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Abstract— This paper proposes a framework for the design of
control laws that stabilize relative equilibria in a model of iden-
tical, steered particles moving in three-dimensional Euclidean
space. Under the assumption of all-to-all communication, the
derived control laws only require relative orientations and
positions. We extend the obtained results in the presence of
limited communication topologies by equipping each agent with
a consensus estimator.

I. INTRODUCTION

In recent years particular attention has been devoted to
the design of control laws for the coordination of a group of
autonomous systems. Applications include sensor networks,
where a group of autonomous agents has to collect infor-
mation about a process by choosing maximally informative
samples [1], [2], and formation control of autonomous vehi-
cles (e.g. unmanned aerial vehicles) [3], [5]. In these contexts
it is relevant to consider the case where the ambient space
is the three-dimensional Euclidean space.

In this paper we address the problem of designing control
laws to stabilize motion patterns in a model of identical
particles moving at unit speed in three-dimensional Eu-
clidean space. This work builds on previous works on planar
formation control laws [6], [7] extending the main results to
the three-dimensional setting. First we consider the case of
all-to-all communication among the agents, and we derive
a (static) control law which uses only measurements about
relative positions and orientations of the other agents.

All-to-all communication is an assumption that is often
unrealistic in multi-agent systems. In particular, in a network
of moving agents, some of the existing communication links
can fail and new links can appear when other agents enter an
effective range of detection. To extend the all-to-all feedback
design to the situation of limited communication, we use the
approach recently proposed in [8], see also [9] and [10] for
related work.

This approach suggests to replace the average quantities
often required in a collective optimization algorithm by local
estimates provided by a consensus estimator. The idea has
been successfully applied to the problem of synchronization
and balancing in phase models in the limited communication
case [11], [8] or to the design of planar collective motions
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[7]. On the bases of these results we design control laws
that globally stabilize collective motion patterns under mild
assumptions on the communication topology.

The rest of the paper is organized as follows: in Section
II we define the kinematic model for a group of steering
particles moving in three-dimensional Euclidean space with
unitary velocity. In Section III we derive control laws that
stabilize parallel and circular formations, the only relative
equilibria of the model, in the presence of all-to-all com-
munication among the agents. Finally, in Section IV, we
generalize our all-to-all design to general communication
topologies.

II. A KINEMATIC MODEL OF STEERED PARTICLES IN

SE(3)

We consider a kinematic model of N identical particles
(with unitary mass) moving in three-dimensional Euclidean
space at unit speed:

ṙk = xk

ẋk = ykuk + zkvk

ẏk = −xkuk

żk = −xkvk k = 1, . . . , N,

(1)

where rk ∈ R
3 denotes the position of particlek,

(xk,yk,zk) is a right handed orthonormal frame associated
to particle k (in particular xk ∈ S2 is the (unit) velocity
vector). The scalarsuk, vk represent the curvature controls
of the kth particle. We use a bold variable without index
to denote the corresponding3N -dimensional vector, e.g.
x = (xT

1 , . . . ,xT
N )T .

If the curvature controls are feedback functions ofshape
quantities (i.e. relative frame orientations and relativepo-
sitions), the closed loop vector field is invariant under the
action of the symmetry groupSE(3). The resulting closed
loop dynamics evolve in a quotient manifold calledshape
spaceand the equilibria of the reduced dynamics are called
relative equilibria. Relative equilibria of the model (1) have
been characterized in [3]. The equilibria are of two types:
parallel motion, and circular motion in planes orthogonal
to the same axis of rotation. With a slight modification of
the model (1), a third type of relative equilibria exists, i.e.
helical motions (see [3] for details). Recently, in [4], a new
framework is proposed which allows to deal with this kind
of relative equilibrium.

The purpose of this paper is to design control laws,
depending only on shape quantities, which stabilize the
relative equilibria of the model (1). If the feedback laws
depend on relative orientations only, then the model (1)



reduces to the model

ẋk = ykuk + zkvk

ẏk = −xkuk

żk = −xkvk k = 1, . . . , N.

(2)

This model can be conveniently rewritten in a compact form.
The state

Rk = [xk,yk,zk] ∈ SO(3)

represents the orientation of the frame attached to particle k.
Then (2) rewrites to

Ṙk = Rk Uk, k = 1, . . . , N, (3)

where

Uk =





0 −uk −vk

uk 0 0
vk 0 0





is a skew-symmetric matrix that represents an element of the
tangent spaceso(3).

III. STABILIZING LAWS IN THE PRESENCE OF

ALL -TO-ALL COMMUNICATION

A. Orientation stabilization

The average linear momentum of a group of particles
satisfying (1) is thecentroid of the particles’ velocities

x̄ =
1

N

N
∑

j=1

xj .

The parameter||x̄|| is a measure of synchrony of the velocity
vectors xk, k = 1, 2, . . . , N . In the model (1),||x̄|| is
maximal when the velocity vectors are all aligned (syn-
chronization) leading to parallel formations. It is minimal
when the velocities balance to result in a vanishing centroid,
leading to collective motion around a fixed center of mass.
Synchronization (balancing) is then achieved by maximizing
(minimizing) the potential

V (x) =
N

2
||x̄||2 . (4)

The time derivative of (4) along the solutions of (2) is

V̇ =

N
∑

j=1

< x̄, ẋj >=

N
∑

j=1

< x̄,yj > uj+ < x̄,zj > vj .

(5)
The control law

uk = −K < x̄,yk >

vk = −K < x̄,zk >, k = 1, . . . , N,
(6)

ensures that (4) is non-decreasing (non-increasing) when
K < 0 (K > 0).
The following result provides a characterization of the equi-
libria of (2) under the control law (6).

Theorem 1:Consider the model (2) with the control law
(6). If K < 0 only the set of synchronized states (i.e. those
states such thatxk are all identical) is asymptotically stable
and every other equilibrium is unstable. IfK > 0 only the

set of balanced states (i.e. those states such thatx̄ is zero) is
asymptotically stable and every other equilibrium is unstable.

�

Proof: Plugging (6) into (5) yield

V̇ = −K

N
∑

k=1

< x̄,yk >2 + < x̄,zk >2≤ 0.

By La Salle principle, the solutions of (2) converge to the
largest invariance set where

< x̄,yk > = 0
< x̄,zk > = 0, k = 1, . . . , N.

(7)

The points wherēx = 0, are global minima ofV . As a
consequence this equilibrium set is stable ifK > 0 and
unstable ifK < 0. From (7), equilibria wherēx 6= 0 are
characterized by the vectorsxk, k = 1, . . . , N, all parallel
to the constant vector̄x. Note that this configuration involves
N−M velocity vectors aligned tōx andM velocity vectors
anti-aligned tox̄, where 0 ≤ M < N

2
. At those points,

||x̄|| = 1 − 2M
N

> 1

N
. WhenM = 0 we recover the set of

synchronized states (global maximum ofV ) which is stable
if K < 0 and unstable ifK > 0. Every other value ofM
corresponds to a saddle point and is therefore unstable both
for K > 0 andK < 0. To see this we expressxk and x̄ in
polar coordinates,

x̄ = ||x̄|| [cos Φ sin Θ, sin Φ sin Θ, cos Θ]T ,

xk = [cos φk sin θk, sin φk sin θk, cos θk]T ,

whereθk,Θ ∈ [0, π] and φk,Φ ∈ [0, 2π). By expressingV
in polar coordinates we obtain

V = ||x̄||
N

∑

j=1

sin Θ sin θj cos(Φ − φj) + cos Θ cos θj . (8)

The critical points are characterized by

xk = [cos Φ sin Θ, sin Φ sin Θ, cos Θ]T , k = M+1, . . . , N,

and

xk = [cos(Φ+π) sin(π−Θ), sin(Φ+π) sin(π−Θ), cos(π−Θ)]T ,

for k = 1, . . . ,M .
The second derivative (with respect toθj) is

∂2V

∂θ2
j

=
1

N
− ||x̄|| (sin θj sinΘ cos(Φ − φj) + cos Θ cos θj)

that is negative ifθj = Θ and φj = Φ and is positive if
θj = π − Θ and φj = Φ + π. As a consequence, a small
variation δθj at those critical points decreases the value of
V if θj = Θ and φj = Φ, and increases the value ofV if
θj = π − Θ andφj = Φ + π. �

As a consequence of Theorem 1, we obtain that the control
law (6) stabilizes parallel formations (K < 0) or the center
of mass of the particles to a fixed point (K > 0) (see Fig. 1).
The parallel formation is a relative equilibrium. In contrast
the stabilization of the center of mass to a fixed point does
not lead in general to a relative equilibrium.
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Fig. 1. Parallel and balanced formations.

Remark 1:The feedback control (6) does not depend on
the relative orientation of the frames but only on the relative
orientations of the velocity vectors.

B. Stabilization of circular formations

In this section we propose aspacingcontrol to stabilize
circular relative equilibria. Circular equilibria (with arbitrary
relative orientations) are defined by circular motions around
the same axis of rotation. Under the constant controluk =
ωk, vk = γk, with ρ = 1√

ω2

k
+γ2

k

, each particle travels a

circular orbit around the (constant) axis of rotation

nk = ωkzk − γkyk,

with unit speed and (common) radiusρ. The center of each
rotating particle multiplied by the constant1

ρ2 is

sk ,
1

ρ2
rk + dk k = 1, . . . N,

where
dk , ωkyk + γkzk.

When all centers coincide the following algebraic condition
is satisfied

P̃s = 0,

whereP = IN − 1

N
11

T and P̃ = P ⊗ I3. This suggests to
define the synchrony measure

S(d, r) ,
1

2

∣

∣

∣

∣

∣

∣
P̃s

∣

∣

∣

∣

∣

∣

2

,

which is minimum when all the centers coincide. Observing
that circular relative equilibria are characterized by a com-
mon axis of rotation we introduce the Lyapunov function

W (n,d, r) = S(d, r) − N

2
||n̄||2 (9)

where n̄ , 1

N

∑N

j=1
nk. DifferentiatingW with respect to

time we obtain

Ẇ =
∑N

j=1
< sj − s̄,xj > ( 1

ρ2 − ωjuj − γjvj)

− < n̄,xj > (γjuj − ωjvj).
(10)

Choosing the control

uk = ωk+ < ωk(sk − s̄) + γk n̄,xk >

vk = γk+ < γk(sk − s̄) − ωk n̄,xk >
(11)

results in

Ẇ = −∑N

j=1
< ωj(sj − s̄) + γj n̄,xj >2

+ < γj(sj − s̄) − ωj n̄,xj >2≤ 0.

Noting that

sk − s̄ =
1

ρ2
r̃k + dk − d̄

wherer̃k = rk − r̄ and r̄ is the center of mass, we rewrite
the control law (11) as

uk = ωk+ < ωkρ−2r̃k + γk n̄ − ωk d̄,xk >

vk = γk+ < γkρ−2r̃k − ωk n̄ − γk d̄,xk >,
(12)

where we used the condition< nk,xk >= 0.
Note thatsk andnk obey to the following dynamics

ṅk = −xk (ωk(vk − γk) − γk(uk − ωk))
ṡk = −xk (ωk(uk − ωk) + γk(vk − γk)) .

(13)

Plugging (12) into (13) we obtain

ṅk = −ρ−2 xk < nk − n̄,xk >

ṡk = −ρ−2 xk < sk − s̄,xk > .
(14)

The following result characterizes the closed-loop dynam-
ics.

Theorem 2:Consider model (13) with the feedback con-
trol (12). All the solutions converge to the equilibrium set
of (13). Furthermore, every equilibrium of (13) which does
not correspond to a circular relative equilibrium of (1) is
unstable. �

Proof: By the La Salle invariance principle we obtain that
the solutions converge to the largest invariance set where

ωk < sk − s̄,xk > = −γk < nk − n̄,xk >

γk < sk − s̄,xk > = ωk < nk − n̄,xk >,
(15)

for everyk. In this setuk = ωk andvk = γk and thereforēn
is constant. Moreover (15) can hold only if< nk−n̄,xk >=
0, for everyk and (15) reduces to

< sk − s̄,xk > = 0
< nk − n̄,xk > = 0, k = 1, 2, . . . , N.

(16)

Conditions (16) characterize the equilibria of system (14).
Only two types of equilibria are possible. The first is char-
acterized by the conditions̄n = 0 and< sk − s̄,xk >= 0.
Such equilibria are unstable under the control law (12) (the
analysis is analogous to the one in Theorem 1). Whenn̄ 6= 0
condition (16) implies that the particles rotate in planes
orthogonal to the constant axis of rotationn̄ with the same
angular velocity. We conclude thatsk − s̄ is parallel ton̄

for everyk and that the centers lie on the same rotation axis
(see Fig. 2). �

Remark 2: If the open-loop control is the same for each
particle, i.e.ωi = ωj = ω and γi = γj = γ for every i, j,
the control law (12) simplifies to

uk = ω + ρ−2 < ωr̃k − ȳ,xk >

vk = γ + ρ−2 < γr̃k − z̄,xk >
(17)

whereȳ , 1

N

∑N

j=1
yk and z̄ , 1

N

∑N

j=1
zk.
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Fig. 2. Circular equilibrium achieved under the control (12).

IV. STABILIZING LAWS WITH LIMITED COMMUNICATION

In this Section we extend the results of Section III when
communication among the particles is limited.

A. Communication graphs and consensus dynamics

We describe the communication topology by using the
notion of communication graph.

Let G = (V, E , A) be a weighted digraph (directed graph)
whereV = {v1, . . . , vN} is the set of nodes,E ⊆ V × V is
the set of edges, andA is a weighted adjacency matrix with
nonnegative elementsakj . The node indices belong to the
set of positive integersI , {1, . . . , N}. Assume that there
are no self-cycles i.e.akk = 0, ∀ k ∈ I.

The graph LaplacianL associated to the graphG is defined
as

Lkj =

{
∑

i aki, j = k

−akj , j 6= k.

The k-th row of L is defined byLk. The in-degree (respec-
tively out-degree) of nodevk is defined asdin

k =
∑N

j=1
akj

(respectivelydout
k =

∑N

j=1
ajk). The digraphG is said to be

balancedif the in-degree and the out-degree of each node
are equal, that is,

∑

j

akj =
∑

j

ajk, ∀ k ∈ I.

It is both of theoretical and practical interest to consider
time-varying communication topologies. For example, in a
network of moving agents, some of the existing links can
fail and new links can appear when other agents enter an
effective range of detection. In the following we assume that
the communication topology is described by a time-varying
graph G(t) = (V, E(t), A(t)), where A(t) is piece-wise
continuous and bounded andakj(t) ∈ {0} ∪ [β, γ],∀ k, j,

for some finite scalars0 < β ≤ γ and for all t ≥ 0.
The set of neighbors of nodevk at time t is denoted by
Nk(t) , {vj ∈ V : akj(t) ≥ β}. We recall two definitions
that characterize the concept of uniform connectivity for
time-varying graphs.

Definition 1: Consider a graphG(t) = (V, E(t), A(t)). A
nodevk is said to be connected to nodevj (vj 6= vk) in the
interval I = [ta, tb] if there is a path fromvk to vj which

respects the orientation of the edges for the directed graph
(N ,∪t∈IE(t),

∫

I
A(τ)dτ).

Definition 2: G(t) is said to be uniformly connected if
there exists a time horizonT > 0 and an indexk such that
for all t all the nodesvj (j 6= k) are connected to nodek
across[t, t + T ].

Consider a group ofN agents with statewk ∈ W , where
W is an Euclidean space. The communication between the
N -agents is defined by the graphG: each agent can sense
only the neighboring agents, i.e. agentj receives information
from agenti iff i ∈ Nj(t).

Consider the continuous dynamics

ẇk =

N
∑

j=1

akj(t)(wj − wk), ∀k ∈ I. (18)

Using the Laplacian definition, (18) can be equivalently
expressed as

ẇ = −L̃(t)w, (19)

whereL̃ = L ⊗ I3. Algorithm (19) has been widely studied
in the literature and asymptotic convergence to a consensus
value holds under mild assumptions on the communication
topology. The following theorem summarizes some of the
main results in [13], [14] and [15].

Theorem 3:Let W be a finite-dimensional Euclidean
space. LetG(t) be a uniformly connected digraph andL(t)
the corresponding Laplacian matrix bounded and piecewise
continuous in time. The solutions of (19) asymptotically con-
verge to a consensus valueα1 for someα ∈ W . Furthermore
if G(t) is balanced for allt, thenα = 1

N

∑

i∈I wi(0). �

A general proof for Theorem 3 is based on the property
that the convex hull of vectorswk ∈ W is non expanding
along the solutions. For this reason, the assumption thatW

is an Euclidean space is essential (see e.g. [14]). Under
the additional balancing assumption onG(t), it follows that
1

T L(t) = 0, which implies that the average1
N

∑

j∈I wj is
an invariant quantity along the solutions.

B. Orientation stabilization with limited communication

In Section III we presented a control law that stabilizes
parallel formations and balanced formations in the presence
of all-to-all communication among the agents. Along the
lines of [11], [8], [7] we replace the (global information)
control law (6) with a local one where the quantitȳx is
substituted by a (local) consensus variable. Consider first
the problem of synchronizing the velocity vectorsxk. We
replace the (global information) control law

uk = < x̄,yk >

vk = < x̄,zk >, k = 1, . . . , N,
(20)

with the local one

uk = < wk,yk >

vk = < wk,zk >, k = 1, . . . , N,
(21)



where wk is a consensus variable obeying the consensus
dynamics

ẇk = −
N

∑

j=1

Lkjwj , (22)

with arbitrary initial conditionswk(0), k = 1, . . . , N . Before
detailing the convergence analysis we express (21) and (22)
in shape coordinates. To this end we adopt the change of
variables

bk = RT
k wk.

Then (21) rewrites as

uk = < bk,e2 >

vk = < bk,e3 >, k = 1, . . . , N,
(23)

where(e1,e2,e3) is the standard orthonormal basis forR
3,

and (22) as

ḃk = UT
k bk −

N
∑

j=1

LkjR
T
k Rjbj , (24)

wherebk(0) = RT
k wk(0).

Theorem 4:Let G(t) be a uniformly connected commu-
nication graph andL(t) the corresponding bounded and
piecewise continuous Laplacian. Then all the solutions of
the model (2) with the control (21) asymptotically converge
to an equilibrium. Moreover, the only asymptotically stable
equilibrium in the shape space is the synchronized state
characterized byN identical velocity vectors and every other
equilibrium is unstable. Furthermore, ifG(t) is balanced for
all t and bk(0) = e1, for all k ∈ I, then the asymptotic
consensus value forxk is α = 1

N

∑

i∈I xi(0), that is the
centroidx̄ of the initial condition. �

Proof: Set wk = Rkbk. Then w(t) obeys the consensus
dynamicsẇ = −L̃(t)w, which implies that the solutions
converge to a consensus valueα. Since the consensus
dynamics forw(t) are invariant with respect to translations in
the space, for any particular graph sequence,α has an equal
probability to take any value inR3 if the initial conditions
wk(0) are randomly chosen. This is sufficient to conclude
that α 6= 0 with probability 1. This implies that the control
law

uk = < bk,e2 >

vk = < bk,e3 >,
(25)

asymptotically converges to the (time-invariant) control

uk = < α,yk >

vk = < α,zk >,
(26)

for every k ∈ I and system (2) with the control (25)
converges to the (time-invariant) dynamics

ẋk = yk < α,yk > +zk < α,zk >

ẏk = −xk < α,yk >

żk = −xk < α,zk > k = 1, . . . , N.

(27)

Solutions of the complete system are known to converge
to a chain recurrent set of the limiting (autonomous) system

(27) [16]. The limiting system is decoupled intoN identical
systems whose only chain recurrent sets are the equilibria
of (27). In this setyk and zk are orthogonal toα and the
equilibria are two isolated points modulo the action of the
symmetry groupSO(2) (one stable and one unstable). Then
the only limit sets of the system (2) with the control (25)
are equilibria characterized byxk = ± α

||α|| for every k.
The synchronized equilibriumxk = α

||α|| is exponentially
stable while the equilibriumxk = − α

||α|| is unstable. If
G(t) is balanced, it follows from Theorem 3 thatα =
1

N

∑

i∈I Ri(0)bi(0) = x̄(0). �

Consider now the problem of balancing the velocity vec-
tors. We replace

uk = − < x̄,yk >

vk = − < x̄,zk >, k = 1, . . . , N,
(28)

with

uk = − < wk,yk >

vk = − < wk,zk >, k = 1, . . . , N,
(29)

where wk is a consensus variable obeying the consensus
dynamics

ẇk = −
N

∑

j=1

Lkjwj +
d

dt
xk, (30)

wherewk(0) = xk(0) for everyk.
In shape coordinates we obtain

uk = − < bk,e2 >

vk = − < bk,e3 >, k = 1, . . . , N,
(31)

where wk is a consensus variable obeying the consensus
dynamics

ḃk = UT
k (bk − e1) −

N
∑

j=1

LkjR
T
k Rjwj , (32)

wherebk(0) = e1 for everyk.

Theorem 5:Suppose that the communication graphG(t)
is uniformly connected and balanced for allt ≥ 0 and that
L(t) is bounded and piecewise continuous. Then all the so-
lutions of the system (2) with the control (29) asymptotically
converge to an equilibrium. Moreover, the only stable limit
set is the set of balanced states characterized byx̄ = 0. �

Proof: Set wk = Rkbk. The solutionw(t) satisfies the
dynamics

ẇ = −L̃(t)w +
d

dt
x(t). (33)

The Lyapunov function

W (w) =
1

2
< w,w >,



is not increasing along the solutions: note that, since the
graph is balanced,L(t) is a positive semi-definite matrix
[17] and then

Ẇ =−< L̃(t)w,w >−∑N

k=1
< wk,yk >2 +< wk,zk >2

=−< L̃(t)w,w >−∑N

k=1
||ẋk||2 ≤ 0.

(34)
We deduce from (34) thaṫx is a function inL2(0,∞). We
also deduce from (34) thatw(t) is uniformly bounded. To
prove thatẋ asymptotically converges to zero observe that

ẍk = −
(

u2
k + v2

k

)

xk

is uniformly bounded (becausew(t) is uniformly bounded),
which implies thatẋ is Lipschitz continuous. We conclude
that ẋ is uniformly continuous. Thenẋ is a uniformly
continuous function inL2(0,∞) and from Barbalat’s Lemma
we obtain thatẋ → 0 as t → ∞ [18].

Thanks to the balancing assumption on the graph,1 is a
left eigenvector ofL(t), and we obtain from (33) that

1

N

N
∑

k=1

ẇk =
1

N

N
∑

k=1

d

dt
xk. (35)

Integrating both sides of (35), and using the fact that
wk(0) = xk(0), one concludes that1

N

∑

i∈I wi(t) = x̄

for all t ≥ 0. Becausew(t) converges to a consensus equi-
librium, each componentwk must asymptotically converge
to x̄. As a consequence, the control law (31) asymptotically
converge to the time-invariant control

uk = − < x̄,yk >

vk = − < x̄,zk >, k = 1, . . . , N.
(36)

Since ẋ is asymptotically convergent to zero, the solutions
asymptotically converge to a set of equilibria of (2) with
the control law (36). We conclude thatx(t) asymptotically
converges to the critical set ofV and, form Theorem 1, that
only the set of balanced states is asymptotically stable.�

C. Stabilization of circular equilibria with limited commu-
nication

In this Section we extend the results of Section III-B to
the limited communication case. The (all-to-all) control law
derived in Section III-B is

uk = ωk+ < ωkρ−2r̃k + γk n̄ − ωk d̄,xk >

vk = γk+ < γkρ−2r̃k − ωk n̄ − γk d̄,xk > .
(37)

Along the lines of the previous section we substitute (37)
with the (local) control laws

uk = ωk+ < −ωkρ−2ak + γk bk − ωk ck,e1 >

vk = γk+ < −γkρ−2ak − ωk bk − γk ck,e1 >,
(38)

where theN -dimensional consensus variablesak, bk andck

are computed according to the dynamics (directly computed
in shape coordinates)

ȧk = UT
k ak − e1 −

∑N

j=1
LkjR

T
k Rjaj −

∑N

j=1
LkjR

T
k rj ,

ḃk = UT
k bk − ∑N

j=1
LkjR

T
k Rjbj

ċk = UT
k ck − ∑N

j=1
LkjR

T
k Rjcj .

Theorem 6:Let G(t) be a uniformly connected commu-
nication graph andL(t) the corresponding bounded and
piecewise continuous Laplacian. Then the only stable limit
set of (1) equipped with the control (38) is the set of relative
equilibria defined by circular orbits with the same radius
around the same axis of rotation. �

Proof: Setwk = Rkak +rk, qk = Rkbk andpk = Rkck.
These variables obey to the consensus dynamicsẇ = −L̃w,
q̇ = −L̃q and ṗ = −L̃p respectively and the solutions
converge to the consensus valuesw̄, q̄ and p̄. We obtain
that (38) converge to the time-invariant control laws

uk = ωk+ < ωkρ−2(rk − w̄) + γk q̄ − ωk p̄,xk >

vk = γk+ < γkρ−2(rk − w̄) − ωk q̄ − γk p̄,xk > .
(39)

The potential

Wk =
∣

∣

∣

∣ρ−2(rk − w̄) − ωk p̄
∣

∣

∣

∣

2
+ ||nk − q̄||2

satisfies

Ẇk = − < ωkρ−2(rk − w̄) − ωk p̄ + γkq̄,xk >2

− < γkρ−2(rk − w̄) − γk p̄ − ωkq̄,xk >2≤ 0,

along the solutions of (39). Following the same lines of the
proof of Theorem 4 we conclude that the only stable limit
set is the set of relative equilibria characterized by circular
orbits with the same radius around the same axis of rotation.

�

V. CONCLUSION

In this paper we proposed control laws that stabilize
parallel and circular relative equilibria in a model of identi-
cal, steered particles moving in three-dimensional Euclidean
space. In the presence of general communication topologies
we recovered the asymptotic convergence to relative equi-
libria by equipping each agent with a consensus estimator.
An open question, that is a motivation for further research,
is the derivation of shape control laws to stabilize helical
relative equilibria. Recently, in [4], a methodology has been
proposed that allows to stabilize also this type of relative
equilibrium.
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