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SECURITY ASSESSMENT IS A MAJOR
concern in planning and operating electric
power systems. It consists of evaluating the
power system’s ability to face various con-
tingencies, and proposing ways to counter its
main weaknesses when necessary. Contin-
gencies may be external or internal events (for
instance, faults subsequent to lightning ver-
sus operator-initiated switching sequences)
and may consist of small/slow or large/fast
disturbances (for example, random behavior
of the demand pattern versus generator or line
tripping).

Usually, numerical (for example, time-
domain) simulation of the corresponding sce-
nario assesses the effect of a contingency on
a power system in a given state. However, the
nonlinear nature of the physical phenomena
and the growing complexity of real-life power
systems make security assessment difficult.
For example, monitoring a power system
every day calls for fast analysis, sensitivity
analysis to identify the salient parameters dri-
ving the phenomena, and suggestions on how
to act on the system so as to increase its level
of security. On the other hand, increasing eco-
nomic and environmental pressure make the
conflicting aspects of security and economy
even more challenging. To meet these chal-
lenges, we need methods different from the
standard time-domain simulation approaches.

This article describes ongoing research
and development of machine learning and
other automatic-learning techniques and their

adaptation to the specific needs of power-sys-
tem security assessment. In particular, I
describe a framework that integrates several
of these techniques so that users can extract
relevant information tailored to their deci-
sion-making needs. Among the many other
potential applications of automatic learning
in power systems, security assessment is
probably the most needed and versatile.1

The machine-learning
framework

Figure 1 shows the framework for apply-
ing machine-learning methods to security
assessment. Random-sampling techniques
screen all relevant situations in a given con-

text, and existing numerical-simulation tools
are exploited—in parallel, if necessary—to
derive detailed security information.
Machine-learning methods, the heart of the
framework, extract and synthesize relevant
information and reformulate it in a suitable
way for decision making. This involves trans-
forming the database of case-by-case numer-
ical simulations into a power-system secu-
rity knowledge base. As Figure 1 illustrates,
the framework integrates a large variety of
automatic-learning methods in a data-min-
ing toolbox, according to the type of infor-
mation that these methods exploit or pro-
duce. The final step involves using the
extracted synthetic information (decision
trees, rules, statistical or neural network
approximators) either in real-time, for fast
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and effective decision making, or in the
offline study environment, so as to gain new
physical insight and derive better system- or
operation-planning strategies.

How will this automatic-learning-based
framework complement classical system-
theory-oriented methods (relying on ana-
lytical power-system models such as numer-
ical simulation) for security assessment? We
can expect important contributions along
three dimensions: computational effi-
ciency, interpretability, and management
of uncertainties.

Computational efficiency. By using syn-
thetic information extracted by automatic
learning rather than using analytical meth-
ods, the framework enables much faster real-
time decision making. Moreover, regarding
data requirements, analytical methods re-
quire a full description of the system model;
however, the framework lets users tailor
approximate models constructed through
automatic learning, letting them exploit only
the significant input parameters. Computa-
tional efficiency was actually the motivation
of Tom Dy Liacco, when he first envisioned
(in the late 1960s) the use of automatic learn-
ing (at that time, statistical pattern recogni-
tion) for real-time security assessment. Even
today, despite the significant increase in com-
puting power in the last 25 years, this remains
a strong motivation.

However, the synthetic information ex-
tracted by automatic-learning methods may
itself be complementary to and generally
more powerful than that provided in a case-
by-case fashion by existing analytical meth-
ods. In particular, power-system engineers
are providing much more attention nowa-
days to interpretability and management of
uncertainties.

Interpretability. The use of automatic learn-
ing to provide physical insight into nonlinear
system behavior was first proposed by Yoh-
Han Pao, Tom Dy Liacco, and Isil Bozma in
the mid-1980s.2 In the meantime, others have
shown that machine learning is indeed an
effective way to generate reliable and inter-
pretable security rules from very large bod-
ies of simulated examples,3 even for complex,
large-scale power systems. The extracted
rules express explicitly problem-specific
properties, as a human expert might do. Engi-
neers in charge of security studies can more
easily appraise, criticize, and eventually adopt
these rules. This means the framework can

also help maintain and enhance utility exper-
tise. The machine-learning framework’s flex-
ibility lets users tailor the resulting informa-
tion to analysis, sensitivity analysis, and
control applications.

Management of uncertainties.The need to
devise a rational way to make decisions
whenever there are major uncertainties about
the power-system state is becoming increas-
ingly more apparent. Today, for example,
operators are often sorely missing guidance
in the context of unusual system states
reached after major disturbances, where reli-
able real-time information is generally lack-
ing. Tomorrow, technological and economic
changes will probably lead to a higher and
physically more irrational distribution of
decision making, and thus to more uncer-
tainties in routine operation and planning
activities. On the one hand, new devices,
such as Facts (flexible alternating-current
transmission systems), may cause stronger
interactions among remote components of
very large interconnections. On the other
hand, increased competition among eco-
nomic actors may further reduce their will-
ingness to share information on their respec-
tive subsystems, despite the stronger physical
interactions. Such circumstances will create
an urgent need for approaches that can man-
age uncertainties, such as the above frame-
work based on automatic learning.

Applying the framework to
security assessment

Despite repetitive attempts, there are still
no large-scale industrial applications of the
machine-learning framework to power-
system security assessment. The main rea-
son is that, until recently, the existing auto-
matic-learning methods were not powerful
enough, and the amount of possible security

studies was limited by available simulation
hardware and software.

Today, however, all the required condi-
tions are met. Present-day computer net-
works along with fast simulation tools help
generate many detailed studies. At the same
time, researchers have recently made much
progress in applying automatic-learning
methods to large-scale power systems.
Hence, automatic information-synthesis
tools to help engineers compare and interpret
extensive elementary results and extract and
appraise useful synthetic information are
strongly needed and, at the same time, tech-
nically feasible.

Therefore, while my colleagues and I
expect additional progress in learning meth-
ods and application methodologies, we be-
lieve that some important electric power
companies—for example, in North Amer-
ica or Europe—will soon start using this
approach more or less routinely for security
studies.

Aspects of automatic learning

Now we introduce classes of potentially
useful automatic-learning methods for syn-
thesizing security-assessment information
(see the “Aspects of power-system security
problems” sidebar). We first give a definition
of the generic supervisedlearning problem
and introduce three important classes of algo-
rithms for this problem. Then we comment
on the use of unsupervisedlearning methods.

Supervised learning problem.The generic
problem of supervised learning from exam-
ples can be formulated as follows:

Given a learning set of examples of associated
input/output pairs, derive a general model for
the underlying input/output relationship, which
may be used to explain the observed pairs or
predict output values for any new unseen input.

SEPTEMBER/OCTOBER 1997 61

Random 
database 

generation
DB

Several
preanalyzed

security
scenariosRandom 

sampling
Numerical 

simulations

Offline, automatic,
in parallel

Study 
definition

Extraction of
synthetic 

information
KB

Decision 
trees

and rules

Statistical
and ANN
models

Statistical
analysis
Neural

networks

Offline in study 
environment

Machine
learning

Use of
synthetic 

information

Physical
interpretation
Uncertainty

management

Online or 
offline

Fast decision
making

Figure 1. Machine-learning framework for security assessment.
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For security assessment, an example corre-
sponds to a given operating situation. The input
attributes would (hopefully) be relevant para-
meters describing this situation’s electrical
state and topology, and the output could be
information concerning its security in the form
of either a discrete classification (for instance,
secure, marginal, or insecure) or a numerical
value derived from security margins.

The solution of this learning problem has
several subtasks, which we now discuss.

Representation.This involves choosing appro-
priate input attributes to represent the power-
system state, defining the output security
information, and choosing a class of models
suitable to represent input/output relations.

The representation problem is left to the
engineer, who must compromise between
using very elementary standard operating para-
meters and sophisticated compound features.

Feature selection.This subtask aims at reduc-
ing the input space’s dimensionality by dis-
missing attributes that do not carry useful
information to predict the considered secu-
rity information. This lets us exploit the local
nature of many security problems.

Model selection.Learning typically identi-
fies, in the predefined class of models, the
one that best fits the learning states. This
generally requires choosing model structure
and parameters, using an appropriate search
technique.

The distinction between feature selection
and model selection is somewhat arbitrary,
and some of the methods actually solve these
two problems simultaneously rather than
successively.

Interpretation and validation.These are very
important for understanding the physical

meaning of the synthesized model and
determining its range of validity. They in-
volve testing the model on a set of unseen
test examples and comparing its information
with prior expertise about the security prob-
lem. From the interpretation-and-validation
point of view, some supervised learning
methods provide information that is difficult
to interpret, while others provide explicit and
very transparent models that are easy to com-
pare with prior knowledge.

Model use.This subtask involves applying
the model to predict the security of new sit-
uations on the basis of the values assumed
by the input parameters and, if necessary,
inverting the model to provide information
on how to modify input parameters to
achieve a security-enhancement goal. In
using the model for fast decision making, we
notice speed variations of several orders of
magnitude between various techniques, but
most of the methods are sufficiently fast in
the context of power-system security analy-
sis for control centers.

Supervised learning methods.Now we
consider only nonparametric automatic-
learning methods.4 Parametric methods may
be useful in some particular circumstances,
but they are not powerful enough to treat the
wide variety of practical security problems.
We discuss three classes of methods pro-
viding three complementary types of infor-
mation. Although we have selected them
from three different paradigms (machine
learning, neural nets, and pattern recogni-
tion), we insist on the type of information
provided rather than on the paradigm itself.

Symbolic knowledge via machine learning.
Machine learning is the subfield of AI con-
cerned with the design of automatic proce-

dures that can learn from examples. Concept
learning from examplesdenotes the process
of deriving a logical description of the
necessary and sufficient conditions corre-
sponding to a class of objects—that is, a rule
in some given representation language. A
major concern is finding adequate compro-
mises between rule complexity and data fit,
so as to avoid overfitting and to privilege
interpretability.

Top-down induction of decision trees, pop-
ularized by J. Ross Quinlan,5 is one of the
most successful classes of such methods.
Figure 2 shows a hypothetical binary deci-
sion tree: to infer the output information cor-
responding to given input attribute values,
we traverse the tree, starting at the top node,
and sequentially apply the dichotomous tests
encountered to select the appropriate suc-
cessor. When a terminal node is reached, the
output information stored there is retrieved.

Tdidt approaches decision-tree learning in
a divide-and-conquer fashion, progressively
building up a decision tree, starting with the
top node and ending with the terminal nodes.
At each step, the algorithm considers a tip (or
pending) node of the growing tree and
decides whether it will be a terminal node or
should be further developed. To develop a
node, this method first identifies an appro-
priate attribute, along with a dichotomy on its
values. The method then splits the subset of
the learning examples corresponding to the
node into two subsets corresponding to the
current node’s successors, according to this
dichotomy. The method gives the terminal
nodes appropriate information on the output
values derived from learning examples—for
example, the majority class label or proba-
bilities—or expected value and standard devi-
ation of numerical output information.

The right part of Figure 2 shows how the
decision tree decomposes its input space into
nonoverlapping subregions. The number of
such regions should ideally be as small as
possible; at the same time, the states con-
tained by each region should belong to the
same class. Thus, to build good decision
trees, an algorithm must rely on appropriate
optimal-splittingand stop-splittingrules.

Optimal splitting has to do with selecting
a dichotomy at a test node so as to provide a
maximum amount of information on the out-
put value (that is, separate states of different
classes), whereas stop splitting must identify
situations where further splitting would
either be useless or lead to performance
degradation because of overfitting.

62 IEEE EXPERT

Yes

Yes

No

A1 <  V1?

A1

V1

V2 A2

No

Conclude
Class1

A1 < V2? Class1 Class2

Class1
Conclude

Class1
Conclude

Class2

Figure 2. Hypothetical decision tree and its corresponding input-space decomposition.

.

Authorized licensed use limited to: University of Liege (ULg). Downloaded on April 26,2023 at 09:55:51 UTC from IEEE Xplore.  Restrictions apply. 



SEPTEMBER/OCTOBER 1997 63

Aspects of power-system security problems
This sidebar is a guided tour on power-system security, for the unfamil-

iar reader. We focus on security problems involving largedisturbances
corresponding to nonlinear system behavior. Although such disturbances
are generally very unlikely to happen, their potential consequences can be
extremely important and may lead to complete system blackouts, freezing
the economic activity of a whole country for many hours.

Classifying operating states

Tom Dy Liacco has defined the different operating modes of a power
system. Figure A shows a more detailed description of the Dy Liacco
state diagram.

Preventivesecurity assessment raises the question of whether a system
in its normal state can withstand every plausible disturbance. If it cannot,
preventive control would involve moving this system state into a secure
operating region. Because predicting future disturbances is difficult, pre-
ventive security assessment aims essentially at balancing the reduction of
the probability of losing integrity with the economic cost of operation.

Emergencystate detection aims at assessing whether the system is in
the process of losing integrity, following an actual disturbance incep-
tion. This is a more deterministic evolution, where response time is crit-
ical and economic considerations become temporarily secondary.
Emergency control aims at taking fast last-resort actions to avoid par-
tial or complete service interruption.

When both preventive and emergency controls have failed to bring
system parameters back within their inequality constraints, automatic
local protective devices preserve power-system components operating
under unacceptable conditions from undergoing irrevocable damages.
This leads to further disturbances, which may result in system splitting
and partial or complete blackouts. Consequently, the system enters the
restorative mode, where the operator must minimize the amount of unde-

livered energy by resynchronizing lost generation as soon as possible and
picking up the disconnected load, in the order of priority. (The main text
of this article focuses only on preventive and emergency aspects.)

Physical classification of security problems

Various security problems are distinguished according to the time
scales of the dynamics, the characteristic symptoms (low voltage, large
angular deviations, and so on), and the control means (reactive power,
switching, and so forth) to alleviate problems.

Transient stability. This concerns the ability of a power system’s gen-
erators to recover synchronous operation following the electromechani-
cal oscillations caused by a large disturbance. In this context, dynamic
performance is a matter of seconds and is mainly affected by switching
operations and fast power controls (such as fast valving or high-voltage
DC converters), and voltage support is affected by the automatic volt-
age regulators of synchronous generators and static VAr compensators
(SVCs). To determine the degree of stability, we evaluate a fault’s criti-
cal clearing time, which is the maximum time it may take to clear the
fault without the system losing its ability to maintain synchronism.

Voltage security.The fastest voltage instabilities, characterized by sud-
den voltage collapses, may develop at the same or even higher speeds
than loss of synchronism. More common is the midterm voltage insta-
bility, which corresponds to a typical time frame of one to five minutes.
In this case, voltage collapse is mainly driven by automatic transformer
on-load tap changers trying to restore voltage nearby the loads. There is
a third, even slower time frame, corresponding to the so-called long-
termvoltage instability, which involves a gradual buildup in load
demand. This interacts with classical static security and is well within

the scope of operator intervention.
Although a voltage collapse may

result in wide-spread degradation of the
voltage profile and subsequent loss of
synchronism, it is normally initiated by
a local deficiency in reactive power
reserves or a reduced reactive-power
transmission capability into a given
load area. A load power margin, the
maximum additional amount of power
that may transfer safely from the gener-
ation to a given load area, may evaluate
the distance to voltage insecurity.

Static security.This concerns essen-
tially thermal overload problems of
generation-transmission system com-
ponents, where phenomena span over
significantly longer periods of time.
For example, line overloads may be tol-
erated for 30 to 60 minutes under favor-
able weather conditions.

Practical application domains

Table A shows the practical study con-
texts or environments in security-
assessment applications. The first col-
umn identifies the study context; the
second specifies how long in advance
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Researchers have extensively studied deci-
sion trees in the context of various security-
assessment problems.6 A main asset lies in
the explicit and logical representation of the
induced classification rules and the resulting
unique explanatory capability. In particular,
the method provides systematic correlation
analyses among different attributes and iden-
tifies the most discriminating attributes at
each tree node. From a computational view-
point, it is efficient at the learning stage as
well as at the prediction stage.

Two generalizations of decision trees use-
ful for security assessment are

• regression trees, which infer information
about a numerical output variable, and

• fuzzy trees, which use fuzzy logic instead
of standard logic to represent output
information smoothly.

Both approaches let us infer information
about security margins, as do the techniques
discussed below.7,8

Smooth nonlinear approximations via artifi-
cial neural networks.The field of artificial
neural networks has grown, since the early
work on perceptrons, to an important and

productive research field. In this article, I
focus on only multilayer perceptrons.9

The single-layer perceptron is basically a
simple linear threshold unit with an error-
correcting learning algorithm. This percep-
tron can represent a linear boundary in its
input space. Its limited representation capa-
bilities have motivated the consideration of
more complex models composed of multiple
interconnected layers of perceptrons. Figure
3 illustrates the classical feed-forward MLP,
compared with a single perceptron. The first,
or input, layer in the MLP corresponds to the
attribute values; the last, or output, layer cor-
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(with respect to real time) studies may be carried out; the third indicates
the type of subproblems generally considered in a given environment; the
fourth indicates whether an operator is involved in decision making; and
the last column indicates whether an expert in the field of power-system
security is available.

In the first three contexts, we rely mostly on the intervention of human
experts exploiting the numerical simulation tools. In real-time monitoring
and emergency control, the reduced time available calls for more auto-
matic procedures.

System planning.Multitudinous system configurations must be screened
for several load patterns, with many contingencies possible for each. An
order of magnitude of 100,000 different scenarios per study would be real-
istic for a medium-sized system. Although enough time might be available
to run so many security simulations, there is still room for improved data-
analysis methods to exploit the results more effectively in order to identify
structural system weaknesses and to provide guidelines in order to improve
reliability.

Operation planning.As Table A suggests, operation planning concerns
a broad range of problems, including maintenance scheduling (one year
to one month ahead), design of operating strategies for usual and abnor-
mal situations, and setting of protection delays and thresholds. The
number of combinations of situations that must be considered for main-
tenance scheduling is also generally very large, and automatic-learning
approaches would be equally valuable to better use the available infor-
mation and exploit the system more economically.

Similarly, for a closer real-time determination of operating security

criteria, machine learning is particularly well-adapted. It would let engi-
neers screen more systematically representative samples of situations, to
identify critical operating parameters and determine their security-limit
tables needed for online operation. This would involve automating and
enhancing the manual approaches that many utilities use.

Online operation. In the context of this framework, we would exploit
online the security knowledge bases set up offline (for instance, in opera-
tion planning). Appropriate strategies are necessary to update this infor-
mation when major changes happen in the system. For example, several
weeks in advance, we could design routine security criteria for a forecast
range of topologies, load levels, and generation schedules. Then, closer
to real time (perhaps a day or a few hours before), we might refresh these
criteria to handle previously unexpected situations. To be compatible
with the way operators usually appraise their system, it is particularly
important for the synthetic information extracted by automatic learning
to be as simple as possible to interpret.

Real-time monitoring. Here, the purpose is to design criteria to more or
less automatically trigger emergency-control actions, so as to prevent a
disturbed system state from evolving toward a blackout. An important
aspect in designing the security criteria is the use of appropriate models
to reflect the disturbed power-system behavior. (Depending on the con-
text, we use the term “model” either to denote the physical-power sys-
tem model or the synthetic information extracted by automatic learning.)
Furthermore, along with minimal data requirements and ultrahigh speed,
readily available system measurements as inputs to the derived
emergency-control rules is often an operational constraint.

Table A. Security assessment environments (adapted from Wehenkel and Pavella2).

ENVIRONMENT TIME SCALE PROBLEMS OPERATOR EXPERT

System planning 1–10 years Generation No Yes
Transmission
Protection

Operation planning 1 week–1 year Maintenance No Yes
Unit commitment
Protection settings

Online operation 1 hour–1 day Preventive mode Yes Partly
Security assessment

Real-time* monitoring Seconds–minutes Emergency control No** No
Protective actions

Training Days–months Improve operator skill Yes No

*Here we distinguish real-time monitoring, which considers dynamic situations following a disturbance inception, from mere online monitoring,
which considers static predisturbance situations.
**Except for static security corrective control.
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responds to the desired security classifica-
tion or margin information. Intermediate lay-
ers let the network arbitrarily approximate
complex input/output mappings, provided
the network’s topology and weights are cho-
sen appropriately.

The discovery of the back-propagation
algorithm has been central to the success of
MLPs. This algorithm lets us efficiently and
locally compute the gradient of the network’s
output error with respect to its weights and
thresholds. We may exploit this algorithm iter-
atively to adjust the weights so as to reduce
the total mean-square output error for learn-

ing examples. In recent years, researchers
have made much progress in improving the
efficiency of optimization techniques for the
learning procedures of MLPs, but MLPs are
still very slow at the learning stage, which may
prevent extensive experimentation for data-
base sizes typical of security assessment of
realistic power systems.

As with decision trees, an interesting prop-
erty of MLPs is their ability to achieve fea-
ture extraction and learning in a single step:
the weights connecting the input layer with
the first hidden layer essentially project the
input vector in particular directions, realizing

a linear transformation of the input space,
which, in subsequent layers, approximates
outputs. However, one of the difficulties with
MLPs comes from the very high number of
weights and thresholds related in a nonlinear
fashion, which significantly limits any insight
into the relationship learned—the input/out-
put model corresponding to the MLP after the
MLP’s weights have been adapted by back-
propagation. All in all, MLPs offer a func-
tion-approximation approach that is flexible
and easy to apply, but difficult to interpret.

Many similar methods exist, such as
radial-basis functions and projection-pursuit
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Training. During operator training, the security criteria derived in either
of the preceding contexts might be usefully exploited as guidelines, pro-
vided they’re presented in an intelligible way. In addition, these models
might be used internally in a training-simulator’s software, to set up par-
ticular scenarios that present particular insecurity modes.

Analytical tools

Many numerical methods are available for security assessment in the
different time frames mentioned. We call them analyticaltools, because
they exploit analytical power-system models, in contrast to synthetic
tools, which are extracted by automatic-learning techniques. Some of
them are based on general-purpose power-system dynamic simulation
packages and have a very broad scope. Others are based on simplified
models or approaches representing only those features that are relevant
for the particular study. The latter methods might be significantly more
efficient, although at the expense of being restricted to some particular
physical phenomena or some particular (types of) power systems. We
briefly discuss the analytical tools, because they provide the raw input
data exploited by the automatic-learning methods to synthesize the high-
level security information.

Transient stability. There are two main classes of analytical tools for tran-
sient stability assessment: a time-domain (or step-by-step) simulation
approach and the direct methods, which are based on the second Lyapunov
method.

Time-domain simulation.The general power-system dynamic model con-
tains mixed algebraic and differential equations, strongly nonlinear, and
typically involving a few thousand discrete or continuous time-state vari-
ables. To assess transient stability, the time-domain approach involves
simulating the system’s during- and post-fault behavior for a given distur-
bance, and observing its electromechanical angular and voltage swings
during a few seconds. Practical criteria vary from one utility to another,
but an unacceptable performance would generally imply too large or
undamped angular deviations (for example, pole slips) or excessively
large variations of voltage or frequency.

To obtain stability margins, we must run repetitive simulations for var-
ious prefault operating states or various assumptions concerning the
delays of protection devices. Although this approach is still considered
CPU-intensive, within the last three years the time required for a typical
power-system simulation with high-order models has shrunk from one
hour to a few minutes.

Direct Lyapunov-type methods.These methods identify when the system
leaves its stability domain without further integration of the system trajec-
tory. By not simulating the post-fault trajectory, they reduce the simulated
time period to a fraction of a second instead of the several seconds taken

by time-domain methods. Some of them can thus provide a rich stability
assessment (margins, sensitivities, and mode of instability) within a frac-
tion of the time required for a single time-domain simulation. A major
drawback is their difficulty in accurately exploiting models of generators
and control loops as well as nonlinear or dynamic loads. However, since
the first multimachine direct methods of the late 1960s, researchers have
made much progress in incorporating more realistic models.

Voltage stability and security.Tools for voltage-security assessment
range from static load-flow calculations to full short-term or midterm
time-domain simulations. Because of the rather recent emergence of volt-
age-security problems, modeling practices have not yet reached maturity,
compared with those used in transient-stability studies. In particular, one
intrinsic difficulty of analyzing voltage collapses is that overall system
behavior depends strongly on the load behavior, for which good models
are generally missing.

Short-term or mid-term dynamic simulations.Because voltage collapses
may involve time constants ranging from a fraction of a second to a few
minutes, a variable step-size numerical integration method with stiff-
system simulation capability is preferable for the sake of efficiency and
accuracy, in contrast to transient stability, where fixed step-sized methods
have been widely used.

Simplified simulations.Because many voltage-security problems are
essentially driven by automatic on-load tap-changer mechanisms, it is
possible to sometimes neglect the faster interactions among load and gen-
eration dynamics. Equilibrium equations then replace the differential
equations corresponding to the faster phenomena, and we model only the
slower dynamics. With the intrinsic limitation of neglecting problems
caused by the fast dynamics, this kind of approach can drastically reduce
computing times.

Post-contingency load flow.A further simplification involves totally
neglecting the dynamics and using only purely static postcontingency
load-flow calculations. Typically, this lets us compute maximal loading
limits on the basis of successive computations or even direct optimization.
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regression techniques. They offer the possi-
bility of translating the case-by-case infor-
mation provided in the learning sets into an
approximate but closed-form numerical
model. The latter might be useful for quickly
assessing unseen situations and directly com-
puting sensitivities.

Memory-based reasoning via statistical pat-
tern recognition.The previous two approaches
essentially compress detailed information
about individual simulation results into gen-
eral, global security characterizations. We can
provide additional information, however, in a
case-by-case fashion, by matching an unseen
(for example, real-time) situation with simi-
lar situations found in the database.10 We do
this by defining generalized distances so as to
evaluate similarities among power-system sit-
uations, along with appropriate fast database-
search algorithms.

One such technique is the well-known K
nearest neighbors(K-NN) method, which
can complete decision trees and multilayer
perceptrons. The method classifies a state
into the majority class among its K nearest
neighbors in the learning set. This method’s
main characteristics are high simplicity yet
sensitivity to the type of distances used. In
particular, to be practical, ad hoc algorithms
are needed to choose the distances on the
basis of the learning set. Although in the past
this generally involved exploiting a few
sophisticated ad hoc input features manually
selected on the basis of engineering judg-
ment, today the emphasis is more on the
research of automatic distance design meth-
ods exploiting the learning states.

Clustering and unsupervised learning.In
contrast to supervised learning, where the
objective is clearly defined in terms of mod-
eling the underlying correlations between
some input variables and some particular out-
put variables, unsupervised learning meth-
ods are not oriented toward a particular pre-
diction task. Rather, they try to identify
existing underlying relationships among a set
of objects characterized by a set of variables
or among a set of variables used to charac-
terize a set of objects.

Thus, one of the purposes of clustering is
to identify homogeneous groups of similar
objects, to represent many objects by a few
representative prototypes. Graphical, 2D
scatter plots may help in analyzing the data
and identifying clusters. Another application
of the same techniques is to identify similar-

ities (and redundancies) among the different
attributes used to characterize objects. In the
context of power-system security, both appli-
cations may be useful as complementary
data-analysis and preprocessing tools.

Researchers have proposed unsupervised
learning methods under the three umbrellas
given above to classify supervised learning
methods, termed cluster analysisin the sta-
tistics literature,conceptual clusteringin
the machine-learning community, and self-
organizing mapsor vector quantizationin
the neural net community.

Applying automatic learning
to power-system security

Here, we describe a hypothetical applica-
tion of the automatic learning-based frame-
work to a hypothetical security problem.
Then we provide a short overview of some
real-life applications to large-scale security
problems.

A hypothetical illustration of the frame-
work. The machine-learning framework is
flexible enough to be applied to a large vari-
ety of security assessment problems, rang-
ing from system planning to the design of
special protection schemes. In this section, I
will describe its application to voltage secu-
rity assessment, which is one of the areas
where we can expect systematic, real-life
applications in the near future.

A security problem.Let us imagine that in
our hypothetical power system voltage secu-
rity is limited in some reactive power-weak
area. Let us also suppose that this security
problem was discovered in a preliminary
screening security study, where possibly con-
straining disturbances were also identified.

A practical problem would be to charac-
terize security regions with respect to these
disturbances, so as to provide operators with
preventive security-assessment criteria and
effective preventive control to alleviate poten-
tial insecurities, such as optimal reschedul-
ing of available reactive power resources.

Another, different problem would be the
design of emergency-state indicators to be
applied in case of a disturbance. Ideally, these
indicators would be highly anticipative and
reliable, and would provide information on
appropriate emergency-control means such
as on-load tap-changer blocking and load
shedding.

How can we generate a database?To pro-
vide a representative sample of voltage-
security scenarios for the above problems,
we would first talk with planning and oper-
ation-planning engineers and system opera-
tors to gather information about known sys-
tem weaknesses and operating practices.

From this information, we would design
database-building software to generate ran-
domized samples representative of normal
operating conditions, including a sufficient
number of unusual situations, deemed rele-
vant for security characterization. In partic-
ular, with respect to real-life operating sta-
tistics, this sample would typically be biased
toward the insecure regions of the state space.

According to that sampling procedure, we
would generate an initial database, typically
comprising several thousand states. The secu-
rity of each state would be preanalyzed with
respect to the studied disturbances. For exam-
ple, we could compute post-contingency
load-power margins for real large-scale
power-system models on existing computer
networks within some hours of response time,
by using efficient simulation software and
exploiting trivial parallelism. In addition to
this information, we could predetermine
appropriate preventive or emergency-control
information for the insecure states, and secure
economic-generation dispatch for the secure
ones.

Furthermore, we would compute a cer-
tain number of attributes, which we would
propose as input variables to formulate
security criteria. In the preventive-mode
security-assessment problem, these attri-
butes would typically be contingency-
independentprefault operating parameters,
such as voltages, reactive power generation
and compensation reserves, power flows,
and topology indicators. For the emergency-
state-detection problem, we would rather
use raw system measurements (for exam-
ple, voltage magnitudes, power flows, trans-
former ratios, or breaker status) of the inter-
mediate state that immediately follows the
disturbance. In contrast to the preventive-
mode attributes, the emergency-state attri-
butes would depend on the disturbance and
on the short-term system modeling, in addi-
tion to the prefault operating state. Care
must be taken to appropriately take into
account uncertainties about this information
by adding random-noise terms wherever
necessary (load distribution and sensitivity
to voltage, external systems, measurement
noise, and delays).
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Unsupervised learning for data
preprocessing. In practical
security problems, many differ-
ent attributes provide equivalent
information because of the very
strong physical correlations
among a power system’s geo-
graphically close components.
Thus, clustering methods can
help define a few representative
attributes from a larger number
of elementary variables.

For example, let us consider
the case of voltage magnitudes.
We can easily compute correla-
tion coefficients among any pair
of bus voltages on the basis of
the database statistical sample.
A clustering algorithm search-
ing for a reduced number of
voltage coherentregions can then use them
as similarity measures. For each region, we’d
use an equivalent (for example, mean) volt-
age as an attribute instead of individual bus
voltages, and we would reduce the compu-
tational burden of the subsequent supervised
learning of security criteria yet improve
robustness and interpretability. For example,
we can exploit 2D Kohonen feature maps to
visualize the relationships among voltage
regions and easily compare them with the
geographic location of busbars in the power
system.

In addition to the above feature-extraction
application, researchers have proposed more
conventional clustering techniques that iden-
tify groups of similar power-system operat-
ing states. One possible purpose is to parti-
tion a very large database into smaller subsets
for which the security-assessment problem
could be easier to solve. Another interesting
application would be to condense the full
database into a reduced number of represen-
tative prototypes, thereby decreasing the
number of required security simulations and
shortening the associated computation delays.

Supervised learning of security criteria.
Given a database of examples, with security
margins determined for several contingen-
cies and several candidate attributes com-
puted, supervised learning would derive
appropriate security criteria. First, though,
we would partition the database into disjoint
learning and test samples. We’d use the learn-
ing sample to build the synthetic security cri-
teria. We’d use the test states to assess the
security criteria’s reliability, by comparing

the security information predicted by them
with the “real” information determined by
the simulation. Along with the unseen test
states generated automatically with the learn-
ing states, a test sample that is representative
of actual operating statistics from historical
online records should be collected.

We must first define security classes by
setting appropriate thresholds on the security
margin. Then, the decision-tree building
includes

• the automatic identification of the subset
of attributes among the candidate ones
relevant for the prediction of the security
class (say ten to twenty among one or two
hundred), and

• the definition of appropriate threshold
values for these attributes so as to provide
an approximate model of the voltage-
security region of the area of the power
system studied.

In addition to a global DT covering all dis-
turbances simultaneously, single-contingency
DTs can also be constructed to provide more
specific information and additional insight.
Furthermore, we can construct DTs for vari-
ous security-margin threshold values, to dis-
criminate between marginally secure and very
secure situations. Depending on whether nor-
mal predisturbance or only after-disturbance
attribute values are used, we can use the DTs
in either a preventive or an emergency-wise
approach. If there are too many nondetections
of insecure states, then before rebuilding a
tree we can increase the threshold value used
to define the secure class in terms of the secu-

rity margin. If there are too many false alarms,
we should use additional candidate attributes
or learning states.

The DTs provide a simplified view of
security in terms of a discrete model relating
a few security classes and thresholds on
attribute values. We might also wish to pro-
vide a continuous security margin—at least,
in the neighborhood of the threshold values
used to define security classes. As I’ve men-
tioned, one of the strong points of the MLP
is its nonlinear modeling capability. On the
other hand, the decision tree identifies the
attributes in strong correlation with the secu-
rity class. Thus, in a hybrid approach, we
might use the latter attributes as input vari-
ables to an MLP model, and a normalized
security margin as output information.

In practice, we might need to proceed by
trial and error to determine an appropriate
number of hidden neurons and topology for
the MLP structure. Once its structure and
weights have been adapted on the basis of the
learning states, the MLP provides a closed-
form and differentiable security approximator,
which we can use for fast margin prediction
for any seen or unseen state and to compute
margin sensitivities to attribute values. Practi-
cal experiments with various security problems
show that this leads to richer and more reliable
security-assessment information.

With the previous two approaches, we
essentially compressed detailed information
about individual simulation results into gen-
eral global-security characterizations. This let
us provide the required physical understand-
ing, thanks to the data-analysis component of
decision trees and attribute-clustering tech-
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niques. In addition, we can efficiently use the
derived models for online security analysis.

In this latter context, we can get further
information via memory-based reasoning,
exploiting appropriate distances to find the
most similar preanalyzed situations to the
real-time state. Once identified, we can use
these situations in many ways. For example,
their distance to the current state would pro-
vide a measure of confidence of the security
information provided by any model derived
from the database (DT or MLP). If the latter
were too large, we would then conclude that,
for the current state, no reliable security
information may be derived from the data-
base. If, on the contrary, the nearest neigh-
bors were sufficiently close to the current
state, then we could extrapolate various kinds
of detailed and specific security information
from these states to the current situation and
show them to the operator, along with a
detailed contingency analysis and preventive
or emergency controls.

Overview of some real-life applications.
Below, we provide more specific informa-
tion about feasibility studies of the auto-
matic-learning approach, made for actual
power-system security problems.

Transient stability.Together with Electricité

de France (EDF), we initiated a first large-
scale feasibility study in early 1990, for pre-
ventive transient stability assessment of an
important generation plant within the large-
scale extra-high-voltage (EHV) system of
EDF.11(EHV is 225 kV to 400 kV; HV (high
voltage) is 63 kV to 90 kV; MV (medium
voltage) is less than or equal to 20 kV) More
recently, a detailed study was carried out on
the Hydro-Québec system.

The 735-kV system of Hydro-Québec is
illustrated in Figure 4. Its normal operating
condition is considered secure if it withstands
any permanent single-phase-to-ground fault,
followed by line tripping, fast reclosure, and
subsequent permanent tripping. This system
is mainly constrained by its transient stabil-
ity limits, caused by the very large power
flows and long transmission distances.

More specifically, in our investigations, we
considered only faults occurring within the
James Bay transmission corridor in the West-
ern part of the system. With respect to such
faults, the stability is mainly influenced by
the power flows and topology within the same
corridor. A manual approach had previously
developed transient stability limits; operation-
planning engineers determined offline, on the
basis of carefully chosen simulation scenar-
ios, approximate limit tables relating the sys-
tem topology and power flows to a stable/

unstable classification. Hydro-Québec imple-
mented the limit tables on the real-time com-
puter via an ad hoc database tool called Lim-
sel. The purpose of our investigation was to
evaluate the automatic-learning approach’s
ability to provide a more systematic and
potentially more efficient methodology to
derive these operating guidelines.

We generated a database of 12,500 normal
operating states via random sampling and
chained load-flow computations; it com-
prises more than 300 different combinations
of up to six line outages, about 700 different
combinations of reactive voltage-support
equipment in operation, and a wide variety
of power-flow distributions. The dashed lines
in Figure 4 show the variable-topology part
of the 735-kV system. For each state, we
obtained the corresponding classification,
stable/unstable, from Limsel, running on the
backup online computer. The results were
3,939 stable states and 8,561 unstable ones,
among which 393 were marginally unstable
and 8,168 were fairly unstable.

To describe the operating states and char-
acterize their stability, we computed the fol-
lowing types of candidate attributes: active
power flows through important lines and cut
sets in the James Bay corridor; total active
power generated in the four La Grande (LG)
power plants and various combinations; sev-
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Figure 4. Transient stability assessment of the Hydro-Québec system.
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eral SVCs in operation within the six sub-
stations in the James Bay corridor; and log-
ical indicators (in/out) for important lines.
We determined this set, composed of 67 can-
didate attributes, with the help of an expert
in charge of transient-stability studies at
Hydro-Québec. From previous studies, we
already knew that, along with the topological
information and the total number of SVCs,
the total power flow through the corridor
would be an important attribute.

We built the tree that is partially repre-
sented in the right-hand part of Figure 4 on
the basis of the database’s first 10,000 states
(8,000 to grow the DT and 2,000 to deter-
mine its optimal degree of pruning) and 87
candidate attributes—including, in addition
to the above 67 ones, four linear-combina-
tion attributes and some other combined
ones. Figure 4 shows its most important parts
near the top node. The notation used for a
typical node is also represented at the top
left-hand side of the tree: each node is rep-
resented by a box, the upper part of which
corresponds to the proportions of stable and
unstable learning states relative to this node.
Test nodes are identified by the label Ti or
Sti, the latter corresponding to subtrees that
have not been drawn on the picture. Terminal
nodes are identified by a label Li for leafs
and Di for dead ends. A leaf is a terminal
node that contains a strong enough majority
of learning states of a single class (the algo-
rithm expressed this in terms of an entropy
measure), whereas a dead end is a node that
corresponds to a subtree pruned to avoid
overfitting. The label indicates the type of a
node, and the node’s number of learning
states is indicated next to it.

All in all, the tree comprises 57 test nodes

and 58 terminal ones. This tree has identified
among the candidate attributes the 24 most
relevant ones. Among others, at several test
nodes (including the top node), the algorithm
has selected a linear combination of the total
power flow Trbj in the James Bay corridor
and the number of SVCs in operation,
Nb_Comp, which thus confirms prior knowl-
edge. Thus, the threshold values of Trbj are
functions of Nb_Comp. For example, if
Nb_Comp = 12, then the leftmost terminal
node L1 in Figure 4 corresponds to a limit
value of max{6,271 + (12 ∗ 120), 5,656 + (12
∗ 215), 5,533 + (12 ∗ 269)} = 8,761 MW.
Above this value, the tree declares a state
unconditionally unstable for at least one line
fault in the corridor.

To evaluate the tree’s generalization capa-
bility, we tested it with an independent test
set comprising the 2,500 states of the data-
base not used for growing or pruning the tree,
yielding an overall error rate of 4.3%. (The
lower part of each node box in Figure 4
depicts the proportion of erroneous classifi-
cations of each subtree’s test states. Of the
1,622 fairly unstable states, the tree classified
only 30 as stable, yielding 1.85% dangerous
errors. On the other hand, the tree classified
23 marginally unstable states as stable, lead-
ing to small nondetection errors. There were
also 52 false alarms—that is, stable test states
that the tree classified as unstable.

To improve accuracy, we exploited the
same database further by building a multi-
layer perceptron (with a single hidden layer
of 20 neurons) on the basis of the same
10,000 learning states, leading to a reduced
test-set error rate of 2.4%. Computational
requirements (in CPU time), determined on
a Sun Sparc10 workstation, are

• about 1 week to generate the database
generation;

• 1 hour to build the decision tree, and 1
second for testing; and

• 60 hours to learn the MLP weights, and
10 seconds for testing.

Researchers have also investigated decom-
posing the database into various topology
classes and obtaining simpler and more inter-
pretable trees.12,13

Fuzzy decision trees.To illustrate the poten-
tial of fuzzy decision trees in the context of
security assessment, let us consider a sim-
plified problem derived from the transient
stability study carried out on the EDF sys-
tem.11 Here, we measure a fault’s degree of
stability, using its critical clearing time. Thus,
we define stability classes for crisp trees,
using thresholds on the CCT.

The left side in Figure 5 gives a partial
view of such a crisp decision tree; its right
side shows a corresponding fuzzy tree. The
former was built for a classification threshold
of 0.240 seconds. The fuzzy tree was built on
the basis of a fuzzy classification: the stabil-
ity degree of a state varies continuously from
0 to 1 as its CCT increases from 0.215 to
0.265 seconds. The crisp tree uses attribute
thresholds to propagate a state either to right
or left successors, and the fuzzy tree uses
transition regions defined by two thresholds.
Outside the transition region, a state propa-
gates only to one successor, but inside it go
both successors, with a weight varying pro-
gressively as a function of the attribute value
and the thresholds.

The fuzzy-tree growing algorithm is very
similar to the crisp Tdidt method.8 It auto-
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Figure 5. Crisp decision trees and fuzzy decision trees.
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matically determines the transition regions
at each test node, recursively partitioning the
learning set, though in a fuzzy way. We de-
signed a pruning technique similar to those
used for crisp trees, to keep the tree com-
plexity minimal. In the above example, this
algorithm let us significantly improve accu-
racy by reducing classification-error rates
from 3.3% to 1.3%. At the same time, the
algorithm provided more refined information
about the system’s stability.

Thus, fuzzy trees can express continu-
ously varying degrees of security in a very
natural and effective way, as with smooth
regression techniques. At the same time,
fuzzy trees provide easily interpretable
information, as do symbolic machine-learn-
ing techniques. Some research is still needed
to improve the computational performances
of the fuzzy-tree growing and pruning algo-
rithms, and to further validate them on dif-
ferent test problems. However, this is a very
promising technique—particularly in the
context of security assessment, where the
output information often varies continuously
with input attributes.

Voltage security.We carried out a second,
rather extensive feasibility study for voltage
security, on a test problem concerning the
Brittany region of the EDF system. We con-
sidered both preventive security assessment
and emergency-state detection.7 The left side
of Figure 6 shows the one-line diagram of the
related part of the EDF system. Its subregions
correspond to voltage-coherent load areas,
determined with respect to the behavior of
HV voltage magnitudes just after the loss of
a generator in Plant 1. These regions were
automatically determined in a preliminary
study by unsupervised learning, using a
Kohonen feature map.

The independent variables used during the
random sampling of the predisturbance states
concerned the following: topology (single or
double line or transformer outages); regional
load level, unit commitment, and generation
dispatch; reactive support by synchronous
condensers; and gas turbines. To account for
uncertainties, we randomized the following
quantities: secondary voltage-control set
points, individual HV load-distribution and
power factors, MV shunt compensation, and
voltage sensitivities of active and reactive
load powers.

The sampling drew a total of 13,513 ran-
dom variants, yielding 5,000 predisturbance
states. (The remaining 8,513 variants led to

power-flow computation divergence or non-
convergence.) For each state, we computed
about 200 attributes, corresponding to key
variables such as topological indicators,
important EHV power flows, 400-kV volt-
ages, numbers of units in operation in power
plants, total load demand, reactive shunt
compensation reserves in the study region,
and reactive generation reserves.

All in all, this broad study considered 26
different contingencies, corresponding to a
synchronous condenser, a generator or line
tripping, and busbar faults.7 The difference
between pre- and postdisturbance load-
power margins in the Brittany region deter-
mined a disturbance’s severity. Thus, besides
computing the predisturbance margin, we
also computed the corresponding 26 post-
disturbance margins for each operating state,
yielding a total of 135,000 load-power mar-
gin computations. Overall, the database gen-
eration required about one month of CPU
time on a Sun Sparc10 workstation.

We built several tens of multilayer per-
ceptrons and even more decision or regres-
sion trees, for different disturbances and both
preventive security assessment and emer-
gency-state detection. In addition, we also
tried out various nearest-neighbor classifiers.
To illustrate, let’s look at the regression tree
depicted on the right-hand side in Figure 6,
built to estimate the severity of the loss of
Circuit 1 of an important 400-kV line (see
the one-line diagram in the figure). A box
represents each node of the tree. The box
graphically represents the contingency sever-
ity’s distribution of values in this node’s
learning set, along with its sample mean
value and standard deviation, and the number
of its learning states. At the top node,N =
2,775 corresponds to the total number of
learning states used to build the tree.

The total predisturbance reactive reserve
available in Plant 2 is automatically selected
as the best test attribute at the top node, with a
threshold of 191 MVAr. The learning set splits
into two subsets, corresponding to 1,219 and
1,556 states. This reduces the variance from
1062 = 11,236 at the top node to a mean value
of (1,219/2,775)672 + (1,556/2,775)1162 =
9,517 at its successors.

Proceeding to both successors, we see that
the selected test consists of checking whether
Circuit 2 is in operation, which lets us further
reduce the overall variance to a mean value
of (1,146/2,775)212 + (73/2,775)802 +
(1,464/2,775)382 + (92/2,775)1552 = 1,817.
Thus, the regression tree explains 100 ∗ (1 –

(1,817/11,236)) = 84% of the severity’s
variance.

Once we’ve constructed the tree, we can
use it to estimate an unknown state’s contin-
gency severity. The algorithm directs the
state from the top node to the appropriate
successor according to the state’s reactive
reserve, and then to a terminal node accord-
ing to the status of Circuit 2. There, the mean
severity of the corresponding learning states
is an estimate of the severity.

This very simple tree accurately estimates
the disturbance’s severity. Admittedly, we
might improve it by further developing some
of its terminal nodes, using other attributes
carrying complementary information. How-
ever, when we apply this simple model to a
representative independent test sample, the
difference between its estimate and the actual
precomputed severity yields an overall mean
error of –0.5 MW and standard deviation of
43.6 MW. This is, indeed, almost negligible
compared to the study region’s overall load
level, which varies between 5,000 MW and
7,700 MW.

Probabilistic global dynamic-security
assessment.In the summer of 1995, another
long-term research collaboration started,
through the initiative of Electricité de France,
with the objective of developing a proba-
bilistic method to globally evaluate power-
system failure modes. This included assessing
their probability, their actual consequences,
and their prevention. The approach proceeded
in the following way:

• Set up a detailed probabilistic model of
the possible causes of insecurity: multi-
ple disturbances, bad coordination or
misuse of protective devices, or over-
optimistic preventive-security strategies
caused by uncertainties in modeling
parameters.

• Sample representative combinations of
these causes, and do extensive simula-
tions to determine the effect on the
power system.

• Analyze the database of dynamic simu-
lation results to identify a posteriori the
system’s main weaknesses.

• Evaluate the most effective countermea-
sures (for example, in the form of new
system protections), and validate them
through a cost/benefit analysis on the sce-
narios stored in the database.

The ongoing research project has reached
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the following status: We have identified main
plausible causes of security problems in the
system, along with their relative probability
distributions for random sampling (study def-
inition). We have designed a global, dynamic
simulation model to simulate fast (transient)
phenomena as well as slower dynamics (up
to 40 minutes); this model (11,000 state vari-
ables) of the French system comprises

• an EHV (400 kV and 225 kV) transmis-
sion-system model with 1,550 branches
and 1,150 buses, as well as line overload
and busbar low-voltage protections;

• 196 machines with detailed generator
models and secondary voltage control,
over-and-under frequency, and over-
and-under voltage protections, as well
as local loss-of-synchronism line-trip-
ping relays and a coordinated defense
plan; and

• voltage-sensitive load models, along
with 300 (EHV/HV/MV) automatic
under-load tap-changing transformers,
an under-voltage tap-changer blocking
device, and under-frequency load-
shedding.

We use a variable time-step integration
method (Eurostag software), which requires
about 10,000 steps per scenario. Thus, each
scenario simulation requires about eight
hours on a high-end workstation and gener-
ates about 500 Mbytes of raw output data.
From the latter, we’ve extracted a subset of
about 500 relevant system variables (EHV

voltages and power flows, main machine
variables, regional load behavior, and so on),
yielding only 1 Mbyte per scenario of com-
pressed information stored in the database.
We have developed a parallel database-gen-
eration module (random sampling and
numerical simulations in parallel on a clus-
ter of workstations). We have simulated
1,500 scenarios (about 1,500 Mbytes of
data), and we’ve conducted some prelimi-
nary analyses, which confirm the software’s
good performance.

To take full advantage of this type of data-
base, we need to meet some technical chal-
lenges. In particular, in contrast to the issues
discussed previously, where scalar attributes
represented information about operating
points (a system snapshot in a given state,
we need to represent and manipulate tem-
poral information—that is, attributes vary-
ing with time along the system-dynamic tra-
jectory. Thus, database sizes are multiplied
by a factor larger than 100, and the data-min-
ing software must be scaled up to handle
such volumes. The second aspect relates to
the automatic-learning algorithms them-
selves, which we must enhance to properly
cope with the problem’s temporal nature. In
the context of supervised learning, this is
still an open problem.

To conclude, the above approach is cause-
driven, which is in strong contrast with the
usual deterministic practice. In that practice,
the overall security problem is a priori
decomposed into subproblems correspond-
ing to the different expected possible conse-

quences. The decomposition generally cor-
responds to different phenomena, such as
transient, midterm, and long-term dynamic
instabilities, or different weak geographical
areas. The subproblems are essentially stud-
ied independently of one another. Therefore,
in this approach, a problem is considered
only when it is already known to be a “true”
problem, which presupposes that the main
weaknesses of the system are known a pri-
ori. Hence, it is no wonder that the history of
power-system blackouts includes many
unexpected problems.

By more systematically exploiting avail-
able computing power and developing more
sophisticated automatic-learning algorithms,
this new approach can hopefully provide ear-
lier warnings when a new problem arises. We
also hope that it will allow a more objective
arbitration and a better coordination of coun-
termeasures to competing problems.

WE BELIEVE OUR APPROACH
may have many applications in engineering
and other complex, large scale, nonlinear sys-
tems. Simply stated, it exploits appropriate
simulation models in parallel to screen a
diversity of simulation scenarios of a system,
yielding a large database of detailed infor-
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Figure 6. Voltage-security assessment of the Brittany system.
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mation. Then we apply data-mining tech-
niques to these scenarios to extract synthetic
information about the simulated system’s
main features, from various complementary
viewpoints.

Nevertheless, for automatic-learning meth-
ods to be successful, we need a human expert
to help derive security information. For exam-
ple, to guide the security studies, we must
exploit his prior expertise and let him criti-
cize, assimilate, or accept the new informa-
tion. Therefore, we need to provide the results
in a form compatible with his own way of
thinking. In the general class of automatic-
learning approaches, machine learning is the
only one that can meet this requirement;
therefore, it is a key element in the data-
mining toolbox.

However, machine learning, as well as
other learning methods, can produce inter-
esting security information only when it
exploits representative databases. The initial
investment required to obtain these databases
is very important for each new security prob-
lem, but the subsequent database generations
take full advantage of the previous ones. To
further enhance the approach, we are devel-
oping powerful parallel simulation environ-
ments to transparently allocate simulations
on virtual machines composed of several ele-
mentary workstations, available through
local- or wide-area networks.

After 10 years of research, we conclude
that automatic-learning methods can indeed
provide interesting security information for
various physical problems and practical con-
texts. Actually, in their way of approaching
problems, they are quite similar to existing
practices in power-system security studies,
where limits are derived from simulations—
albeit manually. But automatic-learning
approaches are more systematic and easier
to handle and master—in short, they are
more reliable and more powerful.

These possibilities open up new ways for
power-system engineers to respond to the
challenge of planning and operating future
power systems with an acceptable level of
security despite the growing levels of com-
plexity and uncertainty and the increasing
economical and environmental pressures.
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