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Abstract—In this paper, we propose a technique based on 3D infor-
mation (also called depth or range) for the detection of humans. First,
a background subtraction technique operates to detect the silhouettes
of humans and objects moving in the scene. Then, a machine learning
algorithm is used to predict if a silhouette annotated with depth matches
a human silhouette or not. The complete method is designed to cope with
defects introduced during the segmentation step.

Results, obtained on computer generated data, show that 3D depth
data is a valuable information for detecting humans in that it improves
over techniques based on binary silhouettes. In our experiments, we have
reached an accuracy of 99.9% thanks to the depth information.

Index Terms—3D, Range, Depth, People detection, Video analysis,
Video surveillance

I. INTRODUCTION

Human detection in video scenes is a crucial task for a large variety
of applications including video surveillance. So far, methods to detect
humans were developed for grayscale or color images because of their
large availability. Nowadays, 3D range sensors become affordable.
Therefore we have considered the use of 3D cameras (also called
depth cameras) for detecting humans in videos, particularly because
techniques based on grayscale or color images have to be improved.

In this paper, we study the impact of adding 3D information by
adapting a technique proposed by Barnich et al. [1], which is based
on geometric information. After a short overview of related works,
we introduce, discuss and modify Barnich’s method in Section II.
Section III explains how we build attributes that include 3D depth
information in our method. In Section IV, we describe the (synthetic)
data used in the experiments and present our results. Section V
concludes the paper.

A. Approaches based on silhouettes

There are two main approaches to detect humans depending on
whether temporal coherence between successive images is considered
or not. When the temporal coherence is ignored, each image is
processed separately. A popular approach to detect humans in static
images, based on Histograms of Oriented Gradients, was proposed by
Dalal and Triggs [2]. Generally, such methods have two weaknesses.
These techniques are based on appearance which largely depends on
lightning conditions and are unpredictable in uncontrolled scenes. In
addition, they require to process a large number of detection windows.
This impacts both on the processing speed and on performance.
Indeed, these techniques can not focus on moving regions and a large
number of detection windows are therefore located in the background.
As a result, it is mandatory to keep a low rate of false positives, which
unfortunately implies a limitation on the rate of true positives.

A better approach consists in analyzing successive frames to
select the foreground only. Background subtraction algorithms use

Figure 1. Results of a person detection technique as proposed by Barnich
et al. [1]. Objects included in rectangular boxes are classified as human
silhouettes (images taken from [4]).

Figure 2. Background subtraction algorithms can be applied on depth
maps. On the left hand side, a depth map acquired by a range camera
(PMD[vision]19k). On the right hand side, the result of the background
subtraction algorithm [5] after a distance normalization.

this temporal coherence to extract the silhouettes of moving objects
and persons in the scene. This approach has been followed by
Barnich [1] and Diaz de Leon [3]: each silhouette is classified as
human or non-human (see Figure 1). They based the decision on
the geometric information present in silhouettes, and ignored any
information related to appearance.

It should be noted that background subtraction algorithms can be
applied to depth maps (see Figure 2). For example, the state of
the art algorithm ViBe [5] has been used in [6]. Techniques based
on silhouettes are thus applicable to 3D video streams without any
modifications. However, as shown in this paper, the use of depth
improves the detection performance.

B. Describing silhouettes

Once silhouettes are extracted from the video stream, one has to
classify them. In order to use machine learning algorithms, silhou-
ettes must be summarized in a fixed amount of information called
attributes. Popular techniques to compute attributes include image
moments introduced by Hu [7] and Fourier descriptors (used for
example in [3]). In these methods, each attribute is global, meaning



Figure 3. Largest rectangles included in a silhouette (reproduced from [4]).

that it depends on the whole silhouette. Thus, when silhouettes
present flaws, all the attributes are corrupted.

To evaluate the importance of 3D information, it is preferable to
limit the scope of noise to the local neighborhood. In Barnich et al.
[1], silhouettes are split in a set of smaller regions to decrease the
influence of silhouette defects. As expected, Barnich showed in [4]
that, in practice, this approach yields to better results than those based
on Hu’s moments.

II. OUR DETECTION METHOD

A. Description of Barnich’s method

Our technique adapts and extends the algorithm proposed by
Barnich et al. [1]. In that algorithm, silhouettes are decomposed in
the set of all the largest rectangles that can be wedged inside the
silhouette (see Figure 3) and that are aligned with the image axes.

In a first step, each rectangle is given one out the two following
labels: the + label if the rectangle belongs to a human silhouette,
the − label if not. This labelization results from a machine learning
algorithm named ExtRaTrees [8] which consists in a set of decision
trees. Let Π+ (r) be the proportion of trees classifying a rectangle r
as human. Barnich et al. used the following decision rule to assign
a class y (r) to a rectangle r

y (r) = sign

(
Π+ (r)− 1

2

)
. (1)

Then, in a second stage, the class with the most votes is assigned to
the silhouette s. If we denote Ψ (s) the set of rectangles that are used
to take a decision about the class of the silhouette (see Section II-B),
this rule can be expressed as

y (s) = sign

 ∑
r∈Ψ(s)

y (r)w (r)

 , (2)

where the function w (·) (which is supposed to be positive) gives a
weight to each rectangle. Barnich et al. chose w (r) = 1. Marée [9]
was also faced with the classification problem of a composite object
based on the classification results of several elementary objects, but
in another context. He proposed to use w (r) =

∣∣Π+ (r)− 1
2

∣∣. In
fact, the choices of Barnich et al. and Marée are arbitrary, and the
decision rule (1) is just one possible rule. In fact, y (r)w (r) can
be learned automatically with a linear classifier such as the linear
Support Vector Machine methods. We will see in Section IV-B that
these different ways to weight rectangles lead to similar results,
although the weighting function learned automatically has a slight
advantage.

Figure 4. The effect of randomly selecting 100 maximal rectangles. This
figure shows three original human silhouettes (on the left hand side), and the
silhouettes reconstructed with a random subset of 100 maximal rectangles (on
the right hand side).

B. The selection of rectangles

To analyze a silhouette s, it is impractical to consider the complete
set of the largest included rectangles for the following reasons.

When learning the model r → Π+ (r), an equal number of
rectangles must be used for each silhouette to avoid a bias in the
decision rule. In [4], Barnich showed that the best results are obtained
for a number of selected rectangles comprised between 50 and 200.
In this work, we use 100 rectangles per silhouette.

A subset of rectangles should also be used to predict the class
of silhouettes, for efficiency reasons. Figure 4 shows the effect of a
random selection limited to 100 rectangles.

Recently, Barnich showed in [4] that a random selection of
rectangles gives better results than deterministic strategies such as
the selection of the largest rectangles or the maximization of the
covered area. Thus, in this paper, Ψ (s) is a random subset of the set
of all the maximal rectangles contained inside a silhouette s.

III. THE ATTRIBUTES

In this section, we describe how to transform Barnich’s method to
include a depth map.

A. Desired invariants

We require that the attributes used to describe rectangles have
several invariance properties:

1) The method has to be invariant to the location of users in
the observed scene (the variety of poses and orientations are
integrated in the learning set). We assume that users remain at
a reasonable distance from the camera. Under this assumption,
the motion of the users results in a scaling and a translation of
the silhouettes in the image plane, and in an offset of the 3D
(depth) information.

2) The method has to be insensitive to an horizontal flip of the
analyzed silhouette. This is required because a flip does not
change the class of the silhouette.

3) Lastly, as described in Section IV-A, we use synthetic data
to assess the performance of the method. The size of the 3D
models we use to generate the set of non-human silhouettes is
not expressed in physical units and thus cannot be compared
with the real size of a human. Therefore attributes have to be
insensitive to a modification of the depth scale.

B. Notations

We denote the width and height of an object o (which is a rectangle
or a silhouette) by wo and ho respectively. The values x (p), y (p)
denote the coordinates of a pixel p in the image plane and d (p)
its associated depth information. Mv,w (o) represents the weighted
mean of the values taken by a function v over o; weights are given
by a function w. Using these notations, we have



Mv,w (o) =

∑
p∈o v(p)w(p)∑

p∈o w(p)
.

C. The attributes

To describe a rectangle, we use eight attributes. The first four ones
characterize the silhouette, and are not related to 3D information:{

|Mx,1 (r)−Mx,1 (s)|
ws

,
My,1 (r)−My,1 (s)

hs
,
wr

ws
,
hr

hs

}
These attributes are the same as the ones used in [1]. Barnich et
al. also used an additional attribute that is the proportion of pixels
covered by a sole rectangle. However, this attribute is not scale-
invariant and therefore it was discarded.

The last four attributes characterize the depth: |Mx,d (r)−Mx,1 (r)|
wr

,
My,d (r)−My,1 (r)

hr
,

Md,1 (r) ,

√
1

wrhr − 1

∑
p∈r

(d (p)−Md,1 (r))2

 .

It should be noted that these four last attributes have not been
designed to be insensitive to noise on the distance estimate. As
mentioned before, to assess our method, we did not use data obtained
from a range camera but, instead, we decided to use a database of
computer generated silhouettes (see Section IV-A). Indeed, computer
generated silhouettes are free of noise. However, depth map obtained
from depth cameras are often very noisy. This means that the last
four attributes will probably have to be reconsidered and adapted for
real applications.

IV. DATA SETS AND RESULTS

A. Data sets

To evaluate the contribution of the depth data, we need databases
of human and non-human silhouettes annotated with depth. To our
knowledge, there are no publicly available databases providing such
real silhouettes. Because building such a database is an intensive
job by itself, we decided to build our own databases filled with
synthetic views of objects and humans. Silhouettes and depth images
are derived from these views.

We created a set of 10, 000 non-human silhouettes using the NTU
3D model database [10]. The virtual camera is placed randomly
around the object, at a distance such that the object is fully comprised
in the image. Silhouettes composed of several connected components
are discarded. It should be noted that the NTU database contains
models of human-like objects. However, these silhouettes are taken
from a totally arbitrary viewpoint and do not correspond to a standing
(vertical) person. Examples of produced silhouettes are shown in
Figure 5(a).

Human silhouettes have also been generated automatically. We
used the avatar provided with the open source software MakeHu-
man 1, version 0.9. The pose of the avatar is controlled by a set of
parameters. Realistic poses are obtained using the technique described
in [11]. The virtual camera looks towards the avatar, and is placed
randomly around him, in an horizontal plane. As we assume that, in a
real application, the results are sensitive to the set of chosen human
poses, we created two different sets of 10, 000 human silhouettes:
one set with a high pose variability and one with silhouettes closer

1. http://www.makehuman.org/

(a)

(b)

(c)

Figure 5. Examples of non-human and human synthetic silhouettes annotated
with depth. (a) Non-human silhouettes. (b) Human silhouettes with a weakly
constrained set of poses. (c) Human silhouettes with a strongly constrained set
of poses. Dark and bright values respectively denote the nearest and farthest
points.

to the one of a walker. They correspond to the sets B and C of [11]
and are shown in Figures 5 (b) and (c) respectively.

B. Results

We provide the results for two particular experiments: one exper-
iment where human poses are strongly constrained, and an experi-
ment where the arms are completely free to move (this is a most
challenging situation because the diversity of silhouettes in the class
to be recognized is higher). In both experiments, the learning set,
denoted LS, and the testing set, denoted TS, are equally distributed,
and contain 5000 human silhouettes and 5000 non-human silhouettes.
The selection of silhouettes in LS and TS is random; in addition,
we ensure that the silhouettes in TS are different from silhouettes
contained in LS.

Detection Error Trade-off (DET) graphs, plotting false positive
rate versus false negative rate, are drawn in Figures 7 and 6. Two
families of curves are displayed; they correspond to classification
results for variations on weighting functions for silhouettes including
or not depth (3D) attributes. These graphs present results similar
to Receiver Operating Characteristic (ROC) curves, but the axes are
logarithmic to enlighten the high recognition rates. Four conclusions
can be drawn:

1) adding depth to silhouettes always improves the performance;
2) experiments with strongly constrained human silhouettes in the

learning set (which results in a lower diversity) exhibit a better
performance;

http://www.makehuman.org/
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Figure 6. Results for a weakly constrained set of human poses.
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Figure 7. Results for a strongly constrained set of human poses.

3) when the human silhouettes used for learning are strongly
constrained (like for a walker), true negative and true positive
rates up to 99.9% can be reached;

4) several weighting functions were considered for the rectangles,
as mentioned in Section II. The performance of these functions
are almost similar, although the weighting function learned
automatically provides a slight increase of accuracy.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a technique that considers silhouettes
annotated with depth information for the detection of humans in video
sequences. Our technique extends Barnich’s method to accommodate
to 3D data and uses a machine learning algorithm to predict if a
silhouette annotated with depth corresponds to a human silhouette or
not.

Results obtained on synthetic silhouettes show that 3D depth data
is relevant and useful for detecting humans in a scene; an accuracy
of 99.9% has been reached on synthetic data. It remains to apply the
method on real data and to propose attributes capable to deal with
noise on depth signals.
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