Crystallization and X-ray Diffraction Study of the *Streptomyces K15* Penicillin-binding DD-Transpeptidase

Serge Englebert1,2, Paulette Charlier1,2†, Eveline Fonze1,2, Yves To’th1,2
Marcel Vermeire3, Jozef Van Beeumen3, Jacqueline Grandchamps3, Kurt Hoffmann1
Mélina Leyh-Bouille1, Martine Nguyen-Distèche1 and Jean-Marie Ghuysen1

1Centre d’Ingénierie des Protéines, Université de Liège
Institut de Chimie, B6, B-4000 Sart Tilman (Liège 1), Belgium
2Unité de Cristallographie, Université de Liège, Institut de Physique
B5, B-4000 Sart Tilman (Liège 1), Belgium
3Vakgroep Biochimie, Fysiologie en Microbiologie, Rijksuniversiteit-Gent
Ledeganckstraat, 35, B-9000 Gent, Belgium

The 262 amino acid residue long DD-transpeptidase/penicillin-binding protein of *Streptomyces K15* has been crystallized at room temperature by using the hanging drop vapour diffusion technique. The crystals belong to the orthorhombic space group P2\textsubscript{1}2\textsubscript{1}2\textsubscript{1}, with unit cell parameters a = 46.4 Å, b = 54.1 Å and c = 108.3 Å. They contain one protein molecule per asymmetric unit and diffract to about 1.9 Å. X-ray data have been collected to 2.0 Å from a native crystal. The previously published amino acid sequence of the protein has been corrected at positions 71, 72, 113, 114 and 156.

Keywords: DD-transpeptidase; penicillin-binding protein; mass spectrometry; crystallization; X-ray analysis

The serine DD-peptidase/penicillin-binding protein (PBP2) of *Streptomyces K15* was synthesized in the form of a 291 amino acid residue precursor possessing a cleavable 29 amino acid residue signal peptide (Palomeque-Messia et al., 1991). After translocation through the plasma membrane, the 262 amino acid residue protein remains attached to the outer face of the membrane though lacking transmembrane anchors. Overexpression in *Streptomyces lividans* results in the export of a substantial amount of the synthesized protein in the culture medium. The purified water soluble enzyme requires 0.5 M NaCl to remain soluble. It is indistinguishable from the detergent-extracted wild-type enzyme with respect to thermostability, enzyme activity on R-D-alanyl-D-alanine-terminated peptides such as di-acetyl-L-Lys-D-Ala-D-Ala and penicillin-binding capacity (Palomeque-Messia et al., 1992).

The *Streptomyces K15* DD-peptidase/PBP possesses the active site defining motifs characteristic of the penicilloyl serine transferases family: the tetrad S35T3K (with S35, the essential serine residue), the triad S96GC (assumed to be analogous to the usual SXX or YXX motifs) and the triad R217TG. Sequence similarity searches and hydrophobic cluster analysis show that this enzyme and the DD-peptidases/PBPs 5 and 6 of *Escherichia coli* and 5 of *Bacillus subtilis* (and the analogous SpoIIIA protein) are structurally related and have similarity in polypeptide folding with the \(\beta \)-lactamases of class A (Palomeque-Messia et al., 1991).

At variance with the aforementioned DD-peptidases/PBPs, which are essentially hydrolyases, the *Streptomyces K15* enzyme catalyses transfer of the R-D-alanyl moiety of carbonyl donor peptides to structured amino acceptors with a much higher efficacy than to water and, therefore, behaves almost as a strict DD-transpeptidase (Nguyen-Distèche et al., 1986). Determination of its three-dimensional structure should shed light on the mechanism through which the high \(\mathcal{M} \), PBP catalyse peptide crosslinking during wall peptidoglycan synthesis.

Streptomyces K15 was purified to 95\% homogeneity according to the technique described by Palomeque-Messia et al. (1992) and Granier et al. (1994). The mass spectrum, after conversion by the MaxEnt program, revealed the presence of several molecular species, one of which had a mass of 27,473.5 Da (Figure 1). This value corresponded to the theoretical value of 27,474 Da of the revised
amino acid sequence (from gene sequencing) in which Lys71 has been replaced by Asn, Pro72 by Ala, Gln113 by Thr, Ala114 by Arg and His156 by Asp. The other peaks of the mass spectrum were, most likely, sodium adducts of the protein because of the mass values themselves and the repetitive pattern of their occurrence.

Optimal conditions for crystallization were searched for by using the hanging-drop vapour diffusion technique at 20°C. The enzyme solution was concentrated by filtration through a 10 kDa exclusion membrane using a Millipore Ultrafree-MC concentrator, to a final concentration of 15 mg protein/ml. Polyethylene glycol (PEG) of varying molecular masses and NaCl were investigated as precipitating agents. Micro to medium-sized crystals were obtained within a few days in 10 µl drops containing 10 µg protein/ml of 50 mM Tris- HCl (pH 5-6), 0.4 M NaCl, 10 mM NaNO₃, 0.2 mM dithiothreitol, 15% (w/v) PEG4000 or 8000, equilibrated against a 1 ml reservoir well containing 30% (w/v) PEG4000 or 8000 in the same buffer. Larger bipyrimal crystals were grown by the macroseeding technique after a few weeks. Successive seedings were needed to obtain a typical prismatic crystal with maximal dimensions of 0.6 mm x 0.5 mm x 0.3 mm. The maximal content of the drop solutions was 7.5 mg protein/ml and the drop solutions were equilibrated against 25 to 28% (w/v) PEG8000. Crystals of the same shape but of smaller size were obtained when PEG was omitted and the NaCl concentration increased to 4 M. A crystal was transferred to the mother liquor solution (without NaCl) containing the chromogenic β-lactam nitrocefin at a final concentration of 1 mM. The crystal turned red within 30 minutes, indicating that the endocyclic β-lactam amide bond was hydrolysed.

For X-ray analysis, the crystals were mounted in thin-walled glass capillaries, the tips of which were equipped with 1 cm long paper filter fragments soaked in the mother liquor, and sealed with wax. X-ray precession photographs of the crystals (obtained with either PEG4000/8000 or 4 M NaCl) indicated that they were orthorhombic and belonged to the space group P2₁2₁2₁. The unit cell parameters were a = 46.4 Å, b = 54.1 Å and c = 108.3 Å. On the basis of a molecular mass of 27,474, and assuming that four protein molecules occurred per unit cell (which is equivalent to 1 molecule/asymmetric unit), the packing density was equal to 2.47 Å³/Da with a solvent concentration of approximately 51%. These values fall well in the range of protein crystals (Matthews, 1986).

The data were collected at 20°C to 1.9 Å resolution using a Siemens X100 area detector. The X-ray source was a graphite-monochromated CuKα radiation produced by a Rigaku RU-200 rotating anode generator operating at 50 kV and 90 mA with a 0.3 mm fine-focus cathode. The detector was at a 130 mm distance with a 2θ angle of 25°. The data collection step size was of 0.3° between frames with a count time of 60 s/frame. With two crystal orientations, a total of 900 frames were collected. Indexing, integration and scaling of the intensity data were carried out using the XENGEN processing program (Howard, 1991). The data collection statistics are shown in Table 1. The completion of the data is 90% at 2.5 Å and 80% at
2.0 Å. Beyond 2.0 Å, the diffraction is weak, with only 56% of the data in a 2.06 Å to 1.94 Å resolution shell having amplitude $I > 2\sigma(I)$.

The Streptomyces K15 enzyme contains two cysteine residues at positions 98 (of the assumed active-site defining motif SGC) and 223, one of which only, can be labelled with 5,5'-dithiobis-(2-nitrobenzoate) or p-chloromercuribenzoate (pCMB). The enzyme binds pCMB in a 1:1 molar ratio, resulting in a drastic decrease of the peptide activity and penicillin-binding capacity (Leyh-Bouille et al., 1987). This property is being exploited in order to prepare a merciful derivative suitable for the phase determination using isomorphous replacement and anomalous scattering data. The Streptomyces K15 enzyme is the fourth PBP and the first strict dD-transpeptidase that has been crystallized. The Streptomyces R61 PBP, a secretary dD-carboxypeptidase/transpeptidase, is of known three-dimensional structure (Kelly et al., 1989). The structure of the E. coli PBP5, which is essentially a dD-carboxypeptidase (Ferreira et al., 1988), and that of the high M_r PBP2X of Streptococcus pneumoniae, which is one of the lethal target sites of penicillin in this organism (Charlier et al., 1993), are being resolved.

This work was supported in part by the Belgian program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister’s Office, Science Policy Programming (PAI no. 19), the Fonds de la Recherche Scientifique Médicale (contract no. 3.4531.92), and a Convention tripartite between the Région wallonne, SmithKline Beecham, U.K. and the University of Liège.

Table 1

<table>
<thead>
<tr>
<th>Resolution shell lower limit (Å)</th>
<th>Average reflection intensity</th>
<th>Average $I/\sigma(I)$</th>
<th>No. of reflections in $I/\sigma(I)$ ranges</th>
<th>R_{w}†</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.52</td>
<td>101606</td>
<td>75918</td>
<td>26 < 2 72 < 5 114 < 10 226 < 20 507 < 40 489 < 60 1565 < 60</td>
<td>3075</td>
</tr>
<tr>
<td>2.79</td>
<td>47641</td>
<td>29251</td>
<td>47 186 225 373 613 754 364 378</td>
<td>3970</td>
</tr>
<tr>
<td>2.44</td>
<td>21898</td>
<td>12930</td>
<td>81 421 453 619 753 514 194 28 2974</td>
<td>7198</td>
</tr>
<tr>
<td>2.22</td>
<td>15297</td>
<td>8397</td>
<td>149 600 632 729 614 241 44 24 3013</td>
<td>6426</td>
</tr>
<tr>
<td>2.06</td>
<td>10746</td>
<td>5599</td>
<td>230 805 681 583 332 105 9 0 2745</td>
<td>4854</td>
</tr>
<tr>
<td>1.94</td>
<td>6585</td>
<td>3428</td>
<td>154 606 305 226 68 7 1 0 1364</td>
<td>1920</td>
</tr>
<tr>
<td>Totals</td>
<td>37373</td>
<td>24968</td>
<td>687 2190 2378 2153 2638 2128 1008 1076 16141</td>
<td>38110</td>
</tr>
</tbody>
</table>

† $R_{\text{w}} = \Sigma_w I - I_0 \Sigma_w I_0$, where I is the scaled intensity of the wth measurement of reflection h or its equivalent, and I_0 is the average intensity of reflection h.

References

Edited by A. Kug

(Received 19 May 1994; accepted 24 May 1994)