Janvier 1974

Rapport SA=33

o Universite de Ligge
S T i &r-“ir‘es Appliguées et Mathématiques
L Lhemin desg Chevreuils; Bat B52/4
8-4000 LIEGE .

VARIATIONAL PRINCIPLES AND THE PATCH TEST

B. FRAELJS de VEUBEKE
Head

Aerospace Laboratory
University of Liége

Belgium



VARIATIONAL PRINCIPLES AND THE PATCH TEST

B, FRAEIJS de VEUBEKE

Head, Aerospace Laboratory, University of Liége, Belgium

SUMMARY

The patch test is shown to be contained in the variational formulations of the
finite element methods at the assembling level, all of which require the vanishing
of the virtual work of interface connexion loads. By a systematic introduction of
stress generating functions, attention is drawn to the fact that any given finite
element model can be assembled in two different ways : either by identification

of a set of boundary displacements (leading to the direct stiffness method), or by
identification of a set of local stress function values (leading to the dual

direct flexibility method). Looking at any conjugate couple (generalized displace=-
ment - generalized surface traction) at an interface, one is strongly transmitted,
the other weakly. Discretization of the zero virtuallwork condition at an interface
of plate bending models, by means of Legendre polynomial expansions, allows a
systematic construction of so-called "non-conforming" elements that pass-the patch
test, They are in fact identified with weakly conforming, but strongly diffusive,
hybrids, and the lowest degree element (quadratic) is in fact the Morley constant.-
moment element. Examples are given for higher degree displacement fields.

The case of plate stretching elements can be handled by duality, the difficulties
being here associated with the requirements for diffusivity. Non-diffusive elements
that pass the zero interface virtual work test can be constructed systematically
and are identifiable with weakly diffusive, but strongly conforming, hybrids of the

type first proposed by T.H.H. PIAN.

INTRODUCT ION

There is a functional that generates all the equations of linear elasticity theory
in the form of variational derivatives and natural boundary conditions.

13,14 .

Its original construction 12 followed the method proposed by FRIEDRICHS
one-dimensional problems. It can be considered as a very general three-field
principle, from which most, if not all, finite element models can be derived

s ma . 6
through specializing assumptions .



With surface tractions Es given at the boundary 9E of the simply connected domain

E of the element, the functional is

Diu, + D,ui
{Wee) +1,, (=deeed X ¢ )y - X u, } dE
JE ij 2 ij b

- J t, u, ds min { max (min) } (1)
oE u T £

The strain energy density W is assumed to be a homogeneous, positive definite,
quadratic form of the elements Eij of the strain tensor,

The variational derivatives are : with respect to the strains

. _ oW
ij aeij

(2)

which are the linear elastic constitutive equationsj with respect to the stresses
Tij

_1 | .
eij =3 (Di uj + Dj ui) . (3)
the strain-displacement relations.

The variations on the displacement field occur both in the interior of E,

generating the volume equilibrium equations
D, 1,, +X, =0 (4)

and on the boundary 3E, where they produce "natural" surface equilibrium

equations

n, 1., = t, on OE (5)
i “ij |

involving the direction cosines n, of the outward normal.

Should we specify the displacements 33 on the boundary, instead of the surface
tractions, the variations on the displacements become limited to the interior

of E but the variations on the stress field do now take place on the boundary

as well as in the interior. This appears clearly in the corresponding functional
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that has the same variational derivatives as the preceding one, but other

natural boundary conditions obtained from the variation of tj =n, Tij on JE

u, = u, on JE 5").
3 j (3"
In many cases the boundary data may be "mixed" in the sense that the boundary

is made of the union of partial boundaries BaE

on each of which the data, given componentwise, are not necessarily all of the
displacement type or all of the surface traction type.

The mixing of boundary data is however limited by the condition that a single
functional exists, having such data involved in natural boundary conditions.
Rotational equilibrium is assumed to hold everywhere by virtue of the symmetry
Tji = Tij of the stress tensor. Still more general variational principles are
known, wherein rotational equilibrium is contained as a natural variational
result 15. They provide finite element models circumventing the difficulties
associated with C1 cont inuity 16; for the sake of simplicity they will not be

considered here,

THE CANONICAL PRINCIPLE

Since equations (2) are invertible, they provide the exact minimizing choice for

the strains in the three~field principle

_ 2@
€ij 9Ty 5 (6)
where
¢(t) = €55 Ty = ¥ (7)



is the stress energy density, or complementary energy density. Moreover this
optimal choice does not impose any constraints on the remaining fields of stresses
and displacements and has no influence on the boundary conditions (the strain field
is confined to the interior of E).

There is little sense therefore in keeping the strain field for discretization
purposes. Following the ideas of FRIEDRICHS, the stresses are first conceived as
Lagrangian multipliers liberating the strain~displacement differential constraints,
and equations (2) identify those multipliers through the fact that they satisfy the
constitutive equations. Elimination of the strains through their minimizing choice
(6) leads to the two-field principle called canonical (in the Hamilton-Jacobi sense)
or involutory by FRIEDRICHS and later known as the HELLINGER-REISSNER principle.

According to the nature of the boundary data it can be given either of the following

forms :
(t,, D, u, - &(1) - X, u,) dE - f t. u, dS (8)
JElJlJ i3 sg 4 3
min (max)
u T
- { o(t) +u, (D, t,, + X,) } dE + J n, T.. u., dS 8!
fE () *uy (O Ty, *+ X M i @")

with the same mixing possibilities of boundary data.

VARIATIONAL. DERIVATION OF TRANSITION CONDITIONS

Ideally, at an interface between two adjacent finite elements the displacement

field should be continuous

(up), = (uy)_ ©)

and the surface tractions in equilibrium, writing tj = ni fij »

(tj)+ + (tj)_ =0 (10).

Then, provided the coefficients of the constitutive equations (elastic moduli)
are themselves continuous at the interface, the transition conditions (9) and
(10) will induce continuity of the stress and strain fields. The exact transition

conditions (9) and (10) are obtained variationally as follows.



Consider the elements E+ and E~, whose partial boundaries F+ and F- are the

faces of an interface F. If the elasticity problem for E is solved with E5+ as
boundary data on F_ and similarly the elasticity problem for E_ with tj— on F_ ,
we must assume the data to be coherent; which means, in this case, in equilibrium

on F
.._... (__‘
(t )| t t ) 0

In fact, opportunity can be taken of the existence of the interface to introduce
a prescribed external interface loading fj’ in which case the equilibrium condition
is non homogeneous

(€, + (€)= ¢,

It can be solved by setting

(t,)), == ¢t, +t, (t,) ==¢t, -t, (11)
i 27 3 i 27 3

While at each element level (Eg)+ and (ES)_ are fixed values, at the assembled

level tj is an unknown internal force. Thus, if the elasticity problem is to be

solved by a variational principle, the functional being now extended to the union

of the domains E+ and E_ , the variation of the terms depending on tj with respect

to tj must disappear @

8 T. u,). dS + § t. u,) dS = st.(u, =-u, ) dS =0
jF 5 vy IF €5 95- JF 3 70
+ -
(12)

1f tj is unconstrained (not discretized) this results in the requirement of

strong conformity (9).

Conversely, assume the data on F+ and F_ to be respectively ;3+ and ;3_ .
If coherent they must satisfy continuity 33+ = 53_ N
More generally, if opportunity is taken to introduce a prescribed dislocation

this can be solved by setting

— 1 -— 1
L. = A + u, u, = == Au, + u, 13)
Y TZT T Y i i B (



with uj an internal unknown at the assembled level. Then we must have

s (t. u.) dS + & f (t. u.) ds = I Su, (¢,, +t, ) dS =0
IF i i+ P j i- R A J“)

(14)

and, for unconstrained uj, this results in the requirement of strong diffusitivity
(10).

Note that in formulas (12) and (14) the repeated subscript j does not necessarily
mean application of the summation convention as used in the formulation of the
variational principles,

In the case of mixed data the "connectors" at an interface may well be 23 for one

particular value of j and 35 for another.

As a final observation, the fact that there are two faces at an interface,
allows the imposition of both dislocations and external loading. It is however
necessary in this case to add potentials to the functional considered at the assem—
bled level, In the case of E3 as connector we add to the functional the dislocation

potential + J tj Auj dS . Then, collecting the terms depending on tj
F

- (€, u.), ds - J (€. u.) ds + J t, Au, dS
JF* i i+ I p 4

substituting (11) and taking variations on tj’ we obtain

Then, collecting the terms depending on uj

~ u, + u.
f (c. T.). dS +J . 3) ds -j ¢, A J= 4

substituting (13) and taking variations on uj

L.+t =t
J* J= 1]

In the sequel we consider only unloaded and undislocated interfaces.



THE PURE MODELS

If we use only unconstrained E} connectors for a finite element, the relevant
variational principle is given by (8) and, as was just established, there is a
requirement for strong conformity (9) at the boundaries.

Assume that this requirement can be satisfied by a discretization of the displace-

ment field of the type

uj(x) =q Qmj(x) + bn an(x) (15)

where the set of independent generalized boundary displacements 9 describes

completely the boundary displacement field through the shaping functions Qmj(x)
and an additional set of bubble coordinates bn is eventually needed to complete
the description of the interior field. By definition, the bubble functions are

such that
an(x) =0 for x € 9E .

Each partial boundary aaE that is the face of an interface has its displacements
governed by a subset { 4 I m G-ma }of the s which are usually, through not
necessarily, local boundary displacements. Necessary and sufficient conditions for

strong conformity are then that

Gor = -

m ¢ m

QmJ+(X) = QmJ_(X) when x ¢ Q)OLE+ = BOLE-—

The common values of q, across the interface are known as the "nodal displacements"
and are usually chosen as the basic unknowns of the global discretized elasticity
problem. For the stress field, it was already observed, and it appears clearly by
looking at the functional (8), that its choice is confined to the interior domain
of each element.

Unconstrained variations of the Tij produce the Euler equations

a0

3Tij

1
= -2--'(Di uj + Dj ui) (16)

that can be solved for the stresses and constitute in fact their optimal (maximi-

zing) choice. Since this places no restrictions OB the selection of the displacement



field, then is little sense in making other choices, in particular in constructing
mixed models with a separately discretized stress field. Thus models using E} as
unconstrained connectors may advantageously be set up by the simpler principle of

variation of displacements :

J {W@u -X, u, } dE - [ t, u, dS min (17)
E 33 s 4 3

to which (8) reduces on the acceptance of (16). The notation W(D u) means obviously
that the arguments of the strain energy density must be calculated from the displa-
cement field through equations (3). This result was presented earlier 6 in the form
of a "limitation principle" in the use of two-field functionals.

The elements constructed in this fashion may be referred to as "kinematical and
strongly conforming".

Strong diffusitivity would occur by virtue of the equilibrium properties (11)
postulated from the connectors, if the internal stress field were related to the
connectors by (5). This equation, however, holds only for unconstrained displacement
fields at the boundary. Because of the discretization (15), the equation is replaced

by its weak form

[aE Qmj(x) { n, Tij - tj } ds =0 (18)

As the stress field will ultimately be known through (16), (18) shows that numeri-
cal values will be received for the weak connectors only

7 - JBE Qqy (0 T a8 (19).

No local (strong) information will ever be obtained for the 23 o

The weak connectors are the generalized boundary loads conjugate, in the sense of
virtual work, to the generalized boundary displacements q,e From these considera-
tions it appears that kinematical, strongly conforming models of finite elements

are only weakly diffusive.

Take now the converse case in which use is made of unconstrained u, connectors
for all boundaries; the relevant variational principle being now given by (8').
It was seen that this poses a requirement of strong diffusitivity (10).
To implement this, the stress field must be discretized in such a way that it has a

representation of the form



= +
Tij " B Tpig ® * By By (20)
The hn are bubble coordinates, the stress~bubble functions being by definition

such that they generate no surface tractions on the boundaries :

n, Bnij(x) = Q for x ¢ 3E ®

The surface tractions are completely described by the generalized boundary loads

Ea

tj =g ij(x) with ij(x) =n, rmij(x) (21).
For any partial boundary that is the face of an interface, they depend on a subset

of the & and diffusitivity follows from the conditions

Byt ¥ By = O
m €ém

(x) = ij_(x) for x € auE

ij+
Looking now at the behavior of such models from the viewpoint of conformity we meet
with a completely different situation. It is clear from the fumnctional (8') that,
by contrast with the former case, it is the displacement field whose choice is now
confined to the interior domain. But if we accept an unconstrained choice we do
this time impose restrictions on the choice of the stress field. It must satisfy
the volume equilibrium equations (4). Assuming that it remains possible to organize
strong diffusitivity under such restrictions we obtain an element that can be
referred to as "statically admissible and strongly diffusive'.
Because uj disappears completely from the functional in<case (4) is satisfied,the
relevant variational principle becomes in fact the so-called complementary energy
principle, and there is no proper relationship between the connectors and an inter-
nal field. There is however a weak information available on displacements.

On the one hand weak displacement connectors

q = T .(x) u, dS
o faE ™ J
can be defined, conjugate in the virtual work sense to the By conforming (§;+ = E;_)
by virtue of the property postulated from the ;3 , and for which numerical values

will be received. As a matter of fact they can be used as nodal displacement.unknowns



in the same direct stiffness method of approach as for kinematical models 6 ®

On the other hand numerical values can also be obtained for the weak generalized
displacements conjugate to a given body load. For those reasons the statically
admissible and strongly diffusive models can be considered as weakly conforming.
The strain energy bounds that can be obtained from the two types of models descri-

bed in this section are well known 6,10 o« Used in alternate discretizations of the
same problem, the dual amalysis principle 17 , they provide useful assessments of

the discretization errors by a quantitative estimate of the energy convergence.

THE HYBRID MODELS

Cases are known for which discretization by complete polynomials leads to difficul-
ties in organizing strong conformity (e.g. Kirchhoff plate bending) or strong dif-
fusitivity with equilibrated stress fields (e.g; plate stretching). One way to
overcome those difficulties has been in the assembling of superelements 2’7'8’9'17.
Another has been the use of hyperconforming elements available for high degree
polynomials 2 . Not only are such elements expensive in number of degrees of freedom,
but the fact that they make use of unnecessary continuity requirements at their
interfaces restricts the application of a standard connexion software whenever the
elements are not coplanar, the interface is a discontinuity surface of material .
properties, or subject to an interface load.

If one is prepared to accept the loss of the bounding properties of the pure

elements, hybrid models may provide less expensive solutiomns.

Consider again the case of E} connectors on all boundaries together with the
maximizing choice (16) of the internal stress field, so that the relevant varia-
tional principle is given by (17). This time however the E} are constrained by a

discrete representation

t. =g 22),

tj g, ij(x) x ¢ 3E (22)

This procedure follows in fact the pattern (20) and (21) except that the surface‘
tractions are only defined on the boundary. There is no difficulty therefore in
taking ij+(x) = ij_(x) on the interfaces and strong diffusitivity of the
surface tractions will follow from 8ot ¥ By T 0 .

As the variations on the connectors are now constrained, strong conformity of the

internal displacement fields will be replaced by the weak conformity



[F ij(x) (uj+ - uj_) ds = 0 (23)

Accordingly, the internal displacement fields need no more be discretized in the
form (15) but their unknown coefficients are determined, partly,by the boundary

displacements conjugate to the'E of (22)
G m

qm = f . uj (X) ij (X) ds (24);
3

Coefficients not determined by (24) are considered as internal degrees of
freedom eliminated by direct minimization of the energy at the element level,

Such elements may be termed "kinematical and weekly conforming".

Another category of hybrid elements, in fact the first introduced into the
litterature by T.H.H. PIAN, is that of "statically admissible and weakly diffusive"
elements. By a procedure completely analogous to the preceeding one, the complemen=-

tary energy principle is used with discretized ;5 connectors @

Gﬁ = E; Qmj(x) x € 3E (25)

Because the shaping functions are only defined on the boundary, there is no
difficulty in taking Qmj+(x) = Qmj_(x) o?_Fhe ézferfaces and strong conformity
of the boundary displacements follows from Gt = Yo ®

As the variations on the connectors are now constrained, strong diffusitivity is

traded for the weak diffusitivity

J Qmj (%) (tj+ + tj_) ds =0 (26)
F

The internal equilibrated stress field is determined partly by the weak boundary

loads conjugate to E;

g, = faE Qmj(x) n, Tij ds 27) .



MIXED MODELS

Mixed elements arise most naturally in the presence of mixed connectorse.
To give an example from plate bending theory, the connectors may be split into
a displacement type %;-E' for the normal slope of the plate deflexion and ﬁ; the
Kirchhoff shear load together with the corner loads Z.
The first, if undiscretized will require the existence of an internal bending
moment field with strong diffusitivity. The second the existence of an internal
transverse displacement field w with strong conformity. The difficulties associa~-
ted with C1 continuity, that is the strong conformity of both w and %; w will be
avoided. The relevant variational principle will then be the proper combination
of (8) and (8'). Most of the mixed elements presented in the litterature are of
this, or a similar, nature 418,19 o

Such mixed models share with the kinematical models the advantage of dealing
simply with the problem of arbitrary body loadings. Those are automatically con=-
verted by virtual work into weak conjugates to the displacement degrees of freedom.
The plate bending case is a good showcase because of the many different transverse
pressure distributions that must be cared for im practice. By contrast the stati-
cally admissible elements require a search for special solutions to the non homo-

geneous equilibrium equations that are not always easy to find.

DIRECT STIFFNESS AND DIRECT FLEXIBILITY

It appears that there are finally two methods for assembling any type of finite
element model. The best known is that using the nodal displacement identification

procedure
Qoy = 4y = 2 nodal displacement (28)

It was used from the beginning for the kinematical and strongly conforming models,
where the q, are 2trong, and later for the statically admissible and strongly
diffusive models , Where the q, are weak, It applies as well to the hybrid and
mixed models. It produces a direct method for assembling the elemental stiffness
matrices and is known therefore as the direct stiffness method.

Each 9 having its conjugate = weak when 9% is strong and vice-versa, another

assembling method would consist in using the relation



g ,+tsg _=0 (29)

There are two drawbacks to this. One is lack of symmetry, the other is that (29)

is valid only for externally unloaded interfaces. To this second drawback one may
object that (28) in turn is only valid for undislocated interfaces, although the
possibility of loading an interface is more useful in practice than the prescription
of a dislocation. The drawback of symmetry can be overcome by the use of stress
functions. It is easily shown that C1 continuity of the Airy function and Co

cont inuity of the Southwell stress functions are sufficient conditions of strong
diffusitivity in the respective cases of plate stretching and plate bending 10 o

This allows to assemble models with strongly diffusive connectors by the rule

¢ = c¢ = nodal stress function value (30)
m+ me=

and corresponds to a direct method for assembling elemental flexibility matrices,

producing a particularly simple version of the Force method known as the direct
flexibility method. P. BECKERS 1 was the first to point out that this method
applies to all models with suitable definitions of weak stress funct ion values

and established the relations between the &y and the stress functions.

There are limitations to this method : the presence of body loads, interface loa-

ding and multiple connectivity of the assembled structure require dislocations in

the nodal stress function values.

INTERFACE VIRTUAL WORK

Consider two finite elements with interface F. Wathever be the particular

variational principle and associated type of element used, the terms containing

the connectors are all of type

T, = u, t, ds + . :
i JF ( j J)+ IF (UJ tj)_ ds (j not summed)

where the bar indicating the connector is either on u, or on t,.

If tj is a discretized connector :

Eia ™ By Ty (® 2 T = =g TG0 L x €F ,memp,



Tj =&,

T ,(x) {u, (x) —u, (x)} ds =0
fF mj J+( ) J-
because each integral vanishes as a result of variations on the independent 8p°

Similarly, if uj is a discretized connector :

e T e T Gy Uy e x EF L m €y

T, = U . (x) {t, (x)+t, (x)} dS=0
3 n fF @] i+ 3=

because each integral vanishes as a result of variations on the independent 9
The result Tj = 0 holds a fortiori when the connectors are undiscretized because
of the strong diffusitivity or conformity which are then required. The vanishing

of each of its terms causes the total interface virtual work to vanish :

e IF (65 up)y a5+ IF (g up. 820 ( sumed) G

As we now consider the two assembled elements to constitute a substructure and add
a new element to it, the virtual work at the new interface will vanish by the same
arguments. Thus, using a frontal assembling method, it turns out that, wathever be
the type of elements, the virtual work vanishes at each interface of the assembled

structure.

This result, that satisfies engineering intuition, is a key ingredient in
the verification of the patch test and is in fact equivalent to the statement
that there is no strain energy gained or lost at the interfaces, a variational

viewpoint of the patch test adopted by STRANG 3 o

THE ZERO INTERFACE VIRTUAL WORK CONDITION FOR PLATE BENDING ELEMENTS

Conjunction of the zero interface virtual work condition and the dual connector
systems (displacements or stress functions) allows a systematic construction of
elements that will pass the patch test and“possess the associated convergence
characteristics,

We take an example where the difficulties in obtaining strong conformity are
noteworthy : the Kirchhoff plate bending problem.

For one face of an interface (here an arc between two angular points 1 and 2)

the virtual work is



2 oW ow
- ZE M - e
fl (w Qn on LIn 9s Mnt) ds (32)

where w is the transverse plate deflection representing the displacement field,
dw/on the slope in the direction of the local outward normal (K makes an angle 6
with a fixed axis O0x), 9w/9s the slope in the direction of the local tangent,
oriented from 1 to 2 . Qn the shear load, Mn the normal bending moment, Mht the10
twisting moment are representative of the surface tractions. We represent them

by means of the Southwell vector stress function (U,V).

If there is an internal self-equilibrated stress field, it is given by

Y R Y U _ 9U
Mxx ay Mxy T2 (Bx * dy Myy T 3x (33)
as bending moments field,
R ) _l @y _
Qx sy Qy 3 & 2 (ax ay) (34)

as shear loads field. On the boundary, where the vector is locally resolved in

its normal component Un and tangential component Ut , there results

LA : U
Moo= 5=+ 08U Moo= -0 -5+ 080U (35)
au 3u
Ll =&
L 2 (an gs * 6 v ) Qn - 3s (36)

and the Kirchhoff shear load

BMnt oM At aMn . U
Kn - Qn * 98 =2 98 * an + 0 (Mn - Mt) = -'53 ( - 6 Ut)

(37)

In those formulas 6 = d8/ds measures the curvature of the boundary.
Equations (35, 36 and 37) continne to hold if the surface tractions are only
defined on the boundary. Formula (32) takes now one of the following forms,

derived from each other by integration by parts :

2 ol BU
& ow t
Jl {w s om (Bs + 6 U ) + ——-(2 + Bs - 6 U ) } ds (38)



2 2 o SUt . - aUn .
= wa l +f1{~-é-ﬁ-(-a—§—-+6Un)+'§-g(—a?~—6Ut)}dS (39)

aUn R 2 2 - aut . 3 aUn N
=y @ + vl 8 Ut) ll + Jl { - Ealésgu + 0 Un)—W'sg ng— -0 Ut) } ds
(40)
2 2 2 ° 2 .
- W M o_y 3W gl _y (3, 0w
=walo Un 9s Ut on 1 * Ji { Ut (asan ® Bs) Un ( 852 + 8 Bn) } ds

(41)

Form (40) would be the one normally associated with the treatment of boundary

or transition conditions from the viewpoint of variation of displacements.

Under the integral sign, w and 3w/dn are respectively conjugate to the Kirchhoff
shear load Kn and the normal bending moment M.n to be either equated to prescribed
boundary values or transmitted to adjacent elements, while the first term is a
reninder that the distribution of the twisting moment Mnt is equivalent to its

contribution aMnt/Bs to Kn plus the end values it takes in 1 and 2.

Form (41) is the one normally associated to the complementary energy principle.
Under the integral sign the conjugates to Ut and Un are boundary deformations,
twist for Ut and transverse curvature for Un ; they are either equated to prescri=-
bed values or transmitted to adjacent elements. If U and V are known along all
boundaries, 2 is known at the angular points and the first term in (41) will be

the one ensuring single valuedness at angular points of w and its first derivatives.

The condition of zero interface virtual work will now be written by adding the
contributions of F, and F_ . If, in doeing so, we adopt a common orientation for
the normal and the tangent, say that on F+ , we must simply make the difference
between the formulas (38), (39), (40) or (41) for F, and F_ . This difference
will b? denoted by A and, using (39), the condition is, assuming a straight boun-

dary 6 =0 ,

2 2 - aUt - BUn
A[Wﬂ 1+f1{—.3‘.;-é?+3‘;-5-8~} dSJ=0 (42)

Denote by 2a the length of the interface and introduce the reduced variables

2% - a0 (43)

a
i
[\ 17
<
il
[ §=



so that (42) becomes

% L +1 ow aUt oW aUn
A[WQ -1+J—1{--§-\;5—G—-+-§-€;-§-€—'}d0:}=0 (44)

Assuming a discretization by polynomials, we now introduce the expansions in

Legendre polynomials

m
‘ ml d 5 (02 _ 1)m
2 m! do

(45)

Pm(O) =

The first Legendre polynomials are

2 4 2
_ _ 307~1 _ 350 =300~ + 3
P (o) =1 P,(0) = == B, (0) = 3
503 - 30
Pl(c) =g P3(0) = ey (46)
Take
bW _ b
s LPy Pato) 3y - Ly Bp(o)
o o
(47)
aUn : ’c)Ut
"é‘c‘)_“'" = Z um Pm(o) =2 Vm Pm(c)
o a0 o
As Legendre polynomials satisfy the differential equation
d P
L (®1) =2} = m@) P (48)
do do m
we can adopt as first integrals
Qm+1(o) = f Pm(a) do
those, which for m > O, vanish at the ends of the interval
02—1 de
W T @y T >0 9,

while for m = 1 we make the particular choice

Ql(o) = g (50) .



It is useful to recall that the Legendre polynomials themselves take the following
end values :

]
—

Pm(:}) for w even

(51)

[}
o+
—

for m odd
Integration of the expansions furnishes consequently
w=p_,*tp,0+Lp Q.0
B 1 1

Un =u_y + u o + % u Qm+1(0) (52)

[
L]

£V Y O IV G )

Taking into account the orthogonality property

1
2
f_l P (o) P (o) do = mmmr 6 (53)

the zero interface virtual work conditions (44) takes the form

a [ p_@*W=2*C1) + p (W +2%(-1) + 2u) - 2q v,

2
i % Zm+1 (pm Yn T Vm) 1 =0 (54)

It becomes simpler yet if we recognize in the conjugates to P_1 s P, and 4,
reduction elements of the resultant of the total load transmitted across the

interface. Computed on F+ , the total bending moment is

B = I : M ds = J+l EEE-do = U " =2 v (55);
-a " -1 90 tla ° ’
the total vertical load
V= - a+fal< ds = - M ll—Jlg——(ﬂ)do=-(M +-?~U—rl)
nt -a -a B nt | 4 -1 90 98 nt 95
1



the total twisting moment about the mid-point of the interface

2

a a a a ] Un
T=«35 Mnt ) + [ s Kn ds = - s Mnt - j s S ds
-3 -a -3 -a 9s
ouU a a aun a
L CWIL S r *f Ts ds =88+ U
- -3 -3
=% +a2¥D + 2u (57).

Computed on F_ with the orientation of normal and tangent prevailing on F+,
these formulas undergo a change of sign.

Finally (54) becomes

2
A [ P_q av + P, T - qoB + % T (pm uo=q Vm) ] =0 (58)

and we can discuss its application to several types of plate bending models.
We note that (58) is a sum of pfoducts of generalized conjugate displacements

and surface tractions. Denoting by q c the generic term, the conformity condition 1is
Agq = O or q, = 4.4

and the diffusitivity condition
Ac = O or c, =¢Cc =c

showing, by comparison with (29), the restoration of symmetry accompanying the
use of the stress functions. In any type of model one of the factors in the product

will be a connector. If q is the connector, Aq = O a priori and

A(gc) = qAc

W it it Tt W T Wt Tt Deed Wt et el St Wi st Wt Woumt Wooved  Chsnt

variation will result in Ac = O, The converse implication Ac =0 - Aq =0

will follow is ¢ is an independent discretization parameter of the element.
However, since any discretization is limited as regards the degree of the polyno-
mials involved, the infinite sum in (58) is always truncated so that either confor-

mity or diffusivity, or even both, are weak,



STATICALLY ADMISSIBLE AND STRONGLY DIFFUSIVE PLATE BENDING MODELS

They are in fact the simplest models. In the case of triangular shapes complete
polynomials of degree n are used for the vector stress function (U,V) defining

the self-equilibrating internal stress field. Strong diffusivity follows from Co
continuity of U and V at the interfaces and this requirement is known, by analogy
with the kinematical models of plate stretching, to be easily enforced by a suitable
selection of local values on the boundary. Bubble stress modes appear for n 3 3
(their exact number is (n~1) (n-~2)) which, being uncoannected, are to be eliminated

by energy minimization of the isolated element. The local stress function values

on the boundary are independent and their variations produce the weak conformity

properties

Ap_1 = 0 and Apm = 0 9 Aqm =0 for O g<mcgn~1l (59)

where, by virtue of the expansions,

1 1 1 dp
= Zotl f S9p go=2LTyp ! -J w—=do ]| (60)
-1 2 m -1 -1 o]

m 2 90 m d
- 2utl ! w P do (61)
qm 2 -1 v m

A remark is needed here concerning the vanishing a piori of AQ at both ends of
the interface, which is necessary for the resultsAp_1 = 0 and Apo = 0,
The Co continuity of U and V along the interface is not sufficient to this effect;

from (35) we obtain at an end point of the interface

3Un
ML)y = -2, - G

and, keeping on F_ the same orientation of normal and tangent

aUn
(Mnt) _=+Q_+ 653—9_ .

Whence the reciprocity condition

U
= oee - -—-——rl =
CHRINL N o= hx==0

And the result follows since the second term vanishes already by the continuity
of U_.
n



The singlevaluedness of § at a corner is moreover necessary im order that, at the
assembled level, the jump in Mnt remains equal to the externaly applied concentrated
transverse load.

The lowest value of the polynomial degree in the stress functions is n = 1 and

Fig. la shows the choice of local values ensuring CO cont inuity. The weak confor-
mity properties are reduced to;'-vAp__1 =0 , Ap0 =0 , Aqo = 0,

From (52) and the fact that Qm+th 1) = 0 form > 1, it follows thatLAp__1 = 0

and Apo = Q0 require the transverse deflections to be transmitted at the corner
points, From (61) with m = O, it appears that Aq = 0 requires transmission of

the average normal slope. This is represented symbolically on Fig. 1lb.

It will be noticed that the comnexion is just sufficient to transmit the resultant
of the boundary loads across. In fact the element is somewhat deficient because

Kn = 0 and no additional solution can be found to account even for a uniform
transverse pressure distribution without altering the existing boundary loading
modes. The external load can however be replaced in a sense of best statical equi-
valence by concentrated loads at the nodal points of the mesh.

The case n = 2 is better known and operational 20,21 N

Fig. 2a. shows the choice of local stress functions value leading to Co cont inuity
and use of a direct flexibility solution at the assembled level.
We now have the additional weak conformity properties

Ap1 = 0 and Aq1 = 0 expressing the continuity of

1
p, =2 (w(l) +w(-1) = | wdo)
1°2 1
= é- b o1 Eﬂ do
R S I Y

Considering that the corner deflections are already continuous, the first implies
simply the additional continuity of the average interface deflection. The second
can be used as such or be combined with the Aqo = 0 condition in the equivalent

continuity of the pair

L oW 1 ow
J (1+g) ~~ do J (1-0) = do
-1 v -1 v

Figs 2b. shows symbolically this weak conformity property, by which the elements
of this type can be assembled by the direct stifness method.
Here an additional solution can be found that does not disturb the boundary loading

modes and equilibrates a uniform transverse pressure 21 °



This special solution is worked out in local coordinates and involves a second
degree bending moments field. As pointed out by L.S.D. MORLEY in a private communi-
cation, it would be logical to remove the dependency of the particular solution on
the choice of local coordinates by adding the two cubic bubble stress modes in U
and V (that also generate a second degree bending moment field), their contribution
being settled by energy minimization, '

Obviously there are no difficulties in raising arbitrarily the value of n for this
class of elements and the weak connexion properties required for application of

the standard direct stiffness procedure follow automatically from working out (60)
and (61) up tom = n~l.

Figs 3a and b show the case n = 3.

KINEMATICAL, WEAKLY CONFORMING PLATE BENDING MODELS

With kinematical models we enter the area of difficulties in obtaining strong
conformity. The converse of the procedure followed in the preceeding section fails,
essentially because the boundary displacements required for strong conformity cammot
be made independent., Their number exceeds the number of independent coefficients
available in a complete polynomial of specified degree.

By discretizing the stress functions introduced as connectors at the boundary we
construct hybrids of the kinematical, weakly conforming variety.

Take first for w in a triangle a complete polynomial of degree n = 2 and linear
variations for U and V along the boundary. The summation in (58) is then truncated
tom < 2 for both reasoms, but all conjugates are present up tom = 1, Fig. 4a shows
the same organization of Co continuity of the stress functions as in Fig. la but
they need not (although they can in this case) be defined in the interior domain.
The weak conformity properties are the same as before and may in fact be used as
illustrated on Fig. lb. However, and this is the origin of the concept of non-confor-

2 R . . .
»3 or delinquent 1 elements, the change in context allows a reinterpretation

ming
of the weak displacement connectors in terms of local values. Indeed, while in the
former casethe displacement coefficients Py and q, were simply unknown for m > 1,
they are now a priori set equal to zero because of the existence of the internal
displacement field and its limitation to a second degree polynomial. Thus the
average normal slope can here be identified with its constant value along the
interface, in particular the mid~point value (Fig. 4b). The element becomes in fact
one proposed by L.S.D. MORLEY > , already recognized as passing the patch test 2 ’

and exhibiting convergence in practice.



The case where w is a complete cubic produces new elements.,

The truncated expansions of w and its normal slope are

2 2
o =1 o(o -1
AR RE Rl el 62)
oW _ : 3o -1
o TR T Y TS (63)

There are two choices for the stress functions on the boundary that allow the 10
coefficients of the displacement field to be expressed in terms of generalized
boundary displacements without violating the zero interface virtual work condition.
In the first, the tangential component of the stress function is only allowed linear
variations but the.normal component has quadratic variations.

Hence in (58) vy o= 0 but- not e The resultant weak conformity requirements are :

Ap__1 = 0 Ap =0 unplying as we know the continuity of

w at corner points,

1
Ag =0 implying continuity of [ 2w do
0 -1 av
1
Ap1 =0 implying continuity of [ w do
-1

Inspection of (62) reveals that, since the p, term vanishes for o = 0, the last
condition can be replaced by the continuity of w at mid-point.

On the other hand (63) does not reveal any local slope that would be related to

4, only. Hence it is not always possible (nor is it necessary) to obtain a weak
connexion interpretation in terms of local displacements only. Figs. 5 a and b
illustrate the two connexion schemes. As we have only nine boundary displacements
we must add a pseudo~bubble shaping funct ion (by this we understand a shaping
function in which the nine displacements are set equal to zero) generated, for
example, by the transverse displacement of the barycenter. This unconnected
degree of freedom is to be eliminated by minimization of the emergy of the element,
It remains to be verified (e.g. by usingareal coordinates) that the transformation
between the 10 coefficients of the cubic w field and our 10 degrees of freedom is
non singular.

In the second choice (Figs. 6 a and b) the normal component of the vector stress

function is restricted to linear variations and the tangential one to quadratic,



whereby u, = O but not v

1 1° :
The continuity requirement for 12 is traded for the continuity of q, or I o g% do .
-1

Inspection of (63) reveals that, since the q, term vanishes at the Gauss points

o = i_l~ » continuity of the normal slopes at those points is equivalent to both

3
Aqo =0 and Aq1 = Q,

Again a pseudo bubble degree of freedom, connected with the barycenter, must be

energy eliminated.

Suppose now that each of the connected elements is in a state of uniform
strain, so that P, = 0 and 4y = O. Then for the first of our new cubic displacement

models, Py P and q, are continuous by virtue of the connexions and there

OQP‘l
will be exact conformity provided 4 is also continuous. This will be the case if

9°w
EAVETo]

the two elements have the same state of uniform strain, because the twist q =
is one of the strain measures,

Similarly for the second model where P_1 s Py s 9, and q, are already continuous
by virtue of the connexions, exact conformity will follow from the condition of
common uniform strain because Py = §~% will be a common curvature.

This illustrates the verification of tge patch test as it was originally conceived
by IRONS 1 « Non conforming elements pass the patch test when they become exactly

conforming under a common state of uniform strain.



CONCLUSIONS

The patch test is most easily verified by expressing the zero interface virtual
work condition with the help of stress functions and is in fact identical to the
construction of hybrid models. Clearly as the degree of polynomial approximation
is raised, elements can be constructed that pass a higher order patch test, e.g.
they become exactly conforming under a state of uniform strain variation and this
property must be related to a higher rate of convergence.

Examples were only given for Kirchhoff plate bending and triangular elements,
because this problem has received much attention in the past. The extension to
rectangular elements is straightforward. Moreover the method followed is directly
applicable to the plate stretching case, using the Airy stress function. The hybrid
models of PIAN type, or non-diffusive elements, constructed in this way may prove
to be useful substitutes for the superelements required to enforce strong diffusi-
vity.

The three-dimensional case is decidedly more difficult because of the complexity

and lack of uniquemess of the stress function tensor.
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