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ABSTRACT

We describe an accurate, one-dimensional, spherically symmetric Lagrangian hydrodynamics/gravity code,
designed to study the effects of radiative cooling and photoionization on the formation of protogalaxies. The
code can treat an arbitrary number of fluid shells (representing baryons) and collisionless shells (representing
cold dark matter). As a test of the code, we reproduce analytic solutions for the pulsation behavior of a poly-
trope and for the self-similar collapse of a spherically symmetric, cosmological perturbation. In this paper we
concentrate on the effects of radiative cooling, examining the ability of collapsing perturbations to cool within
the age of the universe. In contrast to some studies based on order-of-magnitude estimates, we find that
cooling arguments alone cannot explain the sharp upper cutoff observed in the galaxy luminosity function.

Subject headings: galaxies: formation — hydrodynamics — methods: numerical

1. INTRODUCTION

The leading cosmological theories imply that galaxies form
by the collapse of primordial density fluctuations. The gravita-
tional evolution of collisionless matter can be followed by
various dynamical approximations, or, in the strongly nonlin-
ear regime, by N-body simulations. However, gasdynamical
effects such as shocks and radiative cooling must play an essen-,
tial role in the formation of galaxies, since gas must cool and
condense inside dark matter halos before it can form stars.

There have been two quite different approaches to this theo-
retical problem. One, going back to the pioneering work of
Binney (1977), Silk (1977), and Rees & Ostriker (1977, hereafter
RO), uses simple analytic estimates: typically, one computes
the characteristic density and virial temperature of a dark halo
assuming a spherical collapse model, then asks whether gas at
this density and temperature can cool within a dynamical time,
or within a Hubble time. Combined with extended versions of
the Press-Schechter (1974) formalism, these methods can yield
detailed predictions for properties and evolution of the galaxy
population (White & Rees 1978; White & Frenk 1991; Kauff-
man, White, & Guiderdoni 1993; Cole et al. 1994). The second
approach, which has become computationally practical only
within the last few years, is to incorporate gasdynamics directly
into three-dimensional numerical simulations (e.g., Katz &
Gunn 1991; Cen & Ostriker 1992, 1993; Katz, Hernquist, &
Weinberg 1992; Evrard, Summers, & Davis 1994; Steinmetz
& Muller 1994).

In this paper and those that follow it, we will take an inter-
mediate path, modeling the collapse of individual pertur-
bations with a one-dimensional, Lagrangian gravity/hydro
code. The code evolves a mixture of gas and collisionless dark
matter, elements of which are represented by concentric spher-
ical shells. The gas responds to gravity and pressure forces; it
can be heated by adiabatic compression, by shocks, and by
energy input from a photoionizing background, and it can cool
by a variety of atomic radiative processes. The collisionless
dark matter responds only to gravitational forces. While we
focus in this paper on galaxy-scale collapses assuming spher-
ical symmetry, the code is also well suited to studies of Lyman-
alpha clouds, and it can easily be adapted to planar or
cylindrical symmetry.
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Larson (1969, 1974) studied galaxy formation with spher-
ically symmetric simulations more than 20 years ago.
However, the intervening years have seen great changes in the
theoretical underpinnings of galaxy formation—especially the
introduction of dark matter and the development of physically
motivated initial conditions—and they have seen great
improvements in computational algorithms and hardware, so
there is plenty of reason to revisit this approach. Our calcu-
lations include radiative cooling in the gas component and
gravitational interactions with a collisionless component, and
we adopt initial conditions appropriate to Gaussian random
fluctuations, as might be produced by inflation in the early
universe. Instead of Larson’s Eulerian-grid approach, we adopt
a Lagrangian representation of the gas and dark matter, which
provides much higher spatial resolution in the central, high-
density regions of a collapsing protogalaxy. The manyfold
increase in computer power allows us to use large numbers of
fluid elements and to perform faster searches in parameter
space.

Our numerical approach—one-dimensional Lagrangian
hydrodynamics with radiative cooling—is similar to that used
by Thomas (1988) in his models of cooling flow galaxies and by
Shapiro & Struck-Marcell (1985) in their studies of “ pancake ”
collapse. Thomas’s spherically symmetric code allowed for a
multiphase fluid but no collisionless dark matter, while the
code we develop here evolves a single fluid component and a
single collisionless component. Shapiro & Struck-Marcell
included a collisionless component, and they examined col-
lapses with planar rather than spherical symmetry. Our treat-
ment of radiative cooling is somewhat different from that
adopted by these authors; in particular, we can include the
influence of a photoionizing background on the abundances of
ionic species. However, the largest differences are not in the
codes but in the choice of problem, and the consequent choice
of initial conditions.

The geometry in our calculations is idealized, and one must
therefore take care to keep their limitations in mind. Nonethe-
less, they can provide a valuable complement to their more
elaborate, three-dimensional cousins because of their high
resolution, their speed, and their relative simplicity. Three-
dimensional hydrodynamic simulations of galaxy formation
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suffer from limited spatial resolution and mass resolution,
making it difficult to separate genuine physical results from
numerical artifacts. One-dimensional collapse calculations can
achieve much higher resolution, computing gasdynamic pro-
cesses with much higher accuracy. Because they run fast, it is
possible to undertake a much more comprehensive exploration
of the parameter space, varying both the values of cosmo-
logical parameters and the assumptions about the gas micro-
physics. The results are much easier to visualize and interpret
than those of three-dimensional simulations. Thus, these sim-
plified, high-resolution calculations can provide a useful
numerical check on three-dimensional simulations and,
equally important, can provide physical insight into their
results. They can also check and improve upon the simpler
analytic models that serve as inputs to Press-Schechter—type
calculations.

This paper serves two purposes. First, it describes the code
itself and tests its ability to reproduce known analytic results
such as the self-similar, spherical infall solution of Bertschinger
(1985). Second, it applies the code to one of the basic questions
of galaxy formation: what causes the abrupt cutoff at the upper
end of the galaxy luminosity function? It has long been recog-
nized that gravitational effects alone cannot explain this cutoff,
because the largest virialized objects—rich galaxy clusters—
have much higher masses than the largest galaxies (White &
Rees 1978). The “lore,” deriving largely from Binney (1977),
Silk (1977), and especially RO, is that the upper cutoff is deter-
mined mainly by atomic physics, specifically by the require-
ment that the gas within a density perturbation be able to cool
and collapse within a Hubble time. RO even include a
“numerological digression ” in which they relate the character-
istic masses and sizes of galaxies directly to fundamental gravi-
tational and atomic constants, independent of cosmological
parameters. We will examine the underpinnings of this argu-
ment by studying the dynamics of gas in collapsing systems of
various masses, focusing especially on the cooling in high-mass
perturbations. In a later paper we will examine the suggestion
of Efstathiou (1992) that photoionization by the UV back-
ground may strongly affect the formation of low-mass galaxies.

This paper is organized as follows: In § 2 we present our
general numerical model, focusing on the treatment of hydro-
dynamics and cooling in the gas component. In § 3 we show
the results of several test calculations. In § 4 we present results
for collapses of spherical density perturbations, with and
without a collisionless component. In § 5 we discuss the impli-
cations of threse results for the galaxy luminosity function,
comparing our analysis with those of RO and White & Frenk
(1991).

2. NUMERICAL MODEL

The simplest model for galaxy formation consists in the
evolution of a uniform, pressureless, spherical density enhance-
ment in a Friedmann universe. The expansion of such a region
lags behind the Hubble flow, until it stops at a turnaround time
t,, and radius r,,, and recollapses. It then undergoes violent
relaxation and virializes after another one to two turnaround
times. The value of t,, depends on the amplitude of the density
contrast dp/p at the recombination epoch. The large-scale dis-
tribution of galaxies is consistent with smooth hierarchical
clustering resulting from a purely gravitational process, with
no preferred length scale. However, dissipation must have
played a role in the formation of galaxies themselves. Within

the spherical model, one expects gas to shock and heat as it
collapses, and pressure forces and radiative cooling will strong-
ly affect the postshock evolution.

To better understand these important effects, we have devel-
oped a simple but highly accurate one-dimensional numerical
code to model the collapse of individual spherical pertur-
bations. The code treats a mixture of gas particles, evolved
through Lagrangian hydrodynamics, and collisionless particles
(cold dark matter), each represented by concentric shells. The
Lagrangian description is preferable to an Eulerian description
because it follows the mass and fluid elements themselves,
thereby maintaining the mass resolution throughout the calcu-
lation. As we will show in § 4, the density and temperature are
extremely nonuniform during the collapse, leading to widely
varying timescales, both in space and in time.

2.1. Equations

Since we study isolated, collapsing density perturbations, we
will work with physical coordinates (rather than coordinates
that are comoving with the expanding universe).

The gaseous component is described by the fluid equations
for a perfect gas. These are the continuity equation,

dp
-ﬁ+ng°vy=0; (1)
the momentum equation,
dv, Vp
o 2 . 2
0t o, +8; 03]
the energy equation,
d_u P fdfﬁ _l:‘;/_\_ . 3)

dt  p? dt Py
and the equation of state,

p=0@—1pgu. @

In these equations, p,, v,, p, and u are the baryonic mass
density, velocity, pressure, and internal energy per unit mass,
I is the external heating rate (e.g., from photoionization), A is
the radiative cooling rate, y is the adiabatic index, and g =
— V@, where @ is the total (gas and dark matter) gravitational
potential.

In spherical symmetry, equations (1) and (2) can be rewritten
in the Lagrangian form as

dm, = 4nr; pgdry , (5)
which replaces the continuity equation, and

ZE_M;.Q’ (6)

[

dv

e _

TR ™
where r, is the radius of the gas shell and M(r) is the total
(baryonic and dark matter) mass inside radius r. Here and
throughout this paper we have set G = 1.

The collisionless component is simply described by the equa-
tion of motion

dv,
dt

where v, is the dark matter velocity. In spherical symmetry,

=8, (7)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJ...442..480T

30T

NN Y

482 THOUL & WEINBERG

this can be rewritten as

Ei_v_d_ M(ry)
dt r2 ®

where r, is the radius of the collisionless mass shell.

2.2. Radiative Cooling

We compute radiative cooling for a gas of primordial com-
position, 76% hydrogen and 24% helium by mass. The full set
of equations that we use to obtain abundances and cooling
rates is listed in Katz, Weinberg, & Hernquist (1995), so here
we restrict ourselves to a brief summary of the physics. Our
original source for most of these formulae is Black (1981), and
we adopt the high-temperature corrections of Cen (1992).

We compute the abundances of ionic species as a function of
density and temperature by assuming that the gas is in ioniza-
tion equilibrium with a spatially uniform background of UV
radiation. In other words, we choose the abundances so that
the rate at which each species is depopulated by photoioniza-
tion, collisional ionization, or recombination to a less ionized
state is equal to the rate at which it is populated by recombi-
nation from a more ionized state or by photoionization or
collisional ionization of a less ionized state. The intensity and
spectrum of the UV background are specified as a function of
time by the user, based on theoretical models or observational
constraints. Given the ionic abundances and the density, we
compute the cooling rates due to collisional excitation, col-
lisional ionization, recombination, and bremsstrahlung, and
we compute the heating rate from photoionization. For the
physical problems that we study here, the timescales for reach-
ing ionization equilibrium are much shorter than the other
timescales of interest, so our equilibrium assumption should be
an excellent approximation.

For the simulations in §§ 4.2 and 4.3 of this paper, we set the
UV radiation background to zero. In this case the relative
abundances are determined by collisional equilibrium alone,
and they depend only on temperature. Since all of the cooling
processes that we consider involve two-body interactions, we
can describe the cooling rate A by a single function of tem-
perature, up to a factor of pZ. The thick solid line in Figure 1
shows the total cooling rate A/nj;, where ny = 0.76p,/m,, is the
number density of hydrogen nuclei. Short-dashed lines show
the contributions from collisional excitation of H and He"*,
which dominate cooling in the range 10* K < T < 10%5 K.
Dotted lines show the contributions from collisional ioniza-
tion. Long-dashed lines show the contribution from recom-
bination. The thin solid line shows the bremsstrahlung
contribution, which dominates at T > 10°-3 K. Below 10* K,
all of the gas is neutral, and there are no collisions energetic
enough to cause electronic excitations, so none of the processes
that we consider can produce any significant cooling in this
regime. At very high densities the formation of hydrogen mol-
ecules can cool primordial gas to the temperatures required for
fragmentation into stars. We will not attempt to resolve stellar
mass scales in our cosmological studies, so we will just consider
gas that cools to 10* K to be “cold ” and leave it at that.

The principal scientific concern of this paper is the cutoff at
the high-luminosity end of the galaxy luminosity function. We
are therefore interested primarily in the behavior of high-mass
perturbations. At the virial temperatures associated with these
perturbations, typically 10° K or greater, the gas is fully
ionized by collisional processes, so our neglect of the photoion-
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FiG. 1.—Cooling rates as a function of temperature for gas of primordial
composition (fy = nym,/p, = 0.76, fy;, = 0.24). The thick solid line is the total
cooling rate. The dotted lines are the cooling rates from collisional ionization
of H, He, and He™ ; the long-dashed lines are the cooling rates from recombi-
nation to H, He, and He ™ ; the short-dashed lines are the cooling rates from
collisional excitation of H, He, and He*; the thin solid line is the cooling rate
from bremsstrahlung. Abundances of ionic species are computed assuming
collisional equilibrium.

izing background should make no difference to our conclu-
sions. Photoionization can affect the behavior of lower mass
perturbations because it eliminates the neutral hydrogen and
singly ionized helium that dominate cooling at low tem-
peratures, and because the residual energy of the photoelec-
trons heats low-density gas to T ~ 10* K. Our next paper will
focus on the influence of photoionization on the collapse and
cooling of low-mass perturbations.

Compton scattering of microwave background photons by
electrons can be an important source of cooling at redshifts
z < 10. However, in the collapse calculations in this paper the
gas remains neutral until much lower redshifts, when it col-
lapses and shocks, so we can safely ignore Compton cooling. It
would be straightforward to add this effect to our code, and we
would need to do so in order to study collapses at higher
redshifts.

2.3. Numerical Scheme

We use the standard, second-order—accurate, Lagrangian
finite-difference scheme (Bowers & Wilson 1991). In this
scheme, the velocity is zone-edge—centered, while the pressure
and internal energy are zone-centered. To obtain time center-
ing, the velocities are evaluated at half-time steps. We give the
hydrodynamical finite-difference equations in the order in
which they must be evaluated. In the following, the subscripts
denote the position of the shell, and the superscripts denote the
time. We first present the equations for the gas component, and
for clarity of presentation we drop the subscripts g. Note that
in the following equations, p} is the gas density, and m] is the
total mass interior to the shell at position i at time n, including
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both gas and dark matter. First we must advance the velocities
to t"*1/2 according to

P2 g2 |:47t(r:-')2 Pi+1[2d;l.l’i—1[2 " (:'.IT);'Z]dt,, )

Then we can advance the positions and evaluate the densities,

V?+1 = r:l + U;l‘f‘ 1/2 dt"+l/2 (10)

and

dm;
nt1 i+1/2 ) 1
P = Gy — e )] 4y
In these equations,

dt" = 3(dt"~ 12 + drt11?) (12)

and
dm; = %(dmi—uz +dm;. ;) . (13)

Equations (9)-(11) are second-order—accurate in space and
time. We can now advance the energy equation:

n+1 __ ..n n 1 1
Uiv12 = Uiv12 — Di+12\ av1 — o
Pi+172  Pi+1)2

T -:+1})?+ Y2 gmt1j2 (14)
Pg,i+1/2
This last equation is only first-order—accurate in time. To make
it second-order—accurate, we would have to replace pf, ;,, and
(T = A)4y)2 by pifi/? and (T — A)1y{/?. This would require
two evaluations of the cooling function per time step, and since
a lot of the computational time is in practice spent evaluating
the cooling functions, this would be quite expensive. However,
as we will show in § 3, the energy is extremely well conserved in
our present scheme, with equation (14), and there is therefore
no reason to require more accuracy in the energy equation.
Shocks are treated with the usual artificial viscosity tech-
nique (Richtmyer & Morton 1967). The pressure in the
momentum and energy equations is replaced by P =p + g,
where

n+1 2 n+1/2

+1/2
di+12 = —Cg 1 [ vy v |
' Vpiiis +1/pt1)2

x (Vi — ot 12) (15)
if v7f{? —1f*'? <0, and g =0 otherwise. We use c, = 4,
which spreads shock fronts over four or five shells.

The second-order—accurate, finite-difference equations for
the collisionless equation of motion are much simpler than
those for the gas:

n

m]

+1/2 _ n—1/2 i
vt =0 -
(ra.)

(16)

and
it =ry Fogti2amt 17

In the absence of shell crossing, the mass m; inside a given
shell would be constant in time. However, the collisionless
shells are allowed to cross each other and to cross gas shells, so
the masses m? are functions of time and must be computed at
each time step.
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2.4. Time Steps and Central Boundary Conditions

For each shell in the calculation there are three potentially
important timescales, namely, the dynamical, Courant, and
cooling timescales. In addition to respecting these timescales,
we must ensure that the fluid shells do not cross. We therefore
take a time-step

dt = min {dtdym dtCour’ dtcool’ dtvel} ’ (18)

where
2.3
dty,, = min {cd /%":—'} , (19
r;—ri_
dtcon = min {cc ———=L } (20)
T U e — Dy
. Ui pi
= — 21
Ao = R {"° (r—A)i,}’ .
and

ri —Ti—y

} ; 22

where ¢, cc, ¢, and c, are safety constants. We use ¢, = 0.01,
cc =02, ¢, =0.1, and ¢, = 0.05. The time steps vary widely
both in space and in time during a calculation. It is therefore
essential to compute appropriate time steps for all shells in the
calculation at a given time, and to use the smallest of these to
advance the system. We could increase computational effi-
ciency at the price of additional complication by allowing dif-
ferent shells to have different time steps, but thus far we have
not found it necessary to adopt this procedure.

A Lagrangian code achieves very high spatial resolution
near the center, and it can thereby demand extremely short
time steps. For collisionless particles the time step is deter-
mined by dt,,,, oc [r*/m(r)]'/?. The first shell, with mass dm, has
dtyyy oc (r}/dm)'/? oc r}/2, so the time step goes to zero as the
shell approaches r = 0. Since spherical symmetry is an ideal-
ization in any case, there is no need to bring the calculation to
a grinding halt in order to integrate the very central region at
high accuracy. We therefore solve the time-step problem by
treating the center as a hard reflecting sphere of radius r,
(Spitzer & Hart 1971; Gott 1975), which prevents time steps
from becoming arbitrarily small. Energy conservation de-
grades as r, is decreased (because shells rebound at higher
velocities), but it is not difficult to find a value of r, that (a)
yields excellent energy conservation and (b) is much smaller
than other characteristic radii in the problem, so that the
departure from an idealized spherical collapse is minimal.

A similar problem arises for the gaseous component when
the gas elements cool very rapidly. In regions where the
cooling time is much smaller than the dynamical time, the fluid
shells collapse at the free-fall rate, the central density increases
very rapidly, and the cooling and dynamical time steps become
exceedingly small. We solve the problem by “freezing” shells
that have t ., < t4,,. More specifically, when a shell has ¢, <
Cytayn, WE move it to a radius r = r,;,, assign it zero velocity
and a temperature of 10* K, and subsequently ignore it, except
in the calculation of the gravitational force. We require (r
— T'min) < 0.17,;,, SO that no shell moves a large fraction of its
radius in the freezing process; if the condition ¢, <
Ctqy, is Teached at a large radius, we continue to evolve the
shell until it reaches r < 1.1r,,;,. Shells in this regime collapse

dt,; = min {c,,

i Ui — Uiy
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nearly isothermally at the free-fall rate. We have run tests with
¢, =107% and ¢, = 10~ 3; these values yield virtually identical
results. We adopt r,;, = r., the radius of the reflecting sphere
used for the collisionless component. We first tried moving
frozen shells to the origin, but this practice leads to unstable
numerical results because the shells have a wide range of values
of t;,, at the time they are frozen. Adopting 7., = r, sup-
presses this instability, although in one physical regime (Where
a large fraction but not 100% of a perturbation collapses), the
amount of cooled mass can vary by ~10% from one run to
another, depending on the number of shells used, because of
residual sensitivity to the central boundary condition. Such
variations are small compared to the approximation made in
treating galaxy formation as a spherically symmetric process.

3. TEST CALCULATIONS

We have performed a variety of tests of the code on prob-

' lems with known analytic solutions. We describe results from

several of these tests in this section.

3.1. Polytropes

In the absence of radiative cooling, the total energy of the
system must be conserved, and in the absence of shocks, the
entropy must be conserved. To check that the code satisfies
these basic requirements, we simulate an equilibrium polytrope
of index n, = 1.5 (y = 5/3). We use N, = 500 shells, equally
spaced in radius r, and units such that G=M =R =1. We
relax the polytrope to an equilibrium by adding a dissipative
term in the momentum equation of the form —uv,/t,,,. We
then remove this term and allow the polytrope to evolve
dynamically. The result is an exceedingly accurate equilibrium:
positions of the fluid shells fluctuate with amplitudes Ar/r
smaller than 1077, the kinetic energy remains smaller than
10~ !4, and the potential energy, thermal energy, and entropy
change by less than 10~ 8 over ~ 100 dynamical times.

For a more rigorous trial, we set up initial conditions corre-
sponding to the first two normal pulsation modes of the poly-
trope. To obtain the appropriate initial configuration, we
simultaneously integrate the Lane-Emden equation and the
eigenvalue equation governing the radial oscillations of a
spherical star (Shapiro & Teukolsky 1983). We choose an
initial mode amplitude equal to 1% of the star radius. The
eigenfunctions are shown in Figure 2a. The eigenfrequencies
corresponding to these eigenfunctions are w; = 1.645 and
w, = 3.547. We let the pulsating polytrope evolve dynamically,
using N, = 500 shells in each case. The total energy and
entropy vary by less than 5 x 1073 over about 20 periods of
oscillation. The oscillations of the gravitational, thermal, and
kinetic energies are shown in Figure 2b. The oscillation periods
are T, = 3.82 and T, = 1.77 for the first and second modes,
respectively. These are identical to the periods 2n/w obtained
from the eigenfrequencies of these modes.

From Figure 2b we see that the entropy grows slowly during
evolution. This entropy increase arises because of the finite
amplitude of the modes. If we increase the mode amplitude
further, the oscillations produce shocks, which generate
entropy. Figure 2¢ shows this entropy generation when the
second normal mode has an amplitude of 15% of the star
radius. The shock appears in the outer shells, where the ampli-
tude of the perturbation is the largest.

3.2. Self-similar Hydrodynamic Collapse

To test the code in a context closer to its cosmological
purpose, we check that it reproduces the similarity solution for
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shocked accretion of a collisional, nonradiative gas, as
described by Bertschinger (1985). This solution describes the
asymptotic (late-time) behavior of a spherically symmetric col-
lapse about an initial seed perturbation in an Einstein—de
Sitter (2 = 1) universe. In the absence of cooling, neither the
gas physics nor the cosmology defines a preferred scale, so once
the collapsed mass exceeds that in the initial perturbation, the
system “forgets ” the details of its initial state, and its evolution
becomes self-similar in time. We evolve a perturbation with a
Gaussian initial density profile,

d(r) = 8{r = 0) exp (—r*/R}), (23)
and an unperturbed, Hubble-flow velocity profile,
v(r)=H;r, H;=2/3t). (24)
Here ¢; is the initial time, H, is the Hubble constant, and
odr) = Lpdr) — pi/p; (25)
is the initial density contrast, with
pi=pg, = (6nt)™1, (26)

the critical density at time ¢;. In the linear regime, the density
contrast grows as

§=3G7" +37Y, 27)
where

< {5 8(r)anr' dr’
n=——r——

0 = 43y (28)
is the averaged overdensity interior to the shell at position r,
and

T =t/t; (29)

is the time in units of the initial time ¢t;. The second term in
equation (27), and the factor 3/5 multiplying the first term,
appear because our Hubble flow initial conditions contain a
mixture of growing and decaying modes.

At the density contrast inside a shell grows, the extra gravi-
tational deceleration drags it further behind the Hubble flow,
until it finally turns around and recollapses. Roughly halfway
back to the center, it hits a shock, which sharply raises its
density, temperature, and entropy and brings it nearly to rest.
Thereafter, the shell falls very slowly toward r = 0. Figure 3
shows the trajectory of a typical shell in our simulation; the
radius and time are scaled to the shell’s turnaround radius ry,
and turnaround time t,,. With this scaling, the trajectories of
all shells that lie well outside the initial perturbation are identi-
cal, and the trajectory shown in Figure 3 is indistinguishable
from that in Figure 4 of Bertschinger (1985).

Figure 4 shows the velocity, density, pressure, and mass pro-
files from a simulation with é(r =0)=0.2, R,=1,a y=5/3
equation of state, and N, = 1000 shells. Solid lines show results
(from bottom to top) at T = 1000, 2000, 3000, 4000, and 5000.
The dashed line, often obscured by the solid lines, shows
Bertschinger’s (1985) similarity solution. The dimensionless
radius, velocity, mass, density, and pressure are defined by

A=r/r,, (30)

V(2) = olr, t)ro/D" (31
M) = m(r, t)(3mpgrd) ™", (32)
D() = p(r, V)/pu , (33)
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g8 —— energy is conserved to better than 0.2% over the entire run.
g
0.6 }/\—«W 3.3. Pressureless Collapse onto a Black Hole
00003 £ Tt Tt In the case of cold accretion onto a black hole, there is no
] shell crossing, M(r) is constant in time, and the equation of
m 0-0002 = motion ¥ = — M(r)/r? can be integrated analytically for each
& 0.0001 =
< ]
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F1G. 2.—a) Eigenfunctions for the first two pulsating modes of a polytrope
with adiabatic exponent y = 5/3. To set up a pulsating polytrope, we perturb
the shell radii of the equilibrium model according to r — r + 8. (b) Fluctuations
in the total energy, the gravitational potential energy, the internal energy, and
the kinetic energy, from a simulation with N, = 500 shells, during 20 periods of
the second normal mode. The bottom panel shows entropy production during
the oscillations. (c) Fluid shell trajectories and entropy production when the
second normal mode has an amplitude of 15% of the star radius.

and
P(2) = p(r, t\t/ro)pu’ . (34)

Here r,, is the radius of the shell that is currently turning
around (and is thus distinct from the radius 7], used in Fig. 3).
We see in Figure 4 that the profiles for the dimensionless fluid
parameters tend asymptotically toward the similarity solution,

r/r’ta

t/t,

F1G. 3.—Trajectory of a fluid shell in the self-similar, shocked accretion of a
y = 5/3 collisional gas. The radius and time are scaled to the shell’s turnaround
radius r;, and turnaround time t,,. With this scaling, the trajectories are identi-
cal for all shells.
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F1G. 4—Convergence of the numerical results toward the similarity solu-
tion for shocked accretion of a y = 5/3 collisional gas. The nondimensional
velocity V, density D, pressure P, and mass M are shown as a function of the
scaled radius A. The units are given by eqgs. (30)—(34). Profiles from a simulation
with N, = 1000 shells are plotted (from bottom to top) at T = 1000, 2000, 3000,
4000, and 5000, where 7 is defined in eq. (29). The dashed line shows the
similarity solution from Bertschinger (1985).

shell. Integrating once, we get v%/2 = M/r — C, where C =
M/r; — v?/2, and r; and v, are the position and velocity of the
shell at the initial time ¢;. This equation can be integrated once
more to give the radii as function of time, yielding the well-
known cycloid solution, usually written in parametric form
(see, e.g., Padmanabhan 1993, § 8). The mass profile and the
velocity profile are therefore known analytically.
For this test, we start with a top-hat initial density profile,

1+6; ifr<R;,
Pi = Pu; 1

ifr>R;,

with §; = 0.3 and R; = 1. We evolve the collisionless system
forward in time and compare the numerical results for the mass
and velocity profiles to the exact analytical values. In Figures
Sa and 5b, solid lines show the numerical velocity and mass
profiles, obtained for N, = 10,000 shells. Points show the exact
results at selected values of A. Dashed lines represent the unper-
turbed Hubble flow. Numerical and analytic results agree to
better than 0.5%, as shown in Figures 5¢ and 5d.

At the time shown in Figure 5, the collapsed mass signifi-
cantly exceeds the mass in the initial top-hat perturbation, so
the system has reached the regime of self-similar evolution.
Our Figures 5a and 5b are, therefore, identical to the similarity
solution plotted in Figure 1 of Bertschinger (1985).

(35

3.4. Coupled Hydrodynamic and Collisionless Systems

One important new numerical effect enters when we model
mixed collapses: as collisionless shells cross fluid shells, they
introduce discrete fluctuations in the gravitational forces
acting on the fluid, and this spurious agitation leads to low-

¥ level shocks and associated entropy production. The discrete-
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ness effect depends primarily on the mass ratio between
collisionless and fluid shells. From a variety of tests, we find
that this effect becomes negligible when the mass ratio is unity
or smaller. In general, therefore, we require N,/N, > Q,)/Q,.

4. COLLAPSES WITH RADIATIVE COOLING

We now turn to the main scientific issue of this paper: the
relation between the physics of gas cooling and the rather
sharp cutoff in the distribution of galaxy luminosities. We
address this point by modeling spherical collapses with radi-
ative cooling appropriate to a gas of primordial composition in
collisional equilibrium (see § 2.2 and Fig. 1).

4.1. Initial Conditions

As initial conditions, we adopt the average density profile
around a peak in a Gaussian random density field. Equation
(7.10) of Bardeen et al. (1986) gives the orientation-averaged
mean density profile around a peak of height ve; and curva-
ture x,

F(r) v V2y x/B 2 V23

() - (v 5. o0
where B is a constant that depends on the slope of the power
spectrum, Y(r) = &(r)/4(0) is the normalized correlation func-
tion, and o; is the rms density fluctuation. For a density field
with a power-law power spectrum of index n smoothed by
convolution with a Gaussian filter of radius R r» the power
spectrum is P(k) = Ak" exp (—k’R}), and the normalized
correlation function, its Fourier transform, is

3+n 3 —r?

n=¢l—,—), 37
v 4’( 2 2’ 4R? 7

(a (b
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F1G. 5—Numerical results (solid lines) for pressureless collapse onto a
black hole, from a simulation with N, = 10,000 collisionless shells. Upper
panels show the nondimensional velocity ¥ and mass M as a function of the
scaled radius A. The units are given by egs. (30)-(33). Filled circles show exact
analytic results, and dashed lines show the result for unperturbed Hubble flow.
Lower panels show the error in the numerical results. The velocity error is
scaled to a characteristic velocity of the problem, v,(4 = 1).

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJ...442..480T

No. 2, 1995

where ¢ is the degenerate hypergeometric function (defined in
Gradshteyn & Ryzhik 1980, § 9.210.1). In this paper we adopt
n = —2, roughly the slope of the cold dark matter power spec-
trum on galactic scales. For this choice, ¢ is related to the
gamma function through y(a, x) = (x*/0)¢(e, 1 + a; —x). The
coefficient B = [(n + 3)/(n + 5)]/? = 4,and

3(1 — B2) + (1.216 — 0.98%)e #2081
[3(1 — B2) + 045 + (Bv/2)217% + Bv/2

) =pv+ (38)

Figure 6 shows the normalized profile, F(r)/s;, and the spher-
ically averaged interior overdensity, F(r)/a;, for a 2 o; peak. It
is this profile that we adopt as the initial density distribution
for our simulations. We do not expect our qualitative results to
be sensitive to the details of this choice. The perturbed initial
velocity profile is that implied by the growing mode solution of
linear theory, v; = H;r(1 — 9,/3).

Given the profile shape of Figure 6, our initial conditions
have two free parameters: the filter radius R, and the initial
overdensity of the peak at r =0, §,. Physically, it is more
convenient to describe the perturbations in terms of a mass
scale and a redshift of collapse. We define the filter mass M, to
be the mass contained within a sphere of radius 2R, and we
define the collapse redshift z, to be the redshift at which the
r = 2R, shell would collapse to r = 0 in the absence of pres-
sure. For our adopted profile, 8(2R,)/6, = 0.6805, so the mass
M is related to the filter radius R by

4n =
M= (2R)’py[1 + 0{2R)]

2

=57 (2R,(1 + 0.68055,) (39)
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F1G. 6.—Mean profile of a 2 ¢ peak in a Gaussian density field with power
spectrum P(k) = Ak™? exp (—k*R3). The solid line shows the density contrast;
the dashed line shows the mean interior density contrast, as defined in eq. (28).
We adopt this profile as the initial density distribution for our collapse
simulations.
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Specifying the initial time and the collapse redshift z, deter- §
mines the value of 6,

_6(2R) 169 (1+z,
P 06805 0.6805\1+z;)"

Equation (40) is specific to an Q = 1 universe, but the gener-
alization to an open universe is straightforward.

By varying the mass M collapsing at a fixed redshift z., we
effectively vary the filter radius R,. By varying the redshift at
which a given mass collapses, we vary the density at which the
collapse occurs. In practice, we want to ensure that simulations
start in the linear regime, so we fix the initial peak overdensity
at 6, = 0.2. Specifying z, determines the initial redshift through
equation (40), and specifying M, determines R, through equa-
tion (39). The initial redshift is z; ~ 36 for z, = 2 and z; ~ 24 for
z,=1.

(40)

4.2. Pure Fluid Collapses

In the absence of cooling, physical processes do not intro-
duce any preferred length or timescales. In appropriate units,
therefore, the results of a collapse are the same for all values of
M and z,: radii scale as r oc M}/*(1 + z,)~, and times scale as
t oc (1 + z,)~¥2. Figure 7 shows the r versus ¢ trajectories of
several fluid shells in a collapse calculation without cooling,
using the initial density profile described in § 4.1 and N, = 300
fluid shells. Shell radii are scaled to the initial filter radius R,
and times are scaled to the collapse time ¢, of the shell with
initial radius 2R ;. In these units, the fluid trajectories are iden-
tical for any values of M, and z,. Each shell expands initially,
then turns around and recollapses until it is halted by a shock,
usually when it has fallen back to about half of its maximum
radius. The shock forms at the center when the first shells
collapse, and it propagates outward in both Eulerian and

50
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F1G. 7.—Shell trajectories for pure fluid (y = 5/3) collapses, in the absence
of cooling. The time and radii are scaled with respect to the collapse time ¢, and

the filter radius R, defined in § 4.1. With this scaling, the trajectories are
independent of M, and z..
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Lagrangian coordinates. When a shell hits the shock, its fluid
density increases (by a factor of 4 in the limit of a strong shock),
and nearly all of its kinetic energy is converted to thermal
energy. At r=r,/2, the preshock infall velocity is v =
(GM/r)'?, making the postshock temperature T =~
(GM/rYum,/3k), roughly the virial temperature implied by the
interior mass M and the shock radius r,. After the shock, the
shell is almost supported by the pressure of the hot gas beneath
it, but as more gas piles on top it is compressed very slowly
toward r = 0. The trajectories of the outer shells in Figure 7 are
the same as the shell trajectory for the similarity solution (Fig.
3), but their shape appears somewhat different because they are
plotted in different units.

Radiative cooling introduces a new timescale into the col-
lapse problem. Prior to shocking, pressure is unimportant, so a
shell follows the same trajectory as before. However, the
behavior of the shell after it hits the shock depends critically on

"the postshock density and temperature, specifically on the

ratio of the cooling time, t ., ~ up/A, to the dynamical time,
tagn ~ (GP)~ /%, where p is the mean mass density interior to
the shell. While the local density p and the mean interior
density p are not identical, they are roughly proportional to
each other. At fixed temperature, the cooling rate A oc p?
(assuming collisional equilibrium), S0 .e/tayn ~ p~ /2. A shell
that collapses earlier, when the density is higher, cools more
efficiently. The postshock temperature determines the initial
location of the shell on the cooling curve (Fig. 1), and because
the cooling curve is a complicated function of temperature, the
influence of the postshock temperature on shell behavior is
itself rather complicated. In particular, it is important to recall
that the radiative cooling cuts off very sharply at T ~ 10* K.

We have performed a series of collapse calculations in which
we vary the value of the filter mass M, while keeping the
collapse redshift fixed at z, = 2. Each calculation uses N, =
1000 shells. The minimum radius (see § 2.4) is set to 0.99 times
the initial radius of the innermost shell, making r, = 0.4R ;. We
performed tests where we used N, = 5000 shells and r, =
0.2R,. The results were essentially identical.

Figures 8-10 illustrate four quite different histories of indi-
vidual shells from these calculations, with Figure 8 showing the
r versus t trajectories, Figure 9 the trajectories in the n-T plane,
and Figure 10 the time evolution of the temperature and the
timescale ratio ¢ ,,/tay,- In Figures 8 and 10, ¢, is the age of the
universe at z = 0. The collapse redshift z. = 2 corresponds to
t = 0.192¢y. In Figure 9, iy is the mean hydrogen number
density inside the shell radius, iy = fy p/m,, with f; = 0.76 the
mass fraction of hydrogen. The dotted lines in this figure show
contours on which the ratio t ,,/t4y, is constant, demarcating
regions where cooling is rapid or slow relative to the dynami-
cal time. The structure of these contours is closely related to
the structure of the cooling curve itself. Dashed lines indicate
contours in the n-T plane along which the cooling time or the
dynamical time is equal to the age of the universe. Diagonal
solid lines are lines of constant Jeans mass, M;=
(nkB/Gmp “)3/2 T3/2p - 1/2‘

Because Figure 9 plots the quantity 7 corresponding to the
mean interior overdensity, which is the relevant parameter for
the dynamical time, the computation of ¢, which depends on
the local density, is somewhat ambiguous. In the similarity
solution the ratio of local density in a recently shocked shell to
the mean interior density is about a factor of 4. With this result
in mind, we have computed t.(7iy, T) in Figure 9 on the

¥ assumption that ny = 4#,. While this approximation is better
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F1G. 8.—Trajectories of fluid shells in pure fluid collapses with radiative
cooling, for collapse redshift z, = 2 and four different values of M ;. Dimen-
sionless radii /R, are plotted as functions of the dimensionless time t/t,, where
to is the age of the universe at z = 0. The masses interior to the shells are
6.3 x 107 M = 29M  (shell A), 3.2 x 10% M, = 3.2M (shell B), 3.2 x 10'*
Mg = 32M (shell C), and 3.2 x 10'¢ M, = 3.2M (shell D). The dot-dash
line shows the shell trajectory from a calculation without cooling.
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Fi1G. 9—Postshock trajectories in the log T-log i1 plane of the four fluid
shells shown in Fig. 8, labeled A-D as before. The trajectory of A is shown by a
dashed line, and the trajectories of other shells by solid lines. Filled circles are
spaced at intervals At = 0.1t along trajectory A, At = 0.0012t, along trajec-
tory B, At = 0.025¢, along trajectory C, and At = 0.1¢,, along trajectory D.
Dashed lines show the contours ¢, = t, and t,,, = t,. Dotted lines represent
contours of constant t,,/ty,. Cooling times are not precise because they
depend on local density ny instead of mean interior density 7i,; we compute
them assuming ny = 4ny. Diagonal solid lines are contours of constant Jeans
mass M.
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FiG. 10.—Time evolution of the temperature (upper panel) and the ratio
teoot/tayn (lower panel) for the four fluid shells shown in Figs. 8 and 9.

than ny = iy, one should still take the contours in Figure 9 as
indicative rather than precise boundaries. The cooling times in
Figure 10 are computed from the shell’s local density, so the
teoot/Layn Tatios plotted there are more reliable.

Our four illustrative fluid shells are labeled A-D in these
figures. In Figure 8 the dot-dash line shows the trajectory of a
shell with no cooling for comparison. Shell A has an interior
mass of 6.3 x 10’ My, = 2.9M . Its postshock temperature is
smaller than 10* K, so after the shock the shell is unable to
cool, and it remains nearly pressure-supported. However, the
continuing infall of gas from larger radii compresses the shell,
increasing its density and temperature adiabatically. The ratio
of cooling time to dynamical time is large during this phase of
evolution (Fig. 10). Eventually, compression pushes the shell
temperature above 10* K; the cooling time drops rapidly, and
the shell collapses to r = 0 at the free-fall rate. This phase of the
collapse is effectively isothermal, since any energy gained
during compression is immediately radiated away. The points
on trajectory A in Figure 9 are spaced at equal time intervals
At = 0.1t,. One can see from their locations that the initial
postshock evolution is very slow but the final collapse very
rapid. All points above log 7iy = —1 in Figure 9 belong to
trajectory B; the next point for shell A lies off the top of the
plot.

Fluid shell B has an interior mass of 3.2 x 10® Mg =
3.2M . For this shell the postshock temperature is just slightly
higher than 10* K, in a regime where cooling is very rapid. The
shell collapses to r = 0 isothermally, at the free-fall rate, with
no phase of pressure support. The postshock evolution is
extremely rapid; points along trajectory B in Figure 9 are
evenly spaced in time, but the interval is only At = 0.0012¢,,.

Shell C has an interior mass of 3.2 x 10'* Mg = 3.2M, six
orders of magnitude higher than that of shell B. Immediately
after the shock, the cooling time exceeds the dynamical time by
more than a factor of 10. Therefore, unlike shell B, shell C goes
through a period of nearly adiabatic compression, with little
radiative cooling. During this phase, the shell stays in quasi-
static equilibrium close to the border of Jeans stability, so it
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follows a track of constant Jeans mass in the n-T plane (Fig. 9).
As the density increases, the ratio of cooling time to dynamical
time decreases steadily. Once ¢, < t4y,, the shell cools rapidly
to 10* K and collapses isothermally at the free-fall rate. Points
along trajectory C in Figure 9 are spaced at intervals At =
0.025¢,.

Shell D has an interior mass of 32 x 10'® My = 3.2M,.
Postshock cooling time is again much longer than a dynamical
time. In fact, the cooling time in this case is comparable to the
age of the universe, so shell D evolves quasi-statically and
never enters rapid cooling phase. If the simulation were
evolved further, it would eventually reach a density high
enough for cooling to become important, and it would behave
in a fashion more similar to shell C. Points along trajectory D
in Figure 9 are spaced at intervals Ar = 0.1¢,.

If we want to understand features of the galaxy luminosity
function, the quantity of most interest is the mass of gas that
actually cools by redshift zero, since this is the gas that could
potentially fragment into stars. The filled circles in Figure 11
show the ratio M_/M, as a function of log M,, where M, is the
mass of gas that collapses, shocks, and cools by z = 0, and M,
is the mass of gas that collapses and shocks by z = 0. For
M, < 1085 M, the postshock gas remains below 10* K, so it
never cools, and M, = 0. Between M, = 1085 M and M, =
10'! M, virtually all of the shocked gas cools, and M,/M, ~
1. Above M, = 10'! M, the outermost shocked shells remain
pressure-supported all the way to z=0 and do not cool.
However, the inner shells of these perturbations collapse
earlier, at higher density and lower virial temperature, and
these shells are able to cool. Therefore, even though the ratio
M_ /M, decreases with increasing M, in this regime, the
decrease is quite slow. In particular, M_,/M, falls much less
rapidly then M %, so the actual amount of cooled gas increases
with M. We will return to this important point in § 5. The
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FiG. 11.—Ratio of the mass M, of gas that cools by z = 0 to the mass M, of
gas that shocks by z = 0, as a function of the virialized mass M /Q,. Filled
circles represent pure fluid collapses (Q, = 1) with collapse redshift z, = 2.
Open circles represent mixed collapses with Q, = 0.1,Q, = 0.9,and z, = 2.
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results in Figure 11 are not sensitive to the assumed collapse
redshift; we have carried out the same series of calculations for
z, = 1, and the trend of M_/M versus M,is very similar.

4.3. Mixed Collapses

The basic physical effects described above carry over to the
case of a mixed collapse involving gas and collisionless dark
matter. Gas shells still collapse and shock, and their sub-
sequent behavior again depends on the cooling time and
dynamical time at the postshock density and temperature.
However, in the presence of a mixture of dark matter and gas,
the cooling time depends only on the gas parameters, ¢, ~
up,/A, while the dynamical time depends on the total mass,
Lagn ~ Prot» Where po oc M(r)/r®. If we assume that the gas and
dark matter density profiles are similar until the point where
the gas cools, the ratio between p, and p,,, is simply given by
- Q,/Q. Therefore, we have t.oo/tayn  pioi °Q/Q,, and the ratio
of the cooling time to the dynamical time is larger than that in
the pure fluid case by a factor Q/Q,. As a consequence, we
expect the transition at high masses between the region where
all of the gas cools and the region where only part of the gas
cools to occur at a lower total mass.

We have again performed a series of collapse calculations in
which we vary the value of the filter mass M while keeping the
collapse redshift fixed at z, = 2. In these calculations, we use
Q; =09,Q, = 0.1, N, = 500 fluid shells, and N, = 10,000 dark
matter shells. The open circles in Figure 11 show the results for
the ratio of cooled gas to shocked gas, M,/M,, as a function of
log (M,/Q;). Once again M, is the cooled gas mass at z =0,
and M, is the shocked gas mass at z = 0. The mass M /Q, is,
roughly, the total virialized mass at z = 0. As expected, the
transition at high masses occurs at a lower threshold than in
the case of a pure fluid collapse, but the general shape of the
curve is similar, and the conclusion is the same, i.e., the ‘mass
that cools is a monotonically increasing function of the total
mass of the perturbation.

5. DISCUSSION

Figure 11 shows three distinct regimes: at very low masses,
M, < 1035 Mg, there is no cooling at all; at intermediate
masses, 108° Mg < M, < 10! M, all of the shocked gas
cools; and at high masses, M, = 10'! M, only a fraction of
the shocked gas cools. However, the transition from the
intermediate-mass regime to the high-mass regime is not a
sharp one. Five orders of magnitude above the transition mass,
the fraction of shocked gas that is able to cool is still ~20% in
the pure fluid case and ~5% in the mixed fluid/dark matter
case. We see, therefore, that the requirement that gas be able to
cool within a Hubble time cannot by itself explain the sharp
upper cutoff in the luminous mass of observed galaxies. This
point is further illustrated in Figure 12, where we show the
mass of gas that cools by z = 0, M_, as a function of the mass of
gas that has been shocked, M,. The cooled mass M, increases
montonically with M,, and the transition between the
intermediate- and high-mass regimes is marked only by a
modest change of slope in the M, versus M relation. For large
masses the virial temperature is high, the gas is collisionally
ionized, and the cooling is dominated by free-free transitions.
Including a photoionizing background would not, therefore,
alter our results at high masses. The low-mass behavior could
be sensitive to assumptions about photoionization (Efstathiou

¥ 1992), a point that we will address elsewhere.
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Fi1G. 12—Mass M, of gas that cools by z = 0 as a function of virialized
mass M/Q,. Filled and open circles represent pure fluid and mixed collapses,
respectively. Solid lines show M, = M,, the result that would be obtained for
complete cooling of shocked gas. The numerical results fall below these lines at
low masses (where there is no cooling) and at high masses (where there is
partial cooling), but there is no sharp transition at high masses that might
correspond to the turnover in the galaxy luminosity function. The dashed line
shows the result of applying the White & Frenk (1991) analysis to the case of
pure fluid collapses. Filled triangles show, for the pure fluid case, the mass that
cools within a single postshock dynamical time.

RO suggest that cooling requirements can explain the turn-
over in the galaxy luminosity function, but the numerical
results in Figure 12 indicate otherwise. Larger mass collapses
can always produce larger mass galaxies, even if they do so
with imperfect efficiency. In essence, the difference between our
result and RO’s is the difference between a multizone and a
single-zone calculation. RO associate a single characteristic
density and a single characteristic temperature with the col-
lapse of a given perturbation. They then ask whether a cloud of
gas at that density and temperature can cool within a Hubble
time, or within a dynamical time. However, typical collapses
produce peaked density profiles rather than uniform profiles,
so the inner, high-density regions can cool more efficiently than
the outer regions. This point has been made in a somewhat
different guise by White & Frenk (1991), in their semianalytic
models of the galaxy formation process. They assume that a
collapse without cooling would produce a cloud with an r~2
density profile and a temperature equal to the halo virial tem-
perature. They then compute the “ cooling radius ”—the radius
out to which gas is dense enough to cool within a Hubble
time—and from this they compute the cooled mass. This line of
reasoning leads to good qualitative agreement with our
numerical arguments, as shown by the dashed line in Figure
12, which represents the result of applying the White & Frenk
(1991) analysis to the case of pure fluid collapses. The tran-
sition between complete cooling and incomplete cooling is
gradual and subtle, unlike the turnover in the galaxy lumi-
nosity function.

Our spherically symmetric calculation models the process of
galaxy formation with a coherent collapse. However, the
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complex and untidy assembly of a protogalaxy in a hierarchi-
cal scenario still generates a wide range of densities and corre-
sponding cooling times, since material that collapses early
reaches higher density and cools more efficiently. We therefore
expect that the qualitative trend in Figure 12 would continue
to hold in a more realistic calculation. Small-scale clustering in
a hierarchical model will also heat gas prior to the protogalaxy
collapse, but the agreement between our numerical results and
the White & Frenk analysis (which assumes that all gas is at
the virial temperature) implies that it is the range of densities
rather than the range of postshock temperatures that explains
the cooling in high-mass collapses. We have explicitly checked
this point in the case of a pure fluid, M, = 10'° M, collapse,
by running a series of simulations in which the gas is held at a
finite temperature prior to shocking. The preheating has little
or no effect on the mass of gas that cools until the preheat
temperature reaches 107° K, about 25% of the perturbation’s
virial temperature. At higher temperatures, pressure support
prevents gas shells from turning around and collapsing.
Allowing gas a Hubble time to cool may be unfairly gener-
ous for a hierarchical scenario. A perturbation will often merge
with another of comparable size only a few dynamical times
after it collapses, and gas that has not cooled by then can be
shock-heated to a higher temperature. The appropriate time to
allow for cooling may therefore be a few dynamical times
rather than a Hubble time. The triangles in Figure 12 show, for
several pure fluid calculations, the gas that cools within a single
dynamical time, i.e., a gas shell that shocks at ¢, must cool by
time t, + (3n/16p)'/2, where p is the average interior density
immediately after the shock. Since there is less time for cooling
(and the ordinate M is still the mass that shocks by z = 0), the
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cooled masses are lower. However, while the trend of M,
versus M is somewhat shallower, it is certainly not flat. Even
the stringent requirement of cooling within a single dynamical
time cannot by itself produce a sharp cutoff in the galaxy lumi-
nosity function.

Radiative cooling is bound to be an important ingredient in
the process of galaxy formation. Gas must cool before it can
form stars and dissipation is needed to explain the prevalence
of galaxy disks, to explain the difference between the character-
istic mass of galaxies and the characteristic mass of rich clus-
ters, and, in most scenarios, to explain the high internal
densities of ellipticals and bulges. However, our results indicate
that the characteristic mass of galaxies cannot simply be read
out of the physical constants that describe gravity and atomic
physics. Instead, the form of the galaxy luminosity function
must reflect a more subtle interplay between cooling and cos-
mology, particularly the rates at which perturbations collapse
and merge. While this interplay complicates our effort to
understand the physics of galaxy formation, it raises the hope
that the properties of galaxies may provide important con-
straints on cosmological parameters, the nature of dark matter,
and the spectrum of fluctuations in the early universe.
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