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Abstract

We prove that the equivalence between Vershik’s standardness cri-
terion and the I-cosiness criterion for a filtration in discrete, negative
time, holds separately for each random variable. This gives a strength-
ening and a more direct proof of the global equivalence between these
two criteria. We also provide more elementary original propositions
on Vershik’s standardness criterion, while emphasizing that similar
statements for I-cosiness are sometimes not so obvious.
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1 Introduction

One of Vershik’s achievements in his theory of filtrations in discrete, neg-
ative time, was to provide a criterion (sometimes called the combinatorial
standardness criterion) for a homogeneous filtration to be generated by in-
dependent random variables ([Ver70, Ver73a, Ver94]).

In [Ver70] he devised an equivalent formulation of his criterion in terms
of universal projectors; we call them Vershik’s progressive predictions. This
property, named Vershik’s standardness criterion in [ES01] (but we simply
call it the Vershik property), makes sense not only for homogeneous filtra-
tions, but for arbitrary ones, and defines an invariant of filtrations. Ver-
shik announced in [Ver94] that, under the natural assumption that the fi-
nal σ- field F0 is essentially separable (i.e., countably generated modulo null
events), the Vershik property characterizes filtrations F = (Fn)n60 in dis-
crete, negative time, which can be immersed in the filtration generated by
independent random variables, termed as standard filtrations. A proof of this
theorem is provided in [ES01].

The present paper, in which homogeneous filtrations are not even defined,
only deals with the Vershik property for arbitrary filtrations. We provide in
particular a self-contained proof that the Vershik property is equivalent to the
I-cosiness criterion for a filtration with an essentially separable final σ- field.
We actually prove a stronger result: the Vershik property and the I-cosiness
criterion are equivalent not only for a filtration, but for a random variable.
This is the content of assertion (1.1), to be explained below.

Moreover we relax the assumption that the final σ- field of the filtration is
essentially separable: we only assume the filtration to be locally separable, i.e.,
to admit essentially separable increments. This generalization from global
separability to local separability has no practical interest, but it turns out
that our proofs only need this weaker hypothesis, so we have no reason to use
the stronger one. If we assumed an essentially separable final σ- field, all our
results would remain just as interesting, and our proofs would not become
simpler. Hereafter in this introduction, it is understood that we consider
the context of locally separable filtrations, but nothing is lost by restricting
discussion to filtrations with an essentially separable final σ- field.

I-cosiness is a variant of Tsirelson’s notion of cosiness which he defined in
[Tsi97] in the framework of continuous time. It was introduced by Émery and
Schachermayer in [ES01], and proved to be equivalent to the Vershik property
(when the final σ- field is essentially separable). Whereas it is obvious from
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the definitions that I-cosiness implies the Vershik property, the converse is less
straightforward. The proof given by [ES01] uses other non-obvious theorems
as intermediate steps. Compared to that proof, ours is much more direct, and
in fact is a corollary of the equivalence between both properties separately
for each random variable, in the following sense. These two properties have
the same structure: they require a certain assertion, I(X) or V (X), to hold
for any test random variable X measurable with respect to the final σ- field
F0. Hence, the equivalence between both properties has the form

(
∀X I(X)

)
⇐⇒

(
∀X V (X)

)
,

whereas we will establish the stronger assertion

∀X
[

I(X) ⇐⇒ V (X)
]

. (1.1)

The proof that I(X) implies V (X) is easily deduced from the definitions. Our
proof of the converse is a direct application of a technical lemma. Another ap-
plication of this lemma, concerning joinings of filtrations, is given at the end.

We will also provide more or less elementary results on the Vershik prop-
erty for random variables and filtrations. For example, we will show that the
property V (X) that the random variable X is Vershikian, is equivalent to
some filtration being Vershikian, namely, the filtration generated by the pro-
gressive predictions πnX of X, which lie at the heart of the Vershik property.

Another property is shown to be equivalent to I(X) in [Lau10]1, where the
Vershik property is not used (and not even stated), and where standardness
and I-cosiness are showed to be equivalent. The present paper and [Lau10]
complement each other; however we will not refer to [Lau10], except for
some elementary lemmas, most of them displayed as preliminaries in the
next section. Throughout the paper, in light of the new results, we will
sometimes comment on the results of [Lau10].

In particular, having in view our main result (1.1), we will emphasize the
benefits of the Vershik property as compared to I-cosiness, by noticing that
some results proved with the help of V (X), would be more difficult or less
natural to establish via I(X). For example we give a short proof of Ver-
shik’s theorem on lacunary isomorphism, which asserts that, if a filtration
F = (Fn)n60 has a degenerate tail σ- field F−∞ =

⋂
n Fn and an essentially

1 This is Corollary 4.8 in [Lau10]. It involves Vershik’s first level criterion, a property
also due to Vershik, which is not stated in the present paper.

3



separable final σ- field F0, then, for some sub-sequence n 7→ φ(n), the ex-
tracted filtration (Fφ(n))n≤0

is Vershikian. We do not know such an easy
proof of this theorem using I(X) instead of V (X).

2 Preliminary notions

We first give as preliminaries the main notations and conventions of this pa-
per. Next we introduce the notion of extension of a filtration. Finally we
give some notions and elementary lemmas borrowed from [Lau10]: we define
the property of local separability for a filtration and give its useful character-
ization in terms of a parameterization for this filtration, and we define the
I-cosiness criterion as a particular self-joining criterion. There are two other
self-joining criteria in [Lau10], namely Rosenblatt’s self-joining criterion and
Vershik’s self-joining criterion. Other ones are defined in [ES01].

Main notations and conventions

By a probability space, we always mean a triple (Ω,A,P) where the σ- field
A is P-complete. By a σ- field C ⊂ A we always mean an (A,P)-complete
σ- field. By a random variable on (Ω,A,P), we mean the P-equivalence class
of some measurable map from Ω to a separable metric space. The Borel
σ- field on a separable metric space E is denoted by BE . A σ- field C is
essentially separable if it is generated by a random variable; equivalently, C
is countably generated up to negligible sets. By convention, the σ- field gen-
erated by an empty family of random variables is the trivial σ- field {∅, Ω}
up to negligible sets. When X is a random variable taking values in a Polish
space E, the existence of the conditional law of X given any σ- field C is guar-
anteed; we denote it by L[X |C]. The space E ′ of all probability measures
on E is itself Polish for the weak topology inherited from the Polish topol-
ogy of E (see [Bil]), and then L[X |C] is a C-measurable E ′-valued random
variable. We use the notation L0 (C; (E, ρ)) or, shorter L0(C; E), to denote
the metrizable topological space of all C-measurable random variables taking
their values in a separable metric space (E, ρ); the space L0(C; E) is endowed
with the topology of convergence in probability; when E = R we simply call
it L0(C). We use the same notations for L1 spaces; the space L1(C; E) is the
set of all C-measurable random variables X taking their values in E and such
that E [ρ(X, x)] is finite for some (⇔ for all) x ∈ E; the space L1(C; E) is
endowed with the metric (X, Y ) 7→ E [ρ(X, Y )]. We will implicitly use the
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fact that
⋃

m L1(Bm; E) is dense in L1 (
∨

m Bm; E) for any increasing sequence
(Bm)m∈N

of σ- fields (see lemma 2.12 in [Lau10]).

Filtrations in discrete, negative time — On an underlying probability space
(Ω,A,P), a filtration is an increasing sequence of sub - σ- fields of A indexed
by a time-axis. Most filtrations encountered in this paper are indexed by
the time axis −N = {. . . , −2, −1, 0}. If the time axis of a filtration F is not
specified, it will be understood that F = (Fn)n60 is a filtration in discrete,
negative time. We say that a filtration F is essentially separable if the final
σ- field F0 (or equivalently, each σ- field Fn) is essentially separable. We say
that a filtration F is Kolmogorovian if the tail σ- field F−∞ :=

⋂
n60 Fn equals

the trivial σ- field {∅, Ω} up to negligible sets. A filtration F is included in a
filtration G, and we write F ⊂ G, if Fn ⊂ Gn for each n 6 0. The supremum
F ∨ G of two filtrations F and G is the smallest filtration containing both F

and G; it is given by (F ∨ G)n = Fn ∨ Gn.

Isomorphic σ- fields and filtrations — An embedding Ψ from a probabil-
ity space (Ω,A,P) into a probability space (Ω′,A′,P′) is a (necessarily in-
jective) map from the quotient σ- field A/P to the quotient σ- field A′/P′

that preserves the σ- field structure and the probabilities. We write shortly
Ψ: A → A′. If in addition Ψ is onto then it is called an isomorphism. Up
to isomorphism, an essentially separable σ- field is characterized by the de-
scending sequence (possibly empty, finite, or denumerable) of the masses of
its atoms. An embedding Ψ extends uniquely to random variables taking
their values in a Polish space E, and thus defines a map from L0(A; E) to
L0(A′; E) preserving the law of random variables. Given a random variable
X ∈ L0(A; E) we call Ψ(X) the image of X under this map, and we call it
the copy of X. One has Ψ (f(X)) = f (Ψ(X)) for any measurable function
f from a Polish space to another one. Details are provided in Annex A of
[Lau10]. We will use the following lemmas and propositions from this Annex.

Lemma 2.1. Let (Ω,B,P) and (Ω′,A′,P′) be two probability spaces and
Ψ: B → A′ an embedding. Let E be a Polish space, X ∈ L0(B; E) and
C ⊂ B be a σ- field. Then Ψ (L[X |C]) = L [Ψ(X) | Ψ(C)].

Proposition 2.2. Let (Ω,B,P) be a probability space and C1, C2 two sub - σ- fields
of B. Let (Ω′,A′,P′) be a probability space, and Ψ1 : C1 → A′, Ψ2 : C2 → A′

two embeddings. There exists an isomorphism Ψ: C1 ∨C2 → Ψ1(C1)∨Ψ2(C2)
which simultaneously extends Ψ1 and Ψ2 if and only if one has Ψ1

(
L[C2 |C1]

)
=

L
[
Ψ2(C2) | Ψ1(C1)

]
for every C2-measurable random variable C2.
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Proposition 2.3. Let (Ω,B,P) be a probability space, C ⊂ B a σ- field, and
V a B-measurable random variable taking values in some Polish space E.
Let (Ω′,A′,P′) be a probability space, Ψ0 : C → A′ an embedding, and V ′

a random variable taking values in E. Then there exists an isomorphism
Ψ: C ∨ σ(V ) −→ Ψ0(C) ∨ σ(V ′) extending Ψ0 and sending V to V ′ if and
only if one has Ψ0 (L[V |C]) = L [V ′ | Ψ0(C)].

Lemma 2.4. On a probability space (Ω,C,P), let µ be a random probability
on a Polish space E. We define the probability P̂ := P⊗ µ on the measurable
space (Ω̂, B̂) := (Ω × E,C ⊗ BE) by

P̂[B̂] = E

[∫
1lB̂(·, t) dµ(t)

]
.

Then the identification with the first factor ι : C → B̂ is an embedding from
(Ω,C,P) into (Ω̂, B̂, P̂), and we have ι(µ) = L[V̂ | Ĉ] where Ĉ = ι(C) and V̂
is the random variable defined by V̂ (ω, t) = t.

The definition of isomorphic σ- fields extends naturally to filtrations as fol-
lows. Two filtrations F = (Fn)n60 and F′ = (F′

n)n60, defined on possibly
different probability spaces, are said to be isomorphic if there is an isomor-
phism Ψ: F0 → F′

0 such that Ψ(Fn) = F′
n for every n 6 0. We shortly say

that Ψ: F → F′ is an isomorphism. We denote by Ψ(F) the filtration F′

and we call it the copy of the filtration F by the isomorphism Ψ. A typical
example of isomorphic filtrations F and F′ is when F and F′ are respectively
generated by two processes (Xn)n60 and (X ′

n)n60 having the same law.

Extension of a filtration

We say that a filtration F is immersed in a filtration G if F ⊂ G and if
every F-martingale is a G-martingale; the notation F

m
⊂ G means that F is

immersed in G. Usual characterizations of immersion are given in lemma 2.5.
These facts are elementary exercises given without proof. We also say that G
is an extension of F. More generally, an extension of F is a filtration G′ not
necessarily defined on the same probability space as F, such that F has an
isomorphic copy F′ immersed in G′. We also say that F is immersible in G′.
We say that two filtrations F′ and F′′ are jointly immersed if they are both
immersed in F′ ∨ F′′, or, equivalently, in some filtration.

Lemma 2.5. Let F and G be two filtrations on a probability space (Ω,A,P).
The following conditions are equivalent:

(i) F is immersed in G;
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(ii) F is included in G and for each n 6 0, the σ- fields F0 and Gn are
conditionally independent given Fn;

(iii) for every F0-measurable random variable Y taking its values in a Polish
space, one has L[Y |Gn] = L[Y |Fn] for each n 6 0;

(iv) for every random variable X ∈ L1(F0), one has E[X |Gn] = E[X |Fn]
for each n 6 0.

Note also that immersion of F in G implies Fn = F0 ∩ Gn for all n 6 0. The
three lemmas below are copied verbatim from [Lau10]. The third one is a
direct consequence of the first two ones.

Lemma 2.6. A filtration F is immersed in a filtration G if and only if F ⊂ G

and for every integer n < 0, the σ- fields Fn+1 and Gn are conditionally
independent given Fn.

Lemma 2.7. If B, C and D are three σ- fields such that B and C are con-
ditionally independent given D, then D ∨ B and C are also conditionally
independent given D.

Lemma 2.8. Let F = (Fn)n60 and G = (Gn)n60 be two filtrations such that
F ⊂ G. Let (Vn)n60 be a process such that Fn ⊂ Fn−1 ∨σ(Vn) for every n 6 0.
If Vn is conditionally independent of Gn−1 given Fn−1 for every n 6 0, then
F is immersed in G.

As a consequence of the lemma 2.8, a process (Vn)n60 is Markovian with
respect to a filtration G if and only if it is Markovian and its generated
filtration F is immersed in G.

Superinnovations and locally separable filtrations.

The standing assumption on filtrations considered in this paper is local
separability, defined below. It is clear from this definition that essentially
separable filtrations, that is, filtrations with an essentially separable final
σ- field, are always locally separable.

Definition 2.9. A filtration F = (Fn)n60 is locally separable if for each n 6 0,
there exists a random variable Vn such that Fn = Fn−1 ∨ σ(Vn).

A convenient tool for dealing with locally separable filtrations is the exis-
tence of a parameterization for such a filtration, stated in lemma 2.13 which
is borrowed from [Lau10].
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Definition 2.10. Let F = (Fn)n60 be a filtration and n0 < 0 an integer or
n0 = −∞. A superinnovation of F from n0 to 0 is a sequence of random variables
V = (Vn)n∈]n0,0]∩Z

such that for each n ∈]n0, 0]∩Z, the random variable Vn takes
its values in a Polish space, is independent of Fn−1 ∨ σ(Vm; n0 < m 6 n − 1),
and satisfies Fn ⊂ Fn−1 ∨ σ(Vn). We also say that V is a parameterization in
the case when each Vn is uniformly distributed on [0, 1]. We say more specifically
that V is a local superinnovation if n0 > −∞ and a global superinnovation if
n0 = −∞.

Lemma 2.11. Let F = (Fn)n60 be a filtration and V = (Vn)n∈]n0,0]∩Z
a

superinnovation of F where n0 < 0 is an integer or n0 = −∞. Let V =
(Vn)n60 be the filtration generated by V on the time-axis −N (in particular
Vn is degenerate for n 6 n0). Then F and V are jointly immersed (in F∨V).

Proof. This is an easy consequence of lemma 2.6 and lemma 2.7.

Definition 2.12. The filtration F∨V defined in the previous lemma is called the
extension of F with the superinnovation V , and is called a parametric extension

of F.

Note that, as F is immersed in its extension F ∨ V, any joining (to be
soon defined) of F ∨ V induces a joining of F. We shall see in section 9 that
conversely, in some cases, a joining of F can be extended to a joining of F∨V

(proposition 9.2).

Lemma 2.13. Let F = (Fn)n60 be a filtration. The following conditions are
equivalent:

(i) F is locally separable;

(ii) for each n 6 0, one has Fn ⊂ Fn−1 ∨ σ(Wn) for some random variable
Wn;

(iii) F admits a global parameterization, that is, there exists a global param-
eterization of a filtration isomorphic to F;

(iv) F admits a global superinnovation.

For a filtration F generated by a Markovian process (Xn)n60, it is pos-
sible to have, up to isomorphism, a parameterization (Un)n60 of F with the
additional property that σ(Xn) ⊂ σ(Xn−1, Un). This fact is a particular case
of lemma 2.15 below, borrowed from [Lau10].
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Definition 2.14. Let (Xn)n60 be a process on (Ω,A,P), and let φ : −N → −N

be a strictly increasing map with φ(0) = 0.

1. We say that φ is a sequence of memory-loss times of type I for (Xn)n60 if
Xn is conditionally independent of σ(Xm; m < n) given (Xφ(k−1), . . . , Xn−1)
for every k, n ∈ −N satisfying φ(k − 1) < n 6 φ(k).

2. Let F be the filtration generated by (Xn)n60. We say that φ is a sequence

of memory-loss times of type II for (Xn)n60 if there exist a probability space

(Ω,A,P), an embedding Ψ: F0 → A, and a parameterization (U ′
n)n60 of

the filtration F′ := Ψ(F) such that

Ψ (σ(Xn)) ⊂ Ψ
(
σ(Xφ(k−1))

)
∨ σ(U ′

φ(k−1)+1, . . . , U ′
n)

for every k, n ∈ −N satisfying φ(k − 1) < n 6 φ(k).

Obviously, a process is Markovian if and only if it admits the identity
map φ : − N → −N as a sequence of memory-loss times of type I.

Lemma 2.15. If φ is a sequence of memory-loss times of type I for (Xn)n60,
then φ is a sequence of memory-loss times of type II for (Xn)n60.

Joinings, self-joining criterion, I-cosiness

A joining of a filtration F is a pair (F′,F′′) of filtrations isomorphic to
F, defined on the same probability space and jointly immersed. (Recall that
joint immersion means that both F′ and F′′ are immersed in F′ ∨ F′′, or,
equivalently, in some filtration.) For example, (F′,F′′) is a joining of F when
F′ and F′′ are two independent filtrations both isomorphic to F.

Thus, rigorously, a joining is a pair (Ψ′(F), Ψ′′(F)) given by a probability
space (Ω,A,P) and two embeddings Ψ′ : F0 → A and Ψ′′ : F0 → A with the
additional property of joint immersion. Given a filtration E immersed in F,
a joining (F′,F′′) of F induces a joining (E′,E′′) of E.

Below we define the notion of self-joining criterion for a filtration. This
notion generalizes an idea due to Tsirelson in the framework of continuous
time (cosiness, introduced in [Tsi97]); it does not appear elsewhere as such
in the literature, but it includes several known criteria. The main one is
the I-cosiness criterion. Our motivation to define the general notion of a
self-joining criterion is that many elementary properties of I-cosiness are ac-
tually true for any self-joining criterion. Two other self-joining criteria are
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considered in [Lau10], namely Rosenblatt’s self-joining criterion and Ver-
shik’s self-joining criterion. Contrary to the I-cosiness self-joining criterion,
these ones are not hereditary according to definition 2.17. Some hereditary
self-joining criteria are defined in [ES01] in addition to I-cosiness.

Definition 2.16. Let F = (Fn)n60 be a filtration on a probability space
(Ω,A,P). Given a property (S) on the collection of all joinings (F′,F′′) of
F, we define the corresponding self-joining criterion for F as follows.

1. Let (E, ρ) be a Polish metric space and X ∈ L1(F0; E). The self-joining
criterion holds for X (with respect to F) if for each real number δ > 0,
there exist two filtrations F′ and F′′ defined on a probability space (Ω,A,P)
such that:

(i) (F′,F′′) is a joining of F satisfying property (S) (this will be denoted
by S(F′,F′′));

(ii) one has E [ρ(X ′, X ′′)] < δ, where X ′ and X ′′ are the respective
copies of X in F′ and in F′′.

2. We say that a σ- field E0 ⊂ F0 satisfies this self-joining-criterion (with
respect to F) if every random variable X ∈ L1(E0) satisfies this self-
joining-criterion with respect to F.

3. We say that the filtration F satisfies this self-joining-criterion if the final
σ- field F0 satisfies this self-joining-criterion with respect to F.

Definition 2.17. Let (S) be a property on the collection of joinings of filtrations
(thus (S) defines a self-joining criterion for any filtration). We say that (S) defines

a hereditary self-joining criterion if for any filtrations E and F such that E
m
⊂ F,

the implication S(F′,F′′) =⇒ S(E′,E′′) holds for any joining (F′,F′′) of F.

Definition 2.18. The I-cosiness criterion is the hereditary self-joining criterion
defined by

S(F′,F′′) = “F′ and F
′′ are independent in small time” ,

in the sense that the σ- fields F′
n0

and F′′
n0

are independent for some integer
n0 6 0. We also say that the joining (F′,F′′) is independent up to n0.

A random variable, or a σ- field, or a filtration which satisfies this criterion
will be called I-cosy.
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The following lemma is obvious from the definition of a hereditary self-
joining criterion. Corollary 8.4 asserts that the converse (of the first asser-
tion) of this lemma holds for I-cosiness under the hypothesis of local sepa-
rability of the filtrations. In fact we shall see that the similar property and
its converse are obviously true for the Vershik property (lemma 4.3), and
we shall see that the Vershik property is equivalent to I-cosiness for locally
separable filtrations (assertion (1.1) and theorem 8.2).

Lemma 2.19. Let E
m
⊂ F. Any E0-measurable random variable satisfying

a hereditary self-joining criterion with respect to F satisfies this self-joining
criterion with respect to E too. Consequently E satisfies this self-joining cri-
terion whenever F satisfies it.

The following lemma is proved in [Lau10] in the particular case of I-
cosiness, but its proof is actually valid for any self-joining criterion.

Lemma 2.20. A random variable satisfies a self-joining criterion if and only
if the σ- field σ(X) satisfies this self-joining criterion. Consequently, for the
filtration F to satisfy a self-joining criterion, it suffices that there exists a
random variable X that generates F0 and satisfies this self-joining criterion.

We will also use the following lemma which easily stems from lemma 2.20.

Lemma 2.21. Let F = (Fn)n60 be a filtration and consider a self-joining
criterion for F. Let E0 ⊂ F0 be a σ- field. Then E0 satisfies the self-joining
criterion if and only if each random variable X ∈ L1 (E0; [0, 1]) satisfies the
self-joining criterion.

3 Vershik’s progressive predictions

The Vershik property of a filtration F = (Fn)n60 involves Vershik’s progres-
sive predictions πnX which we introduce here. They are equivalently termed
as universal projectors in [Ver70] and [Ver94]. Given a random variable X
measurable with respect to the final σ- field F0, the n-th progressive predic-
tion πnX of X is our “best knowledge” about X at time n. We shall see
that the process (πnX)n60 of progressive predictions generates the smallest
filtration immersed in F and making X measurable, in the sense that X is
measurable with respect to the final σ- field (lemma 3.7).

Let F = (Fn)n60 be a filtration and X ∈ L0(F0; E) where E is a Polish
space. The existence of the conditional law L[X |F−1] is guaranteed by the
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Polish assumption, and L[X |F−1] is then a random variable in the space
E ′ of probability measures on E, which is itself Polish when endowed with
the weak topology on E ′. So it is possible to define the conditional law
L [L[X |F−1] |F−2] of the conditional law L[X |F−1] given F−2, which is a
random variable in the Polish space (E ′)′ of all probability measures on E ′.
Following Vershik ([Ver70, Ver71, Ver94]), the progressive predictions πnX
are recursively defined by iterating this procedure: we put π0X = X, an
πn−1X = L[πnX |Fn−1]; thus, the n-th progressive prediction πnX of X with
respect to F is a random variable taking its values in the Polish space En,
which is recursively defined by E0 = E and En−1 = (En)′, where E ′ denotes
the space of probability measures on E. We will sometimes denote the n-
th progressive prediction πnX by πF

nX when the filtration F needs to be
specified.

Below we list some elementary lemmas about the progressive predictions
πnX. In lemmas 3.1 to 3.8, we fix a Polish space E, a filtration F = (Fn)n60

on a probability space (Ω,A,P), and a random variable X ∈ L0(F0; E).

Lemma 3.1. Let (Ω′,A′,P′) be a probability space and Ψ: F0 → A′ be an
embedding. Then Ψ(πF

nX) = πΨ(F)
n Ψ(X).

Proof. Straightforward from lemma 2.1.

The proof of the following lemma is easy and left to the reader.

Lemma 3.2. Let f : E → R be a measurable function such that f(X) ∈ L1.
Then for each n 6 0, one has E [f(X) |Fn] = (πnX)(fn) where the functions
fn : En → R are recursively defined by f 0 = f and fn−1(µ) = µ(fn).

Lemma 3.3. For each n 6 0, the σ- field generated by the n-th progres-
sive prediction πnX contains the σ- field generated by the conditional law
L[X |Fn]; this inclusion is strict in general.

Proof. Lemma 3.2 shows that E [f(X) |Fn] is σ(πnX)-measurable for any
suitable function f . It follows that L[X |Fn] is σ(πnX)-measurable. An
example of strict inclusion is provided in [ES01].

The difference between the σ- field generated by πnX and the σ- field gen-
erated by L[X |Fn] is highlighted by noting that each random variable of the
form E [g (E [f(X) |F−1]) |F−2] for suitable functions f and g, is measurable
with respect to the σ- field generated by π−2X, whereas it is not measurable
with respect to the σ- field generated by L[X |F−2] in general. Verification
of the following lemma is left to the reader.
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Lemma 3.4. Let F be a Polish space and g : E → F a measurable function.
Then πng(X) = g(n)(πnX) where the functions g(n) : En → Fn are recursively
defined by g(0) = g and for each probability µ ∈ En = (En+1)′, the probability
g(n)(µ) ∈ Fn = (Fn+1)′ is defined as the image of µ under the mapping g(n+1).

Lemma 3.5. Let E be a filtration immersed in F. If X is measurable with
respect to E0, then πF

nX = πE
nX for every n 6 0.

Proof. This is a straightforward consequence of the third characterization of
immersion in lemma 2.5.

The filtration generated by the process (πnX)n60 will now be studied.
Thanks to the following lemma, we first notice that this filtration depends
only on the σ- field generated by X.

Lemma 3.6. If two random variables X and Y with values in Polish spaces
generate the same σ- field, the processes (πnX)n60 and (πnY )n60 generate the
same filtration.

Proof. Obviously, it suffices to show that L[X |F−1] and L[Y |F−1] generate
the same σ- field. Thanks to the Doob property of Polish spaces, one has
X = h(Y ) for some measurable function h. Therefore, σ (L[X |F−1]) ⊂
σ (L[Y |F−1]) owing to the fact that E [f(X) |F−1] = E [f ◦ h(Y ) |F−1] for
all suitable functions f . The reverse inclusion follows by symmetry.

Lemma 3.7 below says that the filtration generated by the process (πnX)n60

is the smallest filtration E = (En)n60 immersed in F and such that X is
E0-measurable.

Lemma 3.7. The filtration generated by the process (πnX)n60 is immersed in
any filtration E = (En)n60 immersed in F and such that X is E0-measurable.
In particular it is immersed in F.

Proof. The filtration generated by the process (πnX)n60 is immersed in F as
a straightforward consequence of lemma 2.8. If follows from lemma 3.5 that
it is also immersed in E if E is immersed in F and if X is E0-measurable.

Lemma 3.8. If X generates the σ- field F0, the process (πnX)n60 generates
the filtration F.

Proof. It suffices to show that π−1X generates F−1. Any random variable S ∈
L1(F0) can be written as S = f(X) where f is Borelian. Thus E[S |F−1] =
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(π−1X)(f). In particular S = (π−1X)(f) if S is F−1-measurable, which shows
that π−1X generates F−1.

Lemma 3.9. The filtration F generated by a martingale (Mn)n60 is also

generated by the process (πF
nM0)n60.

Proof. Obviously, the filtration generated by (πnM0)n60 is included in F.
The reverse inclusion holds as we have Mn = E[M0 |Fn] and thus σ(Mn) ⊂
σ(πnM0) in view of lemma 3.3.

Iterated Kantorovich-Rubinstein metrics

Given a filtration F = (Fn)n60 and an F0-measurable random variable
X with values in a compact metric space K, we will define the n-th iterated
Kantorovich-Rubinstein metric on the state space Kn of the n-th progres-
sive prediction πnX of X. The sequence of iterated Kantorovich-Rubinstein
metrics has been introduced by Vershik to state his standardness criterion.
Before turning to the Vershik property, we will give some applications of this
sequence of metrics in connection with self-joining criteria (definition 2.16).

When (K, ρ) is a compact metric space, the weak topology on the set
K ′ of probability measures on K is itself compact and is induced by the
Kantorovich-Rubinstein metric ρ′ on K ′ (see [Dud], [Ver04]). The Kantorovich-
Rubinstein distance ρ′(µ, ν) between two probability measures µ and ν on K
is defined as

ρ′(µ, ν) = inf
Λ

∫∫
ρ(x, y) dΛ(x, y),

where the infimum is taken over all probability measures Λ on K × K whose
first and second marginal measures are µ and ν respectively. Hence, we can
define the Kantorovich-Rubinstein metric (ρ′)′ associated to ρ′ which is in
turn a metric on the space (K ′)′ of probability measures on K ′. And so
on: the construction can be iterated, we end up with a sequence of com-
pact metric spaces (Kn, ρn)n60 recursively defined by (K0, ρ0) = (K, ρ) and
(Kn−1, ρn−1) = (K ′

n, ρ′
n).

Note that the Kantorovich-Rubinstein distance between two degenerate
measures µ = δx and ν = δy is obviously given by

ρ′(δx, δy) = ρ(x, y). (3.1)

In lemma 3.10, lemma 3.11, and proposition 3.12, we shall consider a fil-
tration F = (Fn)n60 and a compact metric space (K, ρ). Recall that the n-th
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progressive prediction πnX of a random variable X ∈ L0(F0; K) = L1(F0; K)
is a random variable taking its values in the compact metric space (Kn, ρn).
The following lemma easily follows from the definition of the iterated metrics
ρn; its proof is left to the reader.

Lemma 3.10. Let X, Y ∈ L1 (F0; K). Then the process (ρn(πnX, πnY ))n60

is a submartingale with respect to F. In particular E [ρn(πnX, πnY )] decreases
as n decreases.

This lemma admits the following consequence. Recall that a joining of F
is a pair of jointly immersed filtrations isomorphic to F.

Lemma 3.11. Let X ∈ L1(F0; K). Let (F′,F′′) be a joining of F on (Ω,A,P);
call X ′ and X ′′ the respective copies of X by the embeddings defining the join-
ing. Then the process (ρn(πnX ′, πnX ′′))n60 is a submartingale with respect

to F′ ∨ F′′. Consequently, E [ρn(πnX ′, πnX ′′)] decreases as n decreases.

In the context of this lemma, remark that, thanks to lemma 3.1, πnX ′

denotes the n-th progressive prediction πF′

n X ′ of the copy X ′ of X as well as
the copy of the n-th progressive prediction πF

nX of X.

Proof of lemma 3.11. As (F′,F′′) is a joining of F, we know from lemma 3.5
that πF′

n X ′ = πF′∨F′′

n X ′ and πF′′

n X ′′ = πF′∨F′′

n X ′′, so the result follows from
lemma 3.10.

Proposition 3.12. Consider a self-joining criterion for F (definition 2.16).
If X ∈ L1(F0; K) satisfies this self-joining criterion, then the σ- field gen-
erated by (πnX)n60 satisfies this self-joining criterion. If the self-joining
criterion is hereditary (definition 2.17), the filtration generated by (πnX)n60

satisfies this self-joining criterion too.

Proof. By lemma 2.20, this amounts to saying that the random variable R :=
(. . . , π−1X, π0X) satisfies this self-joining criterion, where R is considered as
a random variable taking its values in the Polish space

∏
n60 En equipped with

the distance d(e′, e′′) =
∑

n60 2n−1ρn(e′
n, e′′

n) for e′ = (. . . , e′
−1, e′

0) ∈
∏

n60 En

and e′′ = (. . . , e′′
−1, e′′

0) ∈
∏

n60 En. This follows without difficulty from lemma
3.11. The last assertion is obvious from the definition of a hereditary self-
joining criterion and from the fact that the filtration generated by (πnX)n60

is immersed in F (lemma 3.7).

Corollary 3.13. The filtration generated by a martingale (Mn)n60 satisfies
a self-joining criterion if and only if the random variable M0 satisfies this
self-joining criterion.
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Proof. This stems from proposition 3.12 and lemma 3.9.

4 The Vershik property

The Vershik property is defined with the help of the notion of dispersion of a
random variable defined as follows. Given a probability space (Ω,A,P) and
X ∈ L1(A; E) where (E, ρ) is a separable metric space, and calling µ the law
of X, the dispersion of X is the positive number

disp X =
∫∫

ρ(x1, x2)(µ ⊗ µ)(dx1, dx2) ,

which depends only upon the law µ. Equivalently,

disp X = E [ρ(X ′, X ′′)] ,

where X ′ and X ′′ are two independent copies of X defined on some probabil-
ity space (Ω,A,P). Given two random variables X, Y ∈ L1(A; E), it is easy
to establish the inequality

|disp X − disp Y | 6 2E [ρ(X, Y )] , (4.1)

thereby showing that disp is a continuous function on L1(A; E).
Hereafter, given a filtration F = (Fn)n60, a compact metric space (K, ρ)

and a random variable X ∈ L1(F0; K), it is understood that we consider the
n-th iterated Kantorovich-Rubinstein distance ρn as the ambient metric on
the compact space Kn in which the n-th progressive prediction πnX of X
takes its values.

Definition 4.1. Let F = (Fn)n60 be a filtration on a probability space (Ω,A,P).

1. Let K be a compact metric space and X ∈ L1 (F0; K). We say that the
random variable X is Vershikian (with respect to F) if disp(πnX) −→ 0
as n goes to −∞.

2. We say that a σ- field E0 ⊂ F0 is Vershikian (with respect to F) if each
random variable X ∈ L1 (E0; [0, 1]) is Vershikian with respect to F.

3. We say that the filtration F is Vershikian if the σ- field F0 is Vershikian
with respect to F.

16



When there is no ambiguity, we will omit the specification with respect
to F in this definition. In view of lemma 3.1, it is clear that the Vershik
property is preserved by isomorphism. One of our main goals is to prove the
converse of the following proposition.

Proposition 4.2. Let F be a filtration and K a compact metric space. Every
I-cosy random variable X ∈ L1(F0; K) is Vershikian. Consequently, every
I-cosy filtration is Vershikian.

Proof. This easily follows from the definition of I-cosiness, from lemma 3.11,
and, with the notations of this lemma, from the fact that E [ρn(πnX ′, πnX ′′)] =
disp πnX if πnX ′ and πnX ′′ are two independent copies of πnX. The conse-
quence stems from lemma 2.21.

The proof of the converse of proposition 4.2 is the object of section 8. The
rest of the current section is devoted to elementary properties of the Vershik
property.

Lemma 4.3. Let F be a filtration, E a filtration immersed in F, and K a
compact metric space. A random variable X ∈ L1 (E0; K) is Vershikian with
respect to F if and only it is Vershikian with respect to E. Consequently, if
the filtration F is Vershikian, then so does also E.

Proof. This follows from πF
nX = πE

nX (lemma 3.5).

Whereas each point of this lemma is obvious, on the contrary the similar
statement with I-cosiness is not obvious. However we shall see that it holds
for locally separable filtrations as a consequence of the converse of proposition
4.2; but, to our knowledge, this result cannot be directly proved from the
I-cosiness criterion.

We are now going to show that a random variable X is Vershikian if
and only if the σ- field σ(X) is Vershikian (proposition 4.7). We shall see
a stronger result in corollary 6.5, which asserts that X is Vershikian with
respect to a filtration F if and only if the filtration FX generated by (πnX)n60

is Vershikian; in view of lemma 4.3, this amounts to say that the σ- field
σ(πnX; n 6 0) is Vershikian with respect to F, since FX is immersed in F

(lemma 3.7).

Lemma 4.4. Let F be a filtration and K be a compact metric space. The
set of Vershikian random variables X ∈ L1(F0; K) is a closed subset of
L1(F0; K).
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Proof. This results from inequality (4.1) and from lemma 3.10.

Lemma 4.5. Let (Ω,A,P) be a probability space and X ∈ L1(A; E) where
(E, ρ) is a separable metric space. The set of all random variables of the form

f(X) where f : E → R is Lipschitz function, is a dense subset of L1
(
σ(X)

)
.

Proof. See lemma 2.15 in [Lau10].

Verification of the following lemma is left to the reader. It easily results
from the definition of Kantorovich-Rubinstein metrics.

Lemma 4.6. Let E and F be two compact metric spaces and g : E → F be c-
Lipschitz. Let g(n) : En → Fn be the functions such that πng(X) = g(n)(πnX)
defined in lemma 3.4. For each n 6 0, the function g(n) is c-Lipschitz for the
iterated Kantorovich-Rubinstein metrics on En and Fn.

Proposition 4.7. Let F be a filtration and K a compact metric space. A
random variable X ∈ L1 (F0; K) is Vershikian if and only if the σ- field σ(X)
is Vershikian. Consequently, for the filtration F to be Vershikian, it suffices
that there exists a Vershikian random variable X that generates F0.

Proof. By lemmas 4.4 and 4.5, it suffices to show that the Vershik property
is satisfied for every random variable of the form g(X) where g : K → R is
c-Lipschitz. To do so, it suffices to notice that, thanks to lemma 4.6, one has
disp πng(X) 6 c disp πnX for every n 6 0.

Corollary 4.8. Let F be a filtration, E0 ⊂ F0 a σ- field and K a compact
metric space. If E0 is Vershikian, every random variable X ∈ L1 (E0; K) is
Vershikian.

Proof. Assume that E0 is Vershikian. It is clear that so is also any sub - σ- field
of E0. Hence, if X ∈ L1 (E0; K), the σ- field σ(X) is Vershikian, and X is
Vershikian by proposition 4.7.

The following results will be used in section 6. Proposition 4.11 says that
the Vershik property is asymptotic; it shall be proved with the help of the
two following lemmas, in the proofs and the statements of which we use the
following notations and relations. Given a filtration F = (Fn)n60 and an
integer N ∈ −N, we denote by FN ] the truncated filtration (FN+n)n60. We
will use the trivial relation

πF
N+nX = πFN]

n πF
N X, (4.2)
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for every F0-measurable random variable X taking its values in a compact
metric space, wherefrom we see that X is Vershikian with respect to F if and
only if πF

N X is Vershikian with respect to FN ]. In addition, we will use the
canonical isometries

in : (K, ρ) → (Kn, ρn), n ∈ −N,

recursively defined by i0(x) = x and in−1(x) = δin(x) for every compact metric
space K. Each in is an isometry owing to equality (3.1). One obviously has
πnX = in(X) whenever X is Fn-measurable. In lemma 4.9 and lemma 4.10,
we consider a filtration F = (Fn)n60 and a random variable X ∈ L1(F0; K)
for some compact metric space K.

Lemma 4.9. Let N ∈ −N. If X is measurable with respect to FN , then
the Vershik property of X holds with respect to F if and only if it holds with
respect to FN ].

Proof. Let N ∈ −N. Thanks to (4.2), the Vershik property for X with
respect to F is equivalent to the Vershik property of πF

N X with respect to
FN ]. But πF

NX = iN (X) in the case when X is measurable with respect
to FN , where iN : K → KN is the canonical isometry. Thus the Vershik
property of X with respect to F is finally equivalent to the Vershik property
of X with respect to FN ].

Lemma 4.10. The following propositions are equivalent:

(i) X is Vershikian;

(ii) for every n ∈ −N, πnX is Vershikian;

(iii) there exists n ∈ −N such that πnX is Vershikian.

Proof. Let N ∈ −N. Thanks to (4.2), the Vershik property of X with respect
to F is equivalent to the Vershik property of πF

NX with respect to FN ].
Thanks to lemma 4.9, this is equivalent to the Vershik property of πF

NX with
respect to F.

Proposition 4.11. Let F = (Fn)n60 be a filtration. The following conditions
are equivalent:

(i) F is Vershikian;
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(ii) for every N ∈ −N, the truncated filtration (FN+n)n60 is Vershikian;

(iii) there exists N ∈ −N such that the truncated filtration (FN+n)n60 is
Vershikian.

Note that no assumption is made on the filtration F of this proposition,
whereas the analogous proposition for I-cosiness given in [Lau10], needs local
separability.

Proof of proposition 4.11. (ii) =⇒ (iii) is obvious. (i) =⇒ (ii) follows
from lemma 4.9. Now we prove that (iii) =⇒ (i). Let X ∈ L1 (F0; [0, 1]).
If FN ] is Vershikian, then, thanks to corollary 4.8, the random variable πF

N X
is Vershikian with respect to FN ]. Owing to lemma 4.9, this amounts to say
that πF

N X is Vershikian with respect to F, and, owing to lemma 4.10, this
amounts to say that X is Vershikian with respect to F.

The rest of this section is devoted to proving the following remark.

Remark 4.12. If X and Y are two Vershikian random variables, it is not true
in general that the pair (X, Y ) is a Vershikian random variable.

This remark will be proved by using three elementary facts. The first two
ones are the contents of the following lemmas.

Lemma 4.13. Any Vershikian filtration is Kolmogorovian.

Proof. Let S ∈ L1 (F−∞; [0, 1]). One has πnS = in(S) for every n 6 0 where
the in are the canonical isometries introduced above lemma 4.9. Hence one
has disp(πnS) = disp(S) for every n 6 0. Consequently one has disp(S) = 0
under the assumption that F is Vershikian, which means that S is constant.

As in [Lau10], we say that a filtration is of product type if it is generated
by a sequence of independent random variables.

Lemma 4.14. Any filtration of product type is Vershikian.

Proof. On (Ω,A,P), let (Vn)n60 be a sequence of independent random vari-
ables and F = (Fn)n60 the filtration it generates. In order for F to be Ver-
shikian, it suffices, in view of lemma 4.4, that the σ- fields σ(Vn0+1, . . . , V0)
are Vershikian for all integers n0 < 0. For a given integer n0 < 0, we intro-
duce the filtration E = (En)n60 generated by (Vn0+1, . . . , V0) on the time-axis
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−N, defined by

En =





{∅, Ω} if n 6 n0,

σ(Vn0+1, . . . , Vn) if n0 < n 6 0.

By lemma 2.8, E is immersed in F. Therefore, for each random variable X ∈
L1(E0; [0, 1]), one has πF

nX = πE
nX for every n 6 0 (lemma 3.5). Obviously,

πE
nX is a degenerate (deterministic) random variable for n 6 n0, hence we

finally have disp(πnX) = 0 for n 6 n0.

The third elementary fact we use to prove remark 4.12 is theorem 3.9
of [Lau10], derived from [Par89], asserting in particular that any essentially
separable filtration is immersible in the supremum of two jointly immersed
filtrations of product type.

Proof of remark 4.12. Suppose that F is an essentially separable filtration
which is not Kolmogorovian. Theorem 3.9 of [Lau10] shows that F is im-
mersible in a filtration of the form G ∨ H where G and H are jointly im-
mersed filtrations of product type. In particular G∨H is not Kolmogorovian
either, and hence not Vershikian (lemma 4.13). Let X ∈ L1 (G0; [0, 1]) and
Y ∈ L1 (H0; [0, 1]) be two random variables respectively generating G0 and
H0. By lemma 4.14, X and Y are Vershikian with respect to G and H re-
spectively. As G and H are jointly immersed, X and Y are also Vershikian
with respect to G∨H due to lemma 4.3. However the pair (X, Y ) cannot be
Vershikian, because it generates the σ- field G0 ∨ H0 and thus the filtration
G ∨ H would be Vershikian by proposition 4.7.

Before turning to the next section, we make a remark (which can be
skipped) on the preceding proof. Observe that, with the notations of the
above proof, the filtrations G and H are respectively generated by the pro-
cesses (πnX)n60 and (πnY )n60 in view of lemma 3.8. In a general context,
given a filtration F and two F0-measurable random variables X and Y , the
filtrations EX and EY generated by (πnX)n60 and (πnY )n60 are always jointly
immersed (lemma 3.5). We shall see in corollary 6.5 that the Vershik property
for a random variable is equivalent to the Vershik property for the filtration
generated by the progressive predictions of this random variable. However,
contrary to the case in the above proof, it is not clear that in general, the Ver-
shik property for (X, Y ) is related to the filtration EX ∨EY , which is in general
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strictly smaller than the filtration E(X,Y ) generated by (πn(X, Y ))n60. To con-
struct an example of such a strict inclusion, consider a σ- field F−1 and two
random variables X and Y such that the joint conditional law L[X, Y |F−1]
generates a σ- field strictly bigger than the one generated by the marginal
conditional laws L[X |F−1] and L[Y |F−1], define F0 = F−1 ∨ σ(X, Y ) and
set Fn to be the degenerate σ- field for every n 6 −2.

5 Vershik’s theorem on lacunary isomorphism

Vershik’s theorem on lacunary isomorphism is the content of theorem 5.2
below. Although all main ideas are already present in Vershik’s original proof
([Ver68, Ver94]), the one we give is more direct and less technical. (With the
terminologies of [ES01], which translates Vershik’s proof into probabilistic
language, or of [Lau10], the technical step we do not need is the extraction of
a filtration of product type from any essentially separable, Kolmogorovian,
and conditionally non-atomic filtration.)

Theorem 5.1. Let F = (Fn)n60 be a filtration and X ∈ L1(F0; K) where
K is a compact metric space. If the filtration generated by (πnX)n60 is Kol-
mogorovian, there exists a strictly increasing map φ : −N → −N such that
X is Vershikian with respect to the extracted filtration (Fφ(n))n60

.

Proof. Denote by E = (En)n60 the filtration generated by (πnX)n60. As E is
immersed in F, one has L[Y |Fn] = L[Y |En] for any E0-measurable random
variable Y valued in a compact metric space. So, under the assumption that
E is Kolmogorovian, by Lévy’s theorem on reverse martingale convergence
(see [Dud] or [Kall]), the conditional law L[Y |Fn] tends almost surely to a
constant and dispL[Y |Fn] tends to 0 when n → −∞. Therefore, for any
sequence (δn)n60 of positive numbers, it is possible to construct a strictly
increasing map φ : −N → −N such that disp γn 6 δn for every n 6 0 where
γn is recursively defined by γ0 = X and γn−1 = L[γn |Fφ(n−1)]. Thus γn

is the n-th progressive prediction πG
nX of X with respect to the filtration

G = (Gn)n60 defined by Gn = Fφ(n). By letting δn → 0, we see that X is
Vershikian with respect to G.

Theorem 5.2. Let F = (Fn)n60 be an essentially separable filtration. If F
is Kolmogorovian, there exists a strictly increasing map φ : −N → −N such
that the extracted filtration (Fφ(n))n60

is Vershikian.
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Proof. With the help of lemma 3.8 and proposition 4.7, this is deduced from
theorem 5.1 applied to a random variable X generating F0.

Remark 5.3. There is no difficulty in checking that I-cosiness, as well as stan-

dardness and weak standardness (see [Lau10]), of a filtration F = (Fn)n60 is
inherited to each extracted filtration (Fφ(n))n60

. However this fact is not so
obvious for the Vershik property.

6 Parametric extensions

The main results of this section involve parametric extensions (definition
2.12) in their statements or in their proof. We shall see (proposition 6.1)
that the Vershik property holds for any parametric extension of a filtration
as soon as it holds for this filtration (this justifies remark 3.26 in [Lau10]), and
we shall see (corollary 6.5) that the Vershik property of a random variable
X is equivalent to the Vershik property of the filtration (πnX)n60.

This section illustrates the benefits of the Vershik property as compared
to the equivalent I-cosiness property: whereas the results we give are rather
easily proved, we do not know such elementary proofs of the analogous results
for I-cosiness, derived from the equivalence between the Vershik property and
I-cosiness (assertion (1.1) and theorem 8.2).

Proposition 6.1. Let F = (Fn)n60 be a filtration and V = (Vn)n60 a global
superinnovation of F; call G the extension of F with V (definition 2.12).
Then F is Vershikian if and only if G is Vershikian.

Proof. We know that F is immersed in G (lemma 2.11), so the ‘if’ part fol-
lows from the Vershik property being hereditary (lemma 4.3). To show the
converse, assume that F is Vershikian. For each integer k < 0 call Gk the
extension of F with the local innovation V

k := (Vn)n∈]k,0]∩Z
. By proposition

4.11, each filtration Gk is Vershikian. Thanks to lemma 2.8, we can easily
see that all these filtrations are immersed in G. Consequently, by lemma 4.3,
every random variable X ∈ ∪kL1

(
Gk

0; [0, 1]
)

is Vershikian with respect to G.
Finally, G is Vershikian by lemma 4.4.

Lemma 6.2. Let F = (Fn)n60 be a filtration and V = (Vn)n60 a global su-
perinnovation of F; call G the extension of F with V . Let N 6 0 be an
integer and EN ⊂ FN a σ- field. The EN is Vershikian if and only if the
σ- field EN ∨ σ(Vn; N < n 6 0) is Vershikian with respect to G.
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We do not specify with respect to which filtration EN is Vershikian because
we implicitly use lemma 4.3 asserting that the Vershik property of EN is the
same when considered either with respect to F or with respect to G.

Proof of lemma 6.2. The ‘if’ part obviously follows from the Vershik prop-
erty being inherited by immersion (lemma 4.3). We now prove the converse.
Assume EN is Vershikian and let Y ∈ L1 (EN ∨ σ(Vn; N < n 6 0); [0, 1]). It is
easy to convince oneself that πG

NY is measurable with respect to EN . There-
fore, owing to corollary 4.8, πG

NY is Vershikian with respect to G, which
amounts to say that Y is Vershikian with respect to G by virtue of lemma
4.10.

Proposition 6.3. Let (Xn)n60 be a process and φ : −N → −N a sequence of
memory-loss times of type II (definition 2.14) for (Xn)n60. Then the filtration
F generated by (Xn)n60 is Vershikian if and only if each σ- field σ(Xφ(n)) is
Vershikian.

Note that, in the case when (Xn)n60 is a Markov process, every strictly
increasing map φ : − N → −N with φ(0) = 0 is a sequence of memory-loss
times of type I for (Xn)n60 (definition 2.14), and hence of type II in view of
lemma 2.15.

Proof of proposition 6.3. The ‘only if’ part is obvious. To show the converse,
we take, up to isomorphism, a parameterization U = (Un)n60 of F as in
definition 2.14.2, and we introduce the extension G of F with U . Since the
Vershik property is inherited by immersion (lemma 4.3), it suffices to show
that G is Vershikian assuming that each σ- field σ(Xφ(n)) is Vershikian. But
we have σ(Xφ(N)) ∨ σ

(
Un; φ(N) < n 6 0

)
ր G0 as N → −∞, hence, in order

for G to be Vershikian, owing to lemma 4.4, it is sufficient that each σ- field
σ(Xφ(N)) ∨ σ

(
Un; φ(N) < n 6 0

)
is Vershikian. This stems from lemma

6.2.

Below is a corollary of proposition 6.1 and proposition 6.3.

Corollary 6.4. Let (Xn)n60 be a process and φ : − N → −N a sequence of
memory-loss times of type II for (Xn)n60. Let F be the filtration generated
by (Xn)n60. Then the following assertions are equivalent:

(i) the extracted filtration (Fφ(n))n60
is Vershikian;

(ii) the filtration generated by the extracted process (Xφ(n))n60
is Vershikian;
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(iii) each σ- field σ(Xφ(n)) is Vershikian with respect to the filtration (Fφ(n))n60
.

Proof. We firstly show that (i) ⇐⇒ (ii). Under the assumption that φ is a se-
quence of memory-loss times of type II, it is clear that the process (Xφ(n))n60

is Markovian with respect to (Fφ(n))n60
, hence the filtration E = (En)n60

generated by (Xφ(n))n60
is immersed in (Fφ(n))n60

. Consequently, (i) =⇒ (ii)
follows from the Vershik property being inherited by immersion (lemma 4.3).
Now, let U = (Un)n60 be a parameterization of F as in definition 2.14.2 up
to isomorphism; define Vn = (Uφ(n−1)+1, . . . , Uφ(n)) for each n 6 0. Then
V := (Vn)n60 is a superinnovation of the filtration E as well as a superin-
novation of the filtration (Fφ(n))n60

, and these two filtrations have the same
extension G with V . Hence, proposition 6.1 shows that (ii) implies that G

is Vershikian, and hence (ii) =⇒ (i) follows from the Vershik property being
inherited by immersion (lemma 4.3).

Since the Vershik property of σ(Xφ(n)) is the same when considered either
with respect to (Fφ(n))n60

or with respect to E (lemma 4.3), then (ii) ⇐⇒ (iii)
stems from proposition 6.3, because the identity map of −N is a sequence of
memory-loss times of type II for the Markov process (Xφ(n))n60

.

Corollary 6.4 obviously does not remain true without the memory-loss
assumption. Indeed, consider a non-constant random variable Z and define
the process (Xn)n60 by X2n−1 = Z and X2n = 0 for every n 6 0. Then
the extracted filtration (F2n)n60 is not Kolmogorovian and therefore does
not satisfy the Vershik property in view of lemma 4.13, whereas the trivial
filtration generated by (X2n)n60 obviously satisfies the Vershik property.

Below is a corollary of proposition 6.3.

Corollary 6.5. A random variable X is Vershikian with respect to a filtra-
tion F if and only if the filtration FX generated by (πnX)n60 is Vershikian.

Proof. By lemma 4.10 and proposition 4.7, X is Vershikian if and only if
all the σ- fields σ(πnX) are Vershikian. We know that FX is immersed in F

(lemma 3.5), hence the Vershik property of σ(πnX) is the same when consid-
ered either with respect to F or with respect to FX (lemma 4.3). Since the
process (πnX)n60 obviously is Markovian, the corollary results from propo-
sition 6.3.

Example 6.6 (A fifth definition of the scale of an automorphism). The no-
tion of scale of an automorphism has been introduced by Vershik in [Ver73b].
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We have checked that the first definition of the scale given by Vershik can equiv-
alently be rephrased in terms of the Vershik property of the σ- field σ(Z0) with
respect to the filtration F generated by the process (Zn, ηn)n60 to be defined
below.

Let T be an automorphism of a Lebesgue probability space (E,B, ν). Let
(rn)n60 be a sequence consisting of integers rn > 2, called the splitting sequence,

and define the sequence (ℓn)n60 by ℓn =
∏0

k=n+1 rk. Let ξ0 be a random variable

whose law is ν and define the random variable ξk for each k > 0 by ξk = T k(ξ0).
Define the Markov process (Zn, ηn)n60 whose law is characterized by the

following two conditions:

⋄ for each n 6 0, Zn is distributed on Eℓn according to the law of (ξ0, . . . , ξℓn
),

and ηn is independent of Zn and has the uniform law on the set {1, . . . , rn};

⋄ ηn is independent of (Zn−1, ηn−1), and Zn = Zn−1(ηn) where we write
Zn−1 = (Zn−1(1), . . . , Zn−1(rn)) as an element of (Eℓn)rn .

The scale of T is a set of such sequences of integers (rn)n60. We have
checked that:

• the first definition given by Vershik is equivalent to say that (rn)n60 belongs

to the scale of T if and only if the σ- field σ(Z0) is Vershikian 2 with respect

to F.

• under the assumption that T is completely ergodic (i.e. all powers of T
are ergodic), the filtration F generated by (Zn, ηn)n60 is also generated by
the process of Vershik’s progressive predictions (πnZ0)n60 of Z0.

Hence, by virtue of corollary 6.5, (rn)n60 belongs to the scale of a completely

ergodic automorphism T if and only if F is Vershikian.
Of particular interest is the case of Bernoulli automorphisms. Let (A,A, µ)

be a Lebesgue probability space and T be the shift on AZ equipped with the
product measure of µ. Let c : AZ → A be the map that takes the 0-th compo-
nent. Letting Wn = c(Zn), it is easy to see that F is generated by the process

2 Actually we have checked, with the terminology of [Lau10], that the first definition is
equivalent to say that σ(Z0) satisfies Vershik’s self-joining criterion (or the “combinatorial
Vershik’s standardness criterion” for {rn}-adic filtrations; see [VG07]). Since F is homo-

geneous, this is equivalent to the Vershik property of σ(Z0) by the results in [Lau10] and
because of the equivalence between the Vershik property and I-cosiness (assertion (1.1)
and theorem 8.2).
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(Wn, ηn)n60. With the terminology of [Lau10], this process is the split-word

process on the alphabet (A,A, µ), and F is an homogeneous filtration, hence
we know from the pioneering works of Vershik that the Vershik property of F is
equivalent to productness of F (this can be deduced from corollary 4.5 in [Lau10]
and from the equivalence between the Vershik property and I-cosiness). There-
fore, theorem 2.39 in [Lau10] (productness of the split-word filtrations) shows
that the scale of Bernoulli automorphisms consists of those sequences (rn)n60

for which the condition
0∑

k=−∞

log(rk)
ℓk

< ∞ (∆)

is not satisfied. It was already asserted in [Ver73b] that ¬(∆) is a necessary
condition for (rn)n60 to belong to the scale of Bernoulli automorphisms. The
converse stated in theorem 2.39 in [Lau10] is mainly derived from Ceillier’s result
in [Ceil09] (the particular case when A is finite and µ is the uniform probability
measure).

Corollary 6.7. The filtration generated by a martingale (Mn)n60 is Ver-
shikian if and only if the σ- field σ(M0) is Vershikian.

Proof. The σ- field σ(M0) is always generated by a bounded random variable.
Thus, with the help of proposition 4.7, the result stems from the previous
corollary and lemma 3.9.

7 The key lemma

Lemma 7.2 below will be used in section 8 to prove the equivalence between
the Vershik property and I-cosiness (theorem 8.2), and in section 9 to prove
the “coparameterized representation” of joinings (proposition 9.2). Roughly
speaking, given two jointly immersed copies (F′

k)k6n and (F′′
k)k6n of a filtra-

tion F up to some time n, and given two Fn+1-measurable random variables
Xn+1, Yn+1, this lemma will allow us to extend the joining until time n + 1
while imposing a joint conditional distribution L

[
(X ′

n+1, Y ′′
n+1) |F′

n ∨ F′′
n

]
of

the respective copies X ′
n+1 and Y ′′

n+1 of Xn+1 and Yn+1.

Lemma 7.1. Let (Ω,A,P) be a probability space. Let B0, B, C and D be
four sub - σ- fields of A, with B0 ⊂ B. If D is conditionally independent of
B ∨ C given B0 ∨ C, and if C is conditionally independent of B given B0, then
D is conditionally independent of B given B0.
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Proof. Left to the reader.

Fact (iv) of lemma 7.2 below will only be used in proposition 9.2, and not
in proposition 8.1 from which theorem 8.2 derives.
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Figure 1: A diagram for lemma 7.2.

Lemma 7.2. Let F0 be a σ- field and V a random variable independent of F0

and taking its values in some Polish space. Let X and Y be two F0 ∨ σ(V )-
measurable random variables taking their values in Polish spaces E and F
respectively. Let (Ω,H0,P) be a probability space, and let Ψ̄′ : F0 → H0 and

Ψ̄′′ : F0 → H0 be two embeddings. We put F
′

0 = Ψ̄′(F0) and F
′′

0 = Ψ̄′′(F0).
Let Λ be a random probability on E × F measurable with respect to F

′

0 ∨ F
′′

0,
with first margin Ψ̄′ (L[X |F0]) and second margin Ψ̄′′ (L[Y |F0]).

There exist an embedding Φ̂ : H0 → Ĥ1 from (Ω,H0,P) into a probability

space (Ω̂, Ĥ1, P̂), and two embeddings Ψ̂′, Ψ̂′′ : F0 ∨ σ(V ) → Ĥ1 such that,

putting Ĥ0 = Φ̂(H0), F̂′
0 = Φ̂(F

′

0), F̂′′
0 = Φ̂(F

′′

0), and Λ̂ = Φ̂(Λ), we have the
following facts:

(i) the restrictions of Ψ̂′ and Ψ̂′′ to F0 equal Φ̂ ◦ Ψ̄′ and Φ̂ ◦ Ψ̄′′ respectively
(the diagram on figure 1 is commutative);

(ii) L
[
(X̂ ′, Ŷ ′′)

∣∣∣ F̂′
0 ∨ F̂′′

0

]
= Λ̂ where X̂ ′ = Ψ̂′(X) and Ŷ ′′ = Ψ̂′′(Y );

(iii) V̂ ′ := Ψ̂′(V ) and V̂ ′′ := Ψ̂′′(V ) are each independent of Ĥ0, and conse-
quently, by lemma 2.7, for any σ- field F1 such that F0 ⊂ F1⊂F0 ∨ σ(V ),
the σ- fields F̂′

1 := Ψ̂′(F1) and F̂′′
1 := Ψ̂′′(F1) are conditionally indepen-

dent of Ĥ0 given F̂′
0 and F̂′′

0 , respectively;
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(iv) the random pair (V̂ ′, V̂ ′′) is conditionally independent of Ĥ0 given F̂′
0 ∨ F̂′′

0 .
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Figure 2: A helpful diagram.

Proof. The picture on figure 2 is helpful when reading the proof. As an
intermediate step, we firstly define the measurable space

(Ω̃, H̃1/2) = (Ω,H0) ⊗
(
E × F,BE×F

)

and equip it with the probability P̃ = P⊗ Λ defined in lemma 2.4. Thus the
identification with the first factor ι̃ : H0 → H̃1/2 is an embedding and one has
ι̃(Λ) = L

[
(X̃ ′, Ỹ ′′)

∣∣∣ H̃0

]
= L

[
(X̃ ′, Ỹ ′′)

∣∣∣ F̃′
0 ∨ F̃′′

0

]
where H̃0 = ι̃(H0), F̃′

0 =

ι̃(F
′

0) and F̃′′
0 = ι̃(F

′′

0) and (X̃ ′, Ỹ ′′) is defined by (X̃ ′, Ỹ ′′)(ω, x′, y′′) = (x′, y′′).
As the first and second margins L

[
X̃ ′

∣∣∣ H̃0

]
and L

[
Ỹ ′′

∣∣∣ H̃0

]
of Λ̂ := ι̃(Λ)

respectively equal ι̃ ◦ Ψ̄′
(
L[X |F0]

)
and ι̃ ◦ Ψ̄′′

(
L[Y |F0]

)
, they respectively

are measurable with respect to F̃′
0 and F̃′′

0 , hence

L
[
X̃ ′

∣∣∣ H̃0

]
= L

[
X̃ ′

∣∣∣ F̃′
0

]
= ι̃ ◦ Ψ̄′

(
L[X |F0]

)

and
L

[
Ỹ ′′

∣∣∣ H̃0

]
= L

[
Ỹ ′′

∣∣∣ F̃′′
0

]
= ι̃ ◦ Ψ̄′′

(
L[Y |F0]

)
.

Therefore, proposition 2.3 provides two isomorphisms Ψ̃′ : F0 ∨ σ(X) → F̃′
0 ∨ σ(X̃ ′)

and Ψ̃′′ : F0 ∨ σ(Y ) → F̃′′
0 ∨ σ(Ỹ ′′) whose restrictions to F0 respectively ex-

tend ι̃ ◦ Ψ̄′ and ι̃ ◦ Ψ̄′′, and which respectively send X to X̃ ′ and Y to Ỹ ′′.
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For the sake of notational convenience, we assume that V takes its values
in R. Now, we extend (Ω̃, H̃1/2, P̃) into (Ω̂, Ĥ1, P̂) where

(Ω̂, Ĥ1) = (Ω̃, H̃1/2) ⊗
(
R × R,BR×R

)

and P̂ = P̃ ⊗ Γ̃ (lemma 2.4) where

Γ̃ = Ψ̃′ (L [V |F0 ∨ σ(X)]) ⊗ Ψ̃′′ (L [V |F0 ∨ σ(Y )])

is the H̃1/2-measurable random probability on
(
R×R,BR×R

)
defined as the

product of the respective copies of L [V |F0 ∨ σ(X)] and L [V |F0 ∨ σ(Y )] by
Ψ̃′ and Ψ̃′′. We introduce the canonical embedding ι̂ : H̃1/2 → Ĥ1, we put
Ĥ1/2 = ι̂(H̃1/2), X̂ ′ = ι̂(X̃ ′) and Ŷ ′′ = ι̂(Ỹ ′′), and Γ̂ = ι̂(Γ̃), and we define the
random variables V̂ ′ and V̂ ′′ on (Ω̂, Ĥ1, P̂) by

V̂ ′(ω, x′, y′′, t′, t′′) = t′ and V̂ ′′(ω, x′, y′′, t′, t′′) = t′′,

so that Γ̂ = L
[
(V̂ ′, V̂ ′′)

∣∣∣ Ĥ1/2

]
.

The conditional law L
[
V̂ ′

∣∣∣ Ĥ1/2

]
is the first margin of Γ̂, hence one has

L
[
V̂ ′

∣∣∣ Ĥ1/2

]
= ι̂ ◦ Ψ̃′

(
L

[
V |F0 ∨ σ(X)

])
= L

[
V̂ ′

∣∣∣ F̂′
0 ∨ σ(X̂ ′)

]
.

Therefore, proposition 2.3 provides an isomorphism Ψ̂′ : F0 ∨ σ(V ) → F̂′
0 ∨ σ(V̂ ′)

that extends ι̂◦Ψ̃′ on F0∨σ(X) and that sends V to V̂ ′. This implies that V̂ ′ is
independent of F̂′

0. Moreover, the equality L
[
V̂ ′

∣∣∣ Ĥ1/2

]
= L

[
V̂ ′

∣∣∣ F̂′
0 ∨ σ(X̂ ′)

]

implies L
[
V̂ ′

∣∣∣ Ĥ0 ∨σ(X̂ ′)
]

= L
[
V̂ ′

∣∣∣ F̂′
0 ∨σ(X̂ ′)

]
, and since we have seen that

L
[
X̃ ′

∣∣∣ H̃0

]
= L

[
X̃ ′

∣∣∣ F̃′
0

]
, lemma 7.1 shows that L

[
V̂ ′

∣∣∣ Ĥ0

]
= L

[
V̂ ′

∣∣∣ F̂′
0

]

and thus V̂ ′ is independent of Ĥ0. In the same way we obtain an isomor-
phism Ψ̂′′ : F0 ∨ σ(V ) → F̂′′

0 ∨ σ(V̂ ′′) that extends ι̂ ◦ Ψ̃′′ on F0 ∨ σ(Y ) and
that sends V to V̂ ′, and we prove that V̂ ′′ is independent of Ĥ0. Assertions
(i), (ii) and (iii) of the lemma are then fulfilled by putting Φ̂ = ι̂ ◦ ι̃.

It remains to show (iv). As σ(Γ̃) ⊂ F̃′
0 ∨ F̃′′

0 ∨ σ(X̃ ′, Ỹ ′′), one has

Γ̂ = L
[
(V̂ ′, V̂ ′′)

∣∣∣ F̂′
0 ∨ F̂′′

0 ∨ σ(X̂ ′, Ŷ ′′)
]
,

hence lemma 7.1 shows that L
[
(V̂ ′, V̂ ′′)

∣∣∣ Ĥ0

]
= L

[
(V̂ ′, V̂ ′′)

∣∣∣ F̂′
0∨F̂′′

0

]
because

we have seen that L
[
(X̃ ′, Ỹ ′′)

∣∣∣ H̃0

]
= L

[
(X̃ ′, Ỹ ′′)

∣∣∣ F̃′
0 ∨ F̃′′

0

]
.
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8 Vershik property and I-cosiness

Using the technical lemma 7.2 of the previous section, we prove here the
equivalence between the Vershik property and I-cosiness for a random vari-
able with respect to a locally separable filtration (definition 2.9). As ex-
plained in the introduction, we state this result for a locally separable fil-
tration because this is cost-free; there is no loss of interest when assuming
the filtration to be essentially separable, and no simplifications in the proofs.
This result will be a consequence of the following proposition. All no(ta)tions
have been introduced in sections 3 and 4.

Proposition 8.1. Let F = (Fn)n60 be a locally separable filtration on (Ω,A,P).
Let (K, ρ) be a compact metric space and R ∈ L1(F0; K). For any n0 < 0,
there exists, on a probability space (Ω,A,P), a joining (F′,F′′) of F indepen-

dent up to n0 such that
(
ρn(πnR′, πnR′′)

)
n60

is a martingale with respect to

F′ ∨ F′′ on the time-interval {n0, . . . , 0}, in the sense that

E

[
ρn(πnR′, πnR′′)

∣∣∣ F′
n−1 ∨ F′′

n−1

]
= ρn−1(πn−1R′, πn−1R

′′)

for every n ∈ {n0+1, . . . , 0}. In particular, one has E
[
ρ(R′, R′′)

]
= disp(πn0R).

Proof. As F is assumed to be locally separable, we know from lemma 2.13
that there exists, up to isomorphism, a parameterization (Un)n60 of F (def-
inition 2.10). Fix n0 < 0. We show by induction on m ∈ {n0, . . . , 0} that
there exists, on a probability space (Ω,A,P), a joining

(
(F′

n)n6m, (F′′
n)n6m

)

independent up to n0 of the truncated filtration (Fn)n6m such that

E

[
ρn(γ′

n, γ′′
n)

∣∣∣ F′
n−1 ∨ F′′

n−1

]
= ρn−1(γ′

n−1, γ′′
n−1)

for every n ∈ {n0 + 1, . . . , m − 1, m}, where γ′
n and γ′′

n are the respective
copies of πnR. The proposition then follows from this fact for m = 0.

For m = n0, it suffices to consider two independent copies of (Fn)n6n0

and there is nothing else to do. Suppose that the assertion holds true at
rank m. To extend the construction to m + 1, it suffices to apply lemma
7.2 with V = Um+1, X = Y = πm+1R and with Λ a probability kernel such
that ρm(γ′

m, γ′′
m) =

∫∫
ρm+1(·, ·) dΛ(·, ·), obtained thanks to a Borel selection

theorem (see [Bog]) to guarantee measurability. The joint immersion follows
from the last point of lemma 7.2 and from lemma 2.6.
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Theorem 8.2. Let F = (Fn)n60 be a locally separable filtration. Let (K, ρ)
be a compact metric space and X ∈ L1(F0; K). The following statements are
equivalent:

(i) X is I-cosy (definition 2.16);

(ii) X is Vershikian (definition 4.1).

Proof. Proposition 4.2 shows that (i) =⇒ (ii), and (ii) =⇒ (i) is a conse-
quence of proposition 8.1.

Corollary 8.3. Let F = (Fn)n60 be a locally separable filtration and E0 ⊂ F0

a σ- field. Then E0 is Vershikian if and only if E0 is I-cosy.

Proof. This follows from theorem 8.2 and lemma 2.21.

The following corollary is announced in remark 3.48 of [Lau10].

Corollary 8.4. Let F = (Fn)n60 and G = (Gn)n60 be two locally separable
filtrations with F immersed in G, and E0 ⊂ F0 a σ- field. Then E0 is I-cosy
with respect to F if and only if E0 is I-cosy with respect to G. Consequently,
given a Polish space E, the same result holds with E0 replaced by a random
variable X ∈ L1(F0; E).

Proof. The analogous fact for the Vershik property holds true owing to lemma
4.3. Hence it also holds for I-cosiness in view of corollary 8.3. The conse-
quence results from lemma 2.20.

The equivalence between I-cosiness and the Vershik property for a σ- field,
stated in corollary 8.3, immediately extends to filtrations:

Theorem 8.5. Let F be a locally separable filtration. The following asser-
tions are equivalent:

(i) F is I-cosy;

(ii) F is Vershikian.

32



9 Coparameterized joinings

The main result of this section is proposition 9.2 which is a by-product of
lemma 7.2. Recall that a joining of a filtration F is a pair of two jointly
immersed copies of F. Roughly speaking, this proposition firstly says that
every joining (F′,F′′) of a locally separable F can be written with the help
of a local superinnovation V

′ of F′ and a local superinnovation V
′′ of F′′,

where V
′ and V

′′ are the copies of a given local superinnovation V of F. It
says in addition that this is also true for a global superinnovation under the
assumption that the joining is independent in small time.

Definition 9.1. Let F be a filtration.

• Two joinings (F′,F′′) and (F∗,F∗∗) of F are isomorphic if there exists an
isomorphism from the filtration F′ ∨F′′ to the filtration F∗ ∨F∗∗ that sends
F′ to F∗ and F′′ to F∗∗.

• A joining (F′,F′′) is immersed in a joining (G′,G′′) of a filtration G̃ if
F′ ∨ F′′ is immersed in G′ ∨ G′′ (this implies that F′ and F′′, respectively,
are immersed in G′ and G′′, hence that G̃ is an extension of F).

• A joining (F′,F′′) of F is immersible in a joining (G∗,G∗∗) if (G∗,G∗∗) is
a joining of an extension G̃ of F that induces a joining (F∗,F∗∗) of F

isomorphic to (F′,F′′) and immersed in (G∗,G∗∗).

Proposition 9.2. Let F = (Fn)n60 be a filtration and V = (Vn)n60 a global
superinnovation of F. Let (F′,F′′) be a joining of F.

For every integer n0 < 0, the joining (F′,F′′) is immersible in a joining
of the extension of F with the local superinnovation V

loc := (Vn0+1, . . . , V0).
If F′ and F′′ are independent in small time, the same result holds true

with the global superinnovation V instead of the local superinnovation V
loc.

Proof. Let n0 < 0 be an integer. Let G be the extension of F with the local
superinnovation V

loc in the case when (F′,F′′) is an arbitrary joining of F,
or let G be the extension of F with the global superinnovation V in the
case when (F′,F′′) is a joining independent up to n0. Let (Ω,A,P) be the
probability space on which (F′,F′′) is given and let Ψ′, Ψ′′ : F0 → A be the
two embeddings defining (F′,F′′).

Now we recursively prove that for any m ∈ {n0, . . . , 0} we have an em-
bedding Φ̂ from (Ω,F′

m ∨ F′′
m,P) into a probability space (Ω̂, Â, P̂), and two

embeddings Ψ̂′, Ψ̂′′ : Gm → Â such that
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• the restrictions of Ψ̂′ and Ψ̂′′ to Fm equal Φ̂◦Ψ′ and Φ̂◦Ψ′′ respectively;

• the respective copies (Ĝ′
n)n6m and (Ĝ′′

n)n6m of (Gn)n6m by Ψ̂′ and Ψ̂′′

are jointly immersed and (F̂′
n ∨ F̂′′

n)n6m is immersed in (Ĝ′
n ∨ Ĝ′′

n)n6m.

For m = n0, in the first case, where we have Gn = Fn for n 6 n0,
it suffices to take Ψ̂′ = Ψ′, Ψ̂′′ = Ψ′′, and Φ̂ = Id. For m = n0, in the
second case, we consider, on some probability space (Ω∗,A∗,P∗), two inde-
pendent copies (G∗

n)n6n0
and (G∗∗

n )n6n0
of the filtration G up to n0, given

by two isomorphisms Ψ∗ : Gn0 → G∗
n0

and Ψ∗∗ : Gn0 → G∗∗
n0

, and we define
Φ∗ : F′

n0
∨ F′′

n0
→ Ψ∗(Fn0) ∨ Ψ∗∗(Fn0) as the unique isomorphism that extends

Ψ∗◦(Ψ′)−1 on F′
n0

and Ψ∗∗◦(Ψ′′)−1 on F′′
n0

, whose existence is given by propo-
sition 2.2.

Assuming the construction has been performed at rank m − 1, we extend
it to rank m by taking a random variable Wm such that Fm = Fm−1 ∨ σ(Wm),
whose existence is guaranteed by lemma 2.13, and by applying lemma 7.2
with V = Vm, X = Y = Wm, and Λ = Φ̂

(
L[W ′

m, W ′′
m |F′

m−1 ∨ F′′
m−1]

)
. Using

lemma 2.6 and lemma 2.7, it is easy to check the joint immersion of (Ĝ′
n)n6m

and (Ĝ′′
n)n6m as well as the immersion of (F̂′

n ∨ F̂′′
n)n6m in (Ĝ′

n ∨ Ĝ′′
n)n6m with

the help of the random variables V̂ ′
m := Ψ̂′(Vm) and V̂ ′′

m := Ψ̂′′(Vm) provided
by lemma 7.2.

Remark that the immersibility of (F′,F′′) in the joining of the extension
of F with V

loc or V is a consequence of assertion (iv) of lemma 7.2; however,
if we denote by (Ĝ′, Ĝ′′) this joining, assertion (iv) actually says that each
pair (V̂ ′

n, V̂ ′′
n ) is conditionally independent of Ĝ′

n−1 ∨ Ĝ′′
n−1 given F̂′

n−1 ∨ F̂′′
n−1,

and this property is not implied by the immersion of (F̂′, F̂′′) in (Ĝ′, Ĝ′′).
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