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Abstract— This paper proposes a framework for the design of [7]. On the bases of these results we design control laws

control laws that stabilize relative equilibria in a model of iden-  that globally stabilize collective motion patterns undeitdm
tical, steered particles moving in three-dimensional Euclidean assumptions on the communication topology
space. Under the assumption of all-to-all communication, the The rest of the paper is organized as fO||O.WS' in Section
derived control laws only require relative orientations and pap 9 :

positions. We extend the obtained results in the presence of Il we define the kinematic model for a group of steering

limited communication topologies by equipping each agent with  particles moving in three-dimensional Euclidean spacé wit

a consensus estimator. unitary velocity. In Section Ill we derive control laws that
l. INTRODUCTION stabilize parallel and circular formations, the only rifat

equilibria of the model, in the presence of all-to-all com-

In rec;ent years particular attention .has. been devoted fQ | ication among the agents. Finally, in Section IV, we
the design of control laws for the coordination of a group Ofqerajize our all-to-al design to general communication
autonomous systems. Applications include sensor networ pologies

where a group of autonomous agents has to collect infor-

mation about a process by _choosmg maximally |nformat|v_e II. A KINEMATIC MODEL OF STEERED PARTICLES IN

samples [1], [2], and formation control of autonomous vehi- SE(3)

cles (e.g. unmanned aerial vehicles) [3], [5]. In these exist _ _ _ _ _ _

it is relevant to consider the case where the ambient spaceWe consider a kinematic model of N identical particles

is the three-dimensional Euclidean space. (with unitary mass) moving in three-dimensional Euclidean
In this paper we address the problem of designing contrépace at unit speed:

laws to stabilize motion patterns in a model of identical

particles moving at unit speed in three-dimensional Eu- ;’“ - Lk s
clidean space. This work builds on previous works on planar k B fzkuk kVk 1)
formation control laws [6], [7] extending the main results t Yr = Trlk

2k = —TRUg k=1,...,N,

the three-dimensional setting. First we consider the cése o

all-to-all communication among the agents, and we derMghere », < R denotes the position of particlé,

a (static) control law which uses only measurements abop, 4, ) is a right handed orthonormal frame associated

relative positions and orientations of the other agents. o particle & (in particularz;, € S, is the (unit) velocity
All-to-all communication is an assumption that is Oftefyector). The scalarsy, vy, represent the curvature controls

unrealistic in multi-agent systems. In particular, in aW@k  of the kth particle. We use a bold variable without index

of moving agents, some of the existing communication linkgy genote the correspondingV-dimensional vector, e.g.
can fail and new links can appear when other agents enter an_ (T YT,

. . 15+ TN
effective range of detection. To extend the all-to-all tesck If the curvature controls are feedback functionsshipe

design to the situation of limited communication, we use thﬁuantities (i.e. relative frame orientations and relatpe
approach recently proposed in [8], see also [9] and [10] fajtions), the closed loop vector field is invariant under the
related work. _action of the symmetry groug' E(3). The resulting closed
This approach suggests to replace the average quantitigg, gynamics evolve in a quotient manifold calletape
ofte_:n required ina collective optimization algorithm by_cdxb spaceand the equilibria of the reduced dynamics are called
estimates provided by a consensus estimator. The idea hagyive equilibria Relative equilibria of the model (1) have
been successfully applied to the problem of synchronimatiq,een characterized in [3]. The equilibria are of two types:
and balancing in phase models in the limited communicatiob\ara"d motion, and circular motion in planes orthogonal
case [11], [8] or to the design of planar collective motiong, the same axis of rotation. With a slight modification of

This paper presents research results of the Belgian Neté8CO (Dy- the_ model _(1)' a third type of re_Iat|ve equmbrlg exists. I.
namical Systems, Control, and Optimization), funded by thertmtiversity  helical motions (see [3] for details). Recently, in [4], amne
Attraction Poles Programme, initiated by the Belgian Statégr®e Policy frgmework is proposed which allows to deal with this kind
Office. The scientific responsibility rests with its authors . o
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reduces to the model set of balanced states (i.e. those states suchetligizero) is
asymptotically stable and every other equilibrium is ublgta

Ty = YpUk + 2Kk
g o= O
Y = —ThUg (2) , . . .
3, = —xpup k=1,...,N. Proof: Plugging (6) into (5) yield
N
This model can be conveniently rewritten in a compact form. . _ 2 _ 2
=K <0.
The state 4 ;<w,yk> +<Z,z,>"<0

Ry, = Yy, € S0(3 . .
S 3) By La Salle principle, the solutions of (2) converge to the

represents the orientation of the frame attached to pa#icl largest invariance set where
Then (2) rewrites to

<z,y,> = 0 %)
Ry = Ry, Uy, k=1,...,N, €) <Z,zp> = 0, k=1,...,N.
where The points wherez = 0, are global minima ofl/. As a
0 —up —vg consequence this equilibrium set is stablekif > 0 and
U= |ur O 0 unstable if K < 0. From (7), equilibria wheree # 0 are
Uk 0 0 characterized by the vectons,, kK = 1,..., N, all parallel

to the constant vecta. Note that this configuration involves
— M velocity vectors aligned t& and M velocity vectors
anti-aligned toz, where0 < M < % At those points,
[1l. STABILIZING LAWS IN THE PRESENCE OF |z]| = 1 - 2% > &. When M = 0 we recover the set of
ALL -TO-ALL COMMUNICATION synchronized states (global maximum6j which is stable
if K < 0 and unstable ifK > 0. Every other value of\/

i _corresponds to a saddle point and is therefore unstable both
The average linear momentum of a group of particlegy, i ~ o and K < 0. To see this we express, andz in

is a skew-symmetric matrix that represents an element of t
tangent spaceo(3).

A. Orientation stabilization

satisfying (1) is thecentroid of the particles’ velocities polar coordinates,
N
5 %Z“‘U x = ||z|| [cos ® sin O, sin ® sin O, cos O],
=1 xp, = [cos ¢y sin Oy, sin ¢y, sin O, cos O] 7,

The parametejiz|| is a measure of synchrony of the velocitywhere 6, © € [0, 7] and ¢, ® € [0, 27). By expressing/
vectors xy, k = 1,2,...,N. In the model (1),/|Z|[ is in polar coordinates we obtain

maximal when the velocity vectors are all aligned (syn- N

chronization) leading to parallel formations. It is minima A : I ‘ ‘
when the velocities balance to result in a vanishing cedtroi V=l Z sin ©sin 6 cos(® = ¢;) + cos © cos ;. (8)
leading to collective motion around a fixed center of mass. . i )
Synchronization (balancing) is then achieved by maxingizin 1he critical points are characterized by

(minimizing) the potential x), = [cos Psin ©,sin @sin O, cos O, k= M+1,...,N,

Jj=1

Vi) = |2l @ and
x, = [cos(P+7) sin(r—0), sin(P+n) sin(r—0O), cos(m—0)] ",
fork=1,..., M.

The second derivative (with respectdg) is

The time derivative of (4) along the solutions of (2) is

N N
V=Y <xd;>=) <By;>u+ <,z >0 )

=t =t (5) 867‘2/ = % — ||®|| (sin 6, sin © cos(P — ¢;) + cos O cos b;)

J

that is negative iff; = © and ¢; = ® and is positive if
(6) 0; =m—0 andg; = & 4+ 7. As a consequence, a small

variation §0; at those critical points decreases the value of
ensures that (4) is non-decreasing (non-increasing) whénif 6, = © and ¢, = ®, and increases the value bf if

The control law

U = —K<i,yk>
v = —-K<xzi>, k=1,...,N,

K <0 (K >0). 0 =m—0 and¢p; = & + 7. |
The following result provides a characterization of theiequ
libria of (2) under the control law (6). As a consequence of Theorem 1, we obtain that the control

law (6) stabilizes parallel formationgs( < 0) or the center
Theorem 1:Consider the model (2) with the control law of mass of the particles to a fixed poirdt (> 0) (see Fig. 1).
(6). If K < 0 only the set of synchronized states (i.e. thos&he parallel formation is a relative equilibrium. In corgtra
states such that;, are all identical) is asymptotically stable the stabilization of the center of mass to a fixed point does
and every other equilibrium is unstable. &f > 0 only the not lead in general to a relative equilibrium.



results in
W= =N, <wi(s;—8) + .z >
+ < ’)’j(Sj —3) —w;jN,T; >2< 0.
Noting that

1
Sk—§=f21~"k+dk—d
P

wherer, = r, — 7 and 7 is the center of mass, we rewrite
the control law (11) as

up = wpt+ < wkp’27~°k. + YT — wk_gi, X > (12)
Vg = et <P TR —wph — e d, x>,

Fig. 1. Parallel and balanced formations.

where we used the condition n, z; >= 0.
Remark 1:The feedback control (6) does not depend on Note thats, andn, obey to the following dynamics

th_e relaj[ive orientation 01_‘ the frames but only on the retati e = —xg (wWi(vk — v6) — e (ur — wi)) 13)
orientations of the velocity vectors. sp = —xp (wr(ue — wr) + ve(vk — 1)) -
B. Stabilization of circular formations Plugging (12) into (13) we obtain

In this section we propose spacingcontrol to stabilize = —p lxp <ng—n,x)E > (14)
circular relative equilibria. Circular equilibria (withrlaitrary 3, = —plxp<Sp—3,Tk>.

relative orientations) are defined by circular motions abu  The following result characterizes the closed-loop dynam-
the same axis of rotation. Under the constant contiol=  jqs.

Wk, Vg = Yk, With p = L each particle travels a

w ’72 ! . .
circular orbit around the zcolﬁstgnt) axis of rotation Theorem 2:Consider model (13) with the feedback con-
trol (12). All the solutions converge to the equilibrium set
ng = WpZk — YkYk, of (13). Furthermore, every equilibrium of (13) which does
with unit speed and (common) radips The center of each not tcc;):respond to a circular relative equilibrium of (é) is
unstable.

rotating particle multiplied by the constalzbg is

Proof: By the La Salle invariance principle we obtain that

1
Sk = p? T+ d k=1...N, the solutions converge to the largest invariance set where

where W < Sk — 8, > = —y <N —N,TE > (15)
dkékak+')/ka 'Yk<3k_'§>a7k> = wk}<nk_ﬁ7wk} >,

When all centers coincide the following algebraic conditior]®" EVErYk. In this setuy, = w; anduvy, = v, and therefora
Is constant. Moreover (15) can hold onlifn, —n, x; >=

is satisfied
Ps—0 0, for everyk and (15) reduces to
~ <sp—8xT> = 0
whereP = Iy — £117 and P = P ® I3. This suggests to <np—nap> = 0, k=12 . N (16)

define the synchrony measure
y y Conditions (16) characterize the equilibria of system (14)

S(d,r) 2 1 HPSHQ’ Only two types of equilibria are possible. The first is char-
2 acterized by the condition8 = 0 and < s — s,z >= 0.
which is minimum when all the centers coincide. Observinguch equilibria are unstable under the control law (12) (the
that circular relative equilibria are characterized by aneo analysis is analogous to the one in Theorem 1). Wiiga 0
mon axis of rotation we introduce the Lyapunov function condition (16) implies that the particles rotate in planes
N orthogonal to the constant axis of rotatianwith the same

W(n,d,r)=5S(d,r) — 5 ||n||” (9) angular velocity. We conclude tha}, — 5 is parallel ton
for everyk and that the centers lie on the same rotation axis
v_vhereﬁ e % Z;'V:1 ny,. Differentiating W with respect to (see Fig. 2). ]
time we obtain
. Remark 2:If the open-loop control is the same for each
_ N s> (L i — v
W= Zj_:l <85 8% > (p — Wity —Y5) particle, i.e.w; = w; = w and~; = ~; = v for everyi, j,
- <mx > (U — wyv). (10) the control law (12) simplifies to
Choosing the control up = wHp T <whE— g, x> (17)
_ _ v = Y+ P <k — 2@ >
U = wk+<wk(sk—s)+’ykn,azk> (11) AL N A N
ve = Ykt < (s —8) —wkn, @ > wherey = > 5y andz = 5505, 2k



Definition 2: G(t) is said to be uniformly connected if
there exists a time horizof' > 0 and an indext such that
- for all ¢ all the nodesv; (j # k) are connected to node
across|t,t + 7).

. respects the orientation of the edges for the directed graph
3 @ s (N, Ute[g(t),fl A(r)dr).

2

1

0

Consider a group ofV agents with statev, € W, where

2 W is an Euclidean space. The communication between the
2 - " 2 N-agents is defined by the graglt each agent can sense
only the neighboring agents, i.e. aggneceives information
Fig. 2. Circular equilibrium achieved under the control)(12 from agenti iff i € N;(t).

Consider the continuous dynamics

N
IV. STABILIZING LAWS WITH LIMITED COMMUNICATION .
wp =Y ag;(t)(w; —wy), VeI (18)
Jj=1

In this Section we extend the results of Section Il when

communication among the particles is limited. Using the Laplacian definition, (18) can be equivalently

A. Communication graphs and consensus dynamics expressed as .
We describe the communication topology by using the = —L(t) w, (19)

notion of communication graph _ _ whereL = L ® I5. Algorithm (19) has been widely studied
LetG = (V,&,A) be gwelghted digraph (directed gr_aph)in the literature and asymptotic convergence to a consensus
whereV = {vy,...,un} is the set of nodest C V x Vis  yalye holds under mild assumptions on the communication

the set of edges, and is a weighted adjacency matrix with {r010gy. The following theorem summarizes some of the
nonnegative elements;;. The node indices belong to the yain results in [13], [14] and [15]

set of positive integer€ £ {1,..., N}. Assume that there
are no self-cycles i.eu, = 0, Vk € 7. - Theorem 3:Let W be a finite-dimensional Euclidean
The graph Laplaciaf, associated to the gragghis defined  gpace. Let3(t) be a uniformly connected digraph ardt)
as S ap, =k the corresponding Laplacian matrix bounded and piecewise
Ly; = { _aik "“’ ; ; i continuous in time. The solutions of (19) asymptotically€o
Js :

verge to a consensus valug for somea € W. Furthermore
The k-th row of L is defined byL;. The in-degree]\grespec- if G(t) is balanced for alt, thena = + Y., w;(0). O

. . . . i€ Tt

tively out-degree) of nodey, is defined asi}* = ZFI ak;j

(respectivelydy"t = Zé\]ﬂ aji)- The digraphG' is said to be A general proof for Theorem 3 is bas_ed on the prc_>perty
balancedif the in-degree and the out-degree of each nod#at the convex hull of vectorsy;,, € W is non expanding

are equal, that is, along the solutions. For this reason, the assumptionifhat
is an Euclidean space is essential (see e.g. [14]). Under
doary =Y aj.  VkeL the additional balancing assumption 6tt), it follows that
J J 17 L(t) = 0, which implies that the averagg >, w; is

It is both of theoretical and practical interest to considean invariant quantity along the solutions.
time-varying commumcauon topologies. For_ example, n % Orientation stabilization with limited communication
network of moving agents, some of the existing links can . -

fail and new links can appear when other agents enter an!n Section Il we presented a control law that stabilizes
effective range of detection. In the following we assume th@oarallel formations and balanced formations in the presenc
the communication topology is described by a time-varyin§f all-to-all communication among the agents. Along the
graph G(t) = (V,&(t), A(t)), where A(t) is piece-wise lines of [11], [8], [7] we replace the (global information)
continuous and bounded ang,(t) € {0} U [3,7], Yk, 7, control law (6) with a local one where the quantigy is

for some finite scalar® < 8 < ~ and for allt > 0. substituted by a (local) consensus variable. Consider first
The set of neighbors of node, at time ¢ is denoted by the problem of synchronizing the velocity vectars. We
Ni(t) 2 {v; € V : ax;(t) > 8}. We recall two definitions replace the (global information) control law
that characterize the concept of uniform connectivity for u, = <@y, >

time-varying graphs. v = <@z >, k=1, (20)

..,N,
Definition 1: Consider a grapli(t) = (V,£(t), A(t)). A With the local one

nodewy, is said to be connected to node (v; # vy) in the up = < Wk, Y > 1)

interval I = [t,, ] if there is a path fromy;, to v; which v = < Wk, 2L >, k=1,...,N,



where wy, is a consensus variable obeying the consensig7) [16]. The limiting system is decoupled infé identical

dynamics systems whose only chain recurrent sets are the equilibria
) N of (27). In this sety, and z; are orthogonal tax and the
Wk = — Zijwja (22) equilibria are two isolated points modulo the action of the
i=1 symmetry groupSO(2) (one stable and one unstable). Then
with arbitrary initial conditionsw;,(0),k = 1,..., N. Before the only limit sets of the system (2) with the control (25)
detailing the convergence analysis we express (21) and (22¢ equilibria characterized by, = iﬁ for every k.
in shape coordinates. To this end we adopt the change Die synchronized equilibriune;, = % is exponentially
variables . stable while the equilibriume;, = — T is unstable. If
by = Ry wy. G(t) is balanced, it follows from Theorem 3 that =
1 =
Then (21) rewrites as ~ 2iez Ri(0)b;(0) = 2(0). u
up = <bpex> (23) Consider now the problem of balancing the velocity vec-
vy = <bies>, k=1,....N, tors. We replace
where ey, ez, e3) is the standard orthonormal basis f&t, we = —<Zy,>
and (22) as o = —ema o hel...N (28)
N
by = Ulby — Y Li;R{ R;b;, (24)  with
=t U = — < Wk, Y > (29)
Wherebk(O):R{wk(O) vV = — < Wg,ZE >, k=1,...,N,

Theorem 4:Let G(t) be a uniformly connected commu- Where wy is a consensus variable obeying the consensus
nication graph andL(¢) the corresponding bounded anddynamics
piecewise continuous Laplacian. Then all the solutions of N d
the model (2) with the control (21) asymptotically converge Wk = — Zijwj + TR (30)
to an equilibrium. Moreover, the only asymptotically stbl j=l1
equilibrium in the shape space is the synchronized stald arew
characterized by identical velocity vectors and every other F
equilibrium is unstable. Furthermore,@#(¢) is balanced for
all ¢ and by (0) = ey, for all ¥ € Z, then the asymptotic
consensus value fat, is o = + >, .7 ;(0), that is the up, = — <bg,ey>
centroidz of the initial condition. O v = — < by, ez >, k=1,...,N,

(0) = x(0) for everyk.
In shape coordinates we obtain

(1)

Proof: Setw,, = Ryb,. Thenw(t) obeys the consensusWherew; is a consensus variable obeying the consensus

dynamicsw = —L(t)w, which implies that the solutions dynamics
converge to a consensus value Since the consensus N
dynamics forw(t) are m_varlant with respect to translations in by = UkT (by — e1) — Z ijRgijj, (32)
the space, for any particular graph sequemedas an equal =
probability to take any value ifR? if the initial conditions
wy,(0) are randomly chosen. This is sufficient to concludevhereb; (0) = e; for everyk.
that o # 0 with probability 1. This implies that the control
law Theorem 5:Suppose that the communication gra@ly)
up = <bpex> (25) s uniformly connected and balanced for al> 0 and that
vp = <byez>, L(t) is bounded and piecewise continuous. Then all the so-

asymptotically converges to the (time-invariant) control  lutions of the system (2) with the control (29) asymptofical
converge to an equilibrium. Moreover, the only stable limit

g = <Y, = (26) set is the set of balanced states characterized by0. [
v = < o,zE >,
for every k¥ € Z and system (2) with the control (25) Proof: Set w, = Rybi. The solutionw(t) satisfies the
converges to the (time-invariant) dynamics dynamics
. - d
Ty = Y <Y, > t2p <o,z > w=—L(t)w + —x(t). (33)
g = —mp <oy > 27) dt
2, = —xp <o,zp > k=1,...,N. The Lyapunov function

Solutions of the complete system are known to converge
to a chain recurrent set of the limiting (autonomous) system W(w) = 5 Sww >,



is not increasing along the solutions: note that, since the Theorem 6:Let G(¢) be a uniformly connected commu-
graph is balanced[(t) is a positive semi-definite matrix nication graph andL(¢) the corresponding bounded and
[17] and then piecewise continuous Laplacian. Then the only stable limit
set of (1) equipped with the control (38) is the set of rekativ
equilibria defined by circular orbits with the same radius
around the same axis of rotation. |

W=—< Lit)w,w > —Zszl < Wi, Yy >2+ < wy, 2 >2
=< Ltyw,w > -, ||ax]]* < 0.
(34)
We deduce from (34) that is a function inL4(0, c0). We
also deduce from (34) thab(t) is uniformly bounded. To
prove thatz asymptotically converges to zero observe that

Proof: Setw; = Ryar+r4, q, = Ryb;, andpk = R;gck.
These variables obey to the consensus dynawnies — Lw,
q = —Lqg and p = —Lp respectively and the solutions
&y = — (Ui 4 U,%) xp, converge to the consensus valu@s g and p. We obtain

. . . ) that (38) converge to the time-invariant control laws
is uniformly bounded (becauae(t) is uniformly bounded),

. . . . . . . _ —2 — s —
which implies thati is Lipschitz continuous. We conclude Uk = Wit < wkfz (7k —7w) TG =Wk P, Tk >
that & is uniformly continuous. Thent is a uniformly vk = Wt <P (Th — W) —wp @ — WD, Tk >(39)

continuous function il (0, co) and from Barbalat's Lemma

we obtain thatt — 0 ast — oo [18]. The potential

Thanks to the balancing assumption on the grdpls a W, = Hp%(rk —w) — ka)HQ + e — gl
left eigenvector ofZ(t), and we obtain from (33) that o
satisfies
L ¢ L~ d W, <wpp 2(ry, — @) — Wi B+ WG, T >
— Wy = — — .. 35 k= - Wkp k— — Wk V&4, Tk
N,; * N;dt * (59 — <yp P (ry — W) — WP — WG,z >2<0,

Integrating both sides of (35), and using the fact tha@long the solutions of (39). Following the same lines of the
wi(0) = x4(0), one concludes thaf 3, ;w;(t) = & proof of Theorem 4 we conclude that the only stable limit

for all ¢ > 0. Becausaﬂ(t) converges to a consensus equiset is the set of relative equilibria characterized by darcu
librium, each componenty;, must asymptotica”y converge orbits with the same radius around the same axis of rotation.
to z. As a consequence, the control law (31) asymptotically m
converge to the time-invariant control
V. CONCLUSION
(36) In this paper we proposed control laws that stabilize
parallel and circular relative equilibria in a model of idien
Sincex is asymptotically convergent to zero, the solutiongal, steered particles moving in three-dimensional Eeelid
asymptotically converge to a set of equilibria of (2) withspace. In the presence of general communication topologies
the control law (36). We conclude that(t) asymptotically e recovered the asymptotic convergence to relative equi-
converges to the critical set &f and, form Theorem 1, that |ibria by equipping each agent with a consensus estimator.
only the set of balanced states is asymptotically stabB. An open question, that is a motivation for further research,
is the derivation of shape control laws to stabilize helical
C:-. S.tabilization of circular equi“bria with limited commu relative equi"bria_ Recenuy, in [4], a methodo'ogy hasbe
nication proposed that allows to stabilize also this type of relative
In this Section we extend the results of Section I1I-B toequilibrium.
the limited communication case. The (all-to-all) contralvl

ur = _<',i7yk>
v = 7<§:,zk,>, kzl,,N
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