indicatorsuse it to estimate an unknown state’s conti
used for crisp trees, to keep the tree conmimportant EHV power flows, 400-kV volt; gency severity. The algorithm directs th
plexity minimal. In the above example, thisages, numbers of units in operation in powestate from the top node to the appropriat;
algorithm let us significantly improve accu-plants, total load demand, reactive shunsuccessor according to the state’s reactive
racy by reducing classification-error ratescompensation reserves in the study regiomeserve, and then to a terminal node accorg-
from 3.3% to 1.3%. At the same time, theand reactive generation reserves. ing to the status of Circuit 2. There, the mean
algorithm provided more refined informatign ~ All in all, this broad study considered 26severity of the corresponding learning states
about the system’s stability. different contingencies, corresponding ta as an estimate of the severity.
Thus, fuzzy trees can express continusynchronous condenser, a generator or |ine This very simple tree accurately estimates
ously varying degrees of security in a ventripping, and busbar faulfsThe difference| the disturbance’s severity. Admittedly, w
natural and effective way, as with smoattbetween pre- and postdisturbance loadnightimprove it by further developing som
regression techniques. At the same timeaower margins in the Brittany region deter-of its terminal nodes, using other attribute
fuzzy trees provide easily interpretablemined a disturbance’s severity. Thus, besidesarrying complementary information. How-
information, as do symbolic machine-learncomputing the predisturbance margin, wever, when we apply this simple model to
ing techniques. Some research is still neededso computed the corresponding 26 pgstepresentative independent test sample, the
to improve the computational performanceslisturbance margins for each operating statdifference between its estimate and the actual
of the fuzzy-tree growing and pruning algp-yielding a total of 135,000 load-power mar-precomputed severity yields an overall mean
rithms, and to further validate them on dif-gin computations. Overall, the database gererror of 0.5 MW and standard deviation o
ferent test problems. However, this is a vergration required about one month of CRW3.6 MW. This is, indeed, almost negligibl
promising technique—particularly in thetime on a Sun Sparc10 workstation. compared to the study region’s overall loa
context of security assessment, where the We built several tens of multilayer per-level, which varies between 5,000 MW an
output information often varies continuouslyceptrons and even more decision or regre3;700 MW.
with input attributes. sion trees, for different disturbances and bpth
preventive security assessment and emelProbabilistic global dynamic-security
Voltage securityWWe carried out a second, gency-state detection. In addition, we alsassessmentn the summer of 1995, another
rather extensive feasibility study for voltagetried out various nearest-neighbor classifigrdong-term research collaboration starte
security, on a test problem concerning thédo illustrate, let's look at the regression treghrough the initiative of Electricité de France
Brittany region of the EDF system. We con-depicted on the right-hand side in Figure| Bwith the objective of developing a proba
sidered both preventive security assessmebtiilt to estimate the severity of the loss |obilistic method to globally evaluate power-
and emergency-state detectidFhe left side| Circuit 1 of an important 400-kV line (seesystem failure modes. This included assessi
of Figure 6 shows the one-line diagram of théhe one-line diagram in the figure). A baxtheir probability, their actual consequences,
related part of the EDF system. Its subregion®presents each node of the tree. The b@nd their prevention. The approach proceeded
correspond to voltage-coherent load areagraphically represents the contingency sevein the following way:
determined with respect to the behavior|oity’s distribution of values in this node’
HV voltage magnitudes just after the loss|ofearning set, along with its sample mean Set up a detailed probabilistic model o
a generator in Plant 1. These regions wenalue and standard deviation, and the number the possible causes of insecurity: multi
automatically determined in a preliminaryof its learning states. At the top nodiér= ple disturbances, bad coordination or
study by unsupervised learning, usingl 2,775 corresponds to the total number|of misuse of protective devices, or over
Kohonen feature map. learning states used to build the tree. optimistic preventive-security strategies
The independent variables used during the The total predisturbance reactive resefve caused by uncertainties in modeling
random sampling of the predisturbance statewailable in Plant 2 is automatically selected parameters.
concerned the following: topology (single oras the best test attribute at the top node, withra Sample representative combinations of
double line or transformer outages); regionahreshold of 191 MVAr. The learning set splits  these causes, and do extensive simula-
load level, unit commitment, and generatiprinto two subsets, corresponding to 1,219 and tions to determine the effect on the
dispatch; reactive support by synchronqu4,556 states. This reduces the variance from power system.
condensers; and gas turbines. To account fa@6 = 11,236 at the top node to a mean value Analyze the database of dynamic simu
uncertainties, we randomized the followingof (1,219/2,775)6%+ (1,556/2,775)11%6= lation results to identify a posteriori the
quantities: secondary voltage-control se®,517 at its successors. system'’s main weaknesses.
points, individual HV load-distribution an Proceeding to both successors, we see that Evaluate the most effective countermea
power factors, MV shunt compensation, andhe selected test consists of checking whether sures (for example, in the form of new
voltage sensitivities of active and reactiveCircuit 2 is in operation, which lets us further ~ system protections), and validate them
load powers. reduce the overall variance to a mean value through a cost/benefit analysis on the sce
The sampling drew a total of 13,513 ranof (1,146/2,775)24 + (73/2,775)88 + narios stored in the database.
dom variants, yielding 5,000 predisturbancgl1,464/2,775)38+ (92/2,775)155= 1,817.
states. (The remaining 8,513 variants led t®hus, the regression tree explains L{0 — The ongoing research project has reached
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One-line diagram (225 kV + 400 kV) Regression tree for
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Figure 6. Voltage-security assessment of the Brittany system.

the following status: We have identified majinvoltages and power flows, main machinequences. The decomposition generally co

plausible causes of security problems in theariables, regional load behavior, and so anyesponds to different phenomena, such as

system, along with their relative probabilityyielding only 1 Mbyte per scenario of com-transient, midterm, and long-term dynamig
distributions for random sampling (study defpressed information stored in the databasastabilities, or different weak geographical
inition). We have designed a global, dynamidVe have developed a parallel database-geareas. The subproblems are essentially stu
simulation model to simulate fast (transientgration module (random sampling anded independently of one another. Therefore
phenomena as well as slower dynamics (upumerical simulations in parallel on a clusdin this approach, a problem is considere
to 40 minutes); this model (11,000 state variter of workstations). We have simulatedonly when it is already known to be a “true”
ables) of the French system comprises | 1,500 scenarios (about 1,500 Mbytes |oproblem, which presupposes that the mai
data), and we've conducted some prelimiweaknesses of the system are known a p

« an EHV (400 kV and 225 kV) transmis- nary analyses, which confirm the software’ri. Hence, it is no wonder that the history of

sion-system model with 1,550 branchegood performance. power-system blackouts includes man
and 1,150 buses, as well as line overload To take full advantage of this type of datatinexpected problems.
and busbar low-voltage protections; | base, we need to meet some technical chal- By more systematically exploiting avail-

* 196 machines with detailed generatoftenges. In particular, in contrast to the issueable computing power and developing more

models and secondary voltage controldiscussed previously, where scalar attributesophisticated automatic-learning algorithms
over-and-under frequency, and overfrepresented information about operatinghis new approach can hopefully provide eal

and-under voltage protections, as welpoints (a system snapshot in a given statéer warnings when a new problem arises. We

as local loss-of-synchronism line-trip-we need to represent and manipulate tenalso hope that it will allow a more objective
ping relays and a coordinated defensporal information—that is, attributes vary-arbitration and a better coordination of coun
plan; and ing with time along the system-dynamic tratermeasures to competing problems.
» voltage-sensitive load models, alongectory. Thus, database sizes are multiplied
with 300 (EHV/HV/MV) automatic| by a factor larger than 100, and the data-
under-load tap-changing transformersing software must be scaled up to handle
an under-voltage tap-changer blockinguch volumes. The second aspect relates to
device, and under-frequency load-the automatic-learning algorithms the
shedding. selves, which we must enhance to properly
cope with the problem’s temporal nature.|In
We use a variable time-step integratiprthe context of supervised learning, this isW
method (Eurostag software), which requirestill an open problem. E BELIEVE OUR APPROACH
about 10,000 steps per scenario. Thus, eachTo conclude, the above approach is causeiay have many applications in engineerin
scenario simulation requires about eighdlriven, which is in strong contrast with theand other complex, large scale, nonlinear sy:
hours on a high-end workstation and geneusual deterministic practice. In that practicetems. Simply stated, it exploits appropriaté
ates about 500 Mbytes of raw output datahe overall security problem is a priorisimulation models in parallel to screen &
From the latter, we've extracted a subset alecomposed into subproblems correspondiversity of simulation scenarios of a system
about 500 relevant system variables (EH\ihg to the different expected possible conseyrielding a large database of detailed infor
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mation. Then we apply data-mining tech-and we are pleased to acknowledge the valu
nigues to these scenarios to extract synthetiéscussions with and suggestions by the engin

information about the simulated syste
main features, from various complementary
viewpoints.

Nevertheless, for automatic-learning meth-
ods to be successful, we need a human expert
to help derive security information. For exam-
ple, to guide the security studies, we must
exploit his prior expertise and let him criti
cize, assimilate, or accept the new inform
tion. Therefore, we need to provide the results
in a form compatible with his own way of
thinking. In the general class of automatic
learning approaches, machine learning is the
only one that can meet this requireme
therefore, it is a key element in the da
mining toolbox.

However, machine learning, as well
other learning methods, can produce inter-
esting security information only when
exploits representative databases. The in al
investment required to obtain these datab: 5
is very important for each new security prc -
lem, but the subsequent database genera >ns
take full advantage of the previous ones. ©
further enhance the approach, we are de zI-
oping powerful parallel simulation enviror
ments to transparently allocate simulatic
on virtual machines composed of several ¢
mentary workstations, available throuy
local- or wide-area networks.

After 10 years of research, we conclu
that automatic-learning methods can inde 3
provide interesting security information fc -
various physical problems and practical cc
texts. Actually, in their way of approachir |
problems, they are quite similar to existi
practices in power-system security studi
where limits are derived from simulations

1.

—

IS
B-
1

to handle and master—in short, they
more reliable and more powerful.

security despite the growing levels of co
plexity and uncertainty and the increasing
economical and environmental pressures.
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