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ABSTRACT

Wallerian degeneration (WD) is an inflammatory process of
nerve degeneration, which occurs more rapidly in the pe-
ripheral nervous system compared with the central nervous
system, resulting, respectively in successful and aborted
axon regeneration. In the peripheral nervous system,
Schwann cells (SCs) and macrophages, under the control of
a network of cytokines and chemokines, represent the main
cell types involved in this process. Within this network, the
role of placental growth factor (PIGF) remains totally
unknown. However, properties like monocyte activation/
attraction, ability to increase expression of pro-inflamma-
tory molecules, as well as neuroprotective effects, make it a
candidate likely implicated in this process. Also, nothing is
described about the expression and localization of this mol-
ecule in the peripheral nervous system. To address these
original questions, we decided to study PIGF expression
under physiological and degenerative conditions and to
explore its role in WD, using a model of sciatic nerve trans-
ection in wild-type and Pgf '~ mice. Our data show
dynamic changes of PIGF expression, from periaxonal in
normal nerve to SCs 24h postinjury, in parallel with a p65/
NF-kB recruitment on Pgf promoter. After injury, SC prolif-
eration is reduced by 30% in absence of PIGF. Macrophage
invasion is significantly delayed in Pgf /~ mice compared
with wild-type mice, which results in worse functional re-
covery. MCP-1 and proMMP-9 exhibit a 3-fold reduction of
their relative expressions in Pgf~/~ injured nerves, as dem-
onstrated by cytokine array. In conclusion, this work origi-
nally describes PIGF as a novel member of the cytokine
network of WD.  ©2010 Wiley-Liss, Inc.

INTRODUCTION

Wallerian degeneration (WD) is the active process of
degradation of the nerve segment distal to the lesion
site. First described in 1850 (Waller, 1850), WD is criti-
cal for successful axonal regeneration and occurs more
rapidly in the peripheral than in the central nervous
system, where axonal regeneration fails (Lawson et al.,
1994; Perry et al., 1987). The sequence of degenerative
events comprises cellular and molecular changes, and
requires effective Schwann cell (SC) and macrophage
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responses (Stoll et al., 1989). Indeed, following injury,
SCs dedifferentiate, proliferate, and align in “bands of
Bilingner” providing structural guidance and growth-
promoting substrates to regenerating axons (Vargas and
Barres, 2007). SCs also participate in the clearance of
myelin debris, which occurs during the first few days
postinjury (Stoll et al., 1989) and release a wide variety
of chemokines and cytokines, which in turn recruit cir-
culating macrophages to the degenerating nerve (Sha-
mash et al., 2002; Siebert et al., 2000; Tofaris et al.,
2002). Macrophages mediate the second phase of myelin
debris removal, a type-3 complement receptor-depend-
ent mechanism (CR-3/Mac-1/CD11b) (Slobodov et al.,
2001). All these events are orchestrated by a network of
cytokines and chemokines, of which the induction is
partly regulated by the activation of the transcription
nuclear factor kappa B (NF-kB) signaling pathway (Fu
et al., 2010; Subang and Richardson, 2001), as well as
by neurotrophic factors, secreted both by SCs and mac-
rophages: interleukin-1beta (IL1-B) (Perrin et al., 2005;
Shamash et al., 2002), IL-6 (Bolin et al., 1995), tumor-
necrosis factor alpha (TNF-a) (Shamash et al., 2002),
monocyte chemotactic protein-1 (MCP-1) (Perrin et al.,
2005), macrophage inflammatory protein-1 alpha (MIP-
la) (Perrin et al., 2005), nerve growth factor (NGF)
(Funakoshi et al., 1993) and vascular endothelial
growth factor (VEGF) (Scarlato et al., 2003). Placental
growth factor (PIGF), belonging to the VEGF family,
has not been implicated in WD up to now. Identified in
1991 in the placenta (Maglione et al., 1991), PIGF has
also been detected in heart, lung, thyroid, skeletal mus-
cle (Persico et al., 1999) and brain (Beck et al., 2002).
There are 3 isoforms of PIGF in humans, but only one,
PIGF-2, is present in mice (DiPalma et al., 1996). Mice
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in which the PIGF gene has been deleted (Pgf ~/~ mice)
do not exhibit any defects in development or reproduc-
tion, but show impaired angiogenesis in pathological
conditions (Autiero et al., 2003a,b; Carmeliet et
al.,2001; Ribatti, 2008). PIGF is produced by activated
endothelial cells (ECs), inflammatory cells, bone mar-
row cells, as well as neurons (Beck et al., 2002; Luttun
et al., 2002). Interestingly, PIGF displays pro-inflamma-
tory properties: it mobilizes macrophages, has a chemo-
tactic activity on blood monocytes (Clauss et al., 1996)
and increases mRNA expression of pro-inflammatory
cytokines and chemokines such as TNF-«, IL-1B, IL-8,
MCP-1, MIP-1«, and VEGF (Bottomley et al., 2000; Per-
elman et al., 2003; Selvaraj et al., 2003). Recently, PIGF
was found to have neuroprotective and angiogenic
effects in cerebral ischemia (Liu et al., 2006), but its
precise role in the nervous system remains elusive.

Considering the above-described properties of PIGF,
we decided to study its expression in peripheral nerves
under physiological and degenerative conditions, to
investigate the signaling pathway that regulates its
expression and to explore its role in the inflammatory
context of WD, using a model of sciatic nerve transection
in adult wild-type (wt) and Pgf /" mice.

MATERIALS AND METHODS
Animals

Adult (10-12 weeks), 50%Swiss-50%129SV female wt
and Pgf ~/~ mice were used (Vesalius Research Center,
Pr Carmeliet, KUL, Belgium). The experiments were
performed in accordance with the rules and regulations
of the Ethical Committee for animal research of the Bel-
gian National Fund for Scientific Research.

Surgical Procedure: Sciatic Nerve
Complete Transection

Mice were anesthetized by intraperitoneal (i.p.) injec-
tion of a mixture of ketamine (75 mg/kg; Ketalar®, Bayer
HealthCare, Brussel, Belgium) and xylazine (10 mg/kg;
Rompun®, Pfizer, Brussel, Belgium). Under aseptic con-
ditions, sciatic nerves were exposed and WD induced by
a complete axotomy of the nerves at the upthigh level.
Proximal and distal stumps were left in their original
position to allow axonal regeneration. Muscles and skin
were carefully closed in two layers.

Tissue Processing

Mice were killed after different survival times (1, 3, 7,
14, 21, and 28 days postinjury) by an overdose of Nem-
butal (150 mg/kg, i.p., CEVA Santé Animale, Brussel,
Belgium) and the distal parts of the transected sciatic
nerves were freshly harvested, embedded in Tissue-Tek®
0.C.T™ Compound (Labonord SAS, Templemars,
France) and directly frozen. Ten micrometer-thick longi-
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tudinal or transverse sections were collected onto gela-
tin-coated slides, and stored at —20°C until used.

Dorsal root ganglions (DRG) from the lumbar segment
were harvested from uninjured mice, directly frozen,
before being cryosectioned for further immunofluores-
cent staining.

Primary Schwann Cell Culture

Adult SCs were isolated from sciatic and trigeminal
nerves of wt and Pgf ~/~ mice as described (Bouquet et
al., 2007). After careful dissection under sterile condi-
tions, nerves were left for 2 weeks in degeneration me-
dium: DMEM, 10% foetal bovine serum, Fungizone (2.5
mg/mL, GIBCO®, Invitrogen™, Carlsbad, CA), Forsko-
lin (2 mM, Calbiochem®, Darmstadt, Germany), Genta-
mycine (50 mg/mL, GIBCO) and Heregulin-f1 (10 ng/
mL, HRG; R&D Systems GmbH, Wiesbaden, Germany)
at 37°C, 5% CO,. After enzymatic and mechanical disso-
ciation, cells were plated on precoated poly-L-lysine (50
pg/mL, Sigma-Aldrich, Saint Louis, MO) and laminin
(10pg/mL, Sigma-Aldrich) T25 culture dishes and incu-
bated at 37°C, 5% COy in N2HR¢ medium: 50% DMEM
50% F12 supplemented with N2 (GIBCO®), gentamycin
(50pg/mL), fungizone (2.5 pg/mL), forskolin (2uM), and
HRG (10 ng/mL). At confluence, SCs were purified by
magnetic cell-sorting using the anti-low affinity NGF re-
ceptor (p75NGFr; AB1554; 1/200; Millipore, Temecula,
CA) antibody (Ab), according to the manufacturer’s
instructions (Miltenyi Biotech GmbH, Bergisch Glad-
bach, Germany).

Immunofluorescent Stainings

To characterize PIGF expression, double immunofluor-
escenct stainings for PIGF (sc-27134; 1:50; Santa Cruz
Biotechnology, Santa Cruz, CA, Taylor and Goldenberg,
2007) and NF-H (MAB5448/clone TA51; 1:500; Millipore,
De Girolamo et al., 2000) for axons, Neu-N (MAB377/
clone A60; 1:250; Millipore, Borsani et al., 2010) for neu-
ronal cell nuclei, S100 (ZO311; 1/200; DakoCytomation,
Gould et al., 1986) for quiescent SCs, p75NGFr
(AB1554; 1/200; Millipore, Runyan and Phelps, 2009) for
proliferating SCs, von Willebrand factor (vWF; AB6994;
1/2000; Abcam, Yin et al., 2010) for endothelial cells,
patched-1 (Pte-1; sc-9016/H-267; 1/50; Santa Cruz Bio-
technology, Chen et al., 2007) for fibroblasts, CD11b
(MCA74; 1/250; Serotec, Springer et al., 1979) for macro-
phages, PO (AB9352; 1/50; Millipore) for peripheral mye-
lin, were performed. After drying, tissue sections were
fixed in cold acetone for 10 min at 4°C. Nonspecific bind-
ing was prevented by lh incubation in 10% normal se-
rum solution in 0.1% triton-PBS (0.1 M, pH 7.4). Sec-
tions were then incubated overnight at room tempera-
ture (RT) with the specific primary Abs, rinsed 3 times
with PBS and incubated with their respective secondary
Abs coupled with rhodamine or FITC (1/500, Jackson
ImmunoResearch Laboratories, West Grove, Pennsylva-
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Confirmation of PIGF Ab specificity. (A) PIGF immunostaining on transverse section of sci-

atic nerve. (B) Negative control: nerve section stained with anti-PIGF Ab preincubated with its spe-
cific blocking peptide. (C) PIGF immunostaining on placenta used as positive control tissue and (D) on
liver used as negative control tissue. Scale bar: 60pum.

nia), for 1h at RT. Sections were then rinsed twice in
PBS, twice in distilled water, and mounted under cover-
slips using vectashield solution (Vector Laboratories,
Burlingame, CA). To assess the specificity of the anti-
PIGF Ab, negative controls were obtained by incubation
of the primary Ab with its specific blocking peptide (sc-
27134 P; Santa Cruz Biotechnology) before applying it
on the tissue sections. Also, specific positive (placenta)
and negative (liver) tissues for PIGF were used to con-
firm this specificity (Fig. 1).

Prediction of NF-kB Binding
Sites and Luc Assay

To identify NF-xB binding sites, computational analy-
sis of the promoter sequence of mouse Pgf gene (Green
et al.,, 2001) was performed using four different pro-
grams designed to look for transcription factor binding
sites (MatInspector program, Match™ program, Promo,
TFSEARCH).

For luciferase assays, the region including the two «B
sites were inserted into the pGL3-Promoter Vector
(Promega). 293 cells (4 X 10° cells per well) were seeded
in 6-well (35 mm) plates. After 12 h, cells were trans-
fected as described above with 0.5 pg of either the Pgf-
kB-luciferase or the Ig-«B-luciferase (Leonardi et al.,
2000) and with expression plasmids as indicated. The
total amount of transfected DNA was kept constant by

adding empty expression vector DNA as needed. Cell
extracts were prepared 24 h after transfection, and
reporter gene activity was determined by using Dual-Lu-
ciferase Reporter Assay System (Promega). The pRL Vec-
tor (40 ng), which provides constitutive expression of
Renilla luciferase, was used to normalize for transfec-
tion efficiencies.

Chromatin Immunoprecipitation
(ChIP) Assay

Sciatic nerves (from uninjured [UI] and 24h postin-
jured wt mice) were surgically removed from four adult
mice per condition, minced and immediately fixed in
PBS containing 1% paraformaldehyde (PFA) for 25 min
at RT. The nerves were washed twice with cold PBS con-
taining protease inhibitors (Complete™, Roche Applied
Science, Mannheim, Germany) and then homogenized
into 1.5 mL of lysis buffer (1% SDS, 10 mM EDTA, 50
mM Tris-HC] pH 8.0, protease inhibitors). The lysates
were sonicated for 15 min with alternating 30-s pulses
at high power with a Bioruptor sonicator (Diagenode,
Liege, Belgium), and then centrifuged at 13,000 rpm for
5 min. The protein concentration of lysates was meas-
ured using the BCA protein assay kit (ThermoScientific,
Rockford, Illinois). Inputs were kept for later analysis.
Lysates were diluted 10 times into dilution buffer (1%
Triton X-100, 150 mM NaCl, 2 mM EDTA, 20 mM Tris-
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TABLE 1. Quantitative PCR probe informations

Amplicon Gene Primer Oligonucl.
name localization type Sequence (5'-3")

PIGF kB1 —908 to —1015 Reverse ACGTGCCTCCAGAACCGTCC
site Forward CCAGGTGCCCCGAGGTGTTT
PIGF kB2 —1041 to —1120 Reverse CTCCTGTCAGGTCAGGCCAGC

site Forward CCTCTTCTGCTTGGGCTCGGG
PIGF 624 to 753 Reverse TTCCCCTTGGTTTTCCTCCTT
gene Forward AGATCTTGAAGATTCCCCCCA

HCI1 pH 8.0, protease inhibitors). The sheared chromatin
was incubated with 4pg of anti-NF-xB subunit p65 (p65;
sc-109, Santa Cruz Biotechnology) or anti-Flag (used as
negative control; F3165, Sigma-Aldrich) at 4°C on a
rotating platform overnight. The immune complexes
were incubated for 2 hours at 4°C with Protein A-aga-
rose beads (Santa Cruz Biotechnology) blocked with
BSA (100 pg/mL) and shared salmon sperm DNA (500
pg/mL; Invitrogen™). The immunoprecipitates were
then washed three times with 1 mL low salt washing
buffer (1% triton X-100, 0.1% SDS, 150 mM NaCl, 2 mM
EDTA, 20 mM Tris-HCl pH 8.0, protease inhibitors),
once with 1 mL high salt washing buffer (same buffer
but containing 500 mM NaCl), once with 1 mL LiCl
buffer (0.25 M LiCl, 1% IGEPAL CA630 (Sigma-Aldrich),
1 mM EDTA, 1% deoxycholic acid, 10 mM Tris-HCI pH
8.0), and finally once 1 mL with TE buffer (10 mM Tris-
HCI pH 8.0, 1 mM EDTA). Immunoprecipitated (IP)
chromatin was eluted in 250 pL elution buffer (1% SDS,
0.1 M NaHCOs3) for 15 min at RT, twice. Chromatin
inputs were also diluted in elution buffer. Protein-DNA
cross-links were reversed by incubation with 20 uL of 5
M NaCl at 65°C for 4h and proteins were digested by
addition of 10 uL of 0.5 M EDTA, 20 uL of 1M Tris-HCI
pH 6.5 and 20pug of proteinase K (Promega, Madison,
Wisconsin) and incubation 1h at 45°C. DNA was purified
with phenol/chloroform (Sigma-Aldrich) using Phase
Lock Gel™ tube (Eppendorf, Hamburg, Germany). The
aqueous phase was incubated 1h at -20°C after the addi-
tion of 45 pL of 3 M NaAC pH 5.5, 30 pg of glycogen
(Roche Applied Science) and 1 mL of absolute ethanol
and then centrifuged 5 min at 13,000 rpm. The DNA
pellets were washed with 70% ethanol, resuspended in
100 uL of DNase-free distilled water. Quantitative PCR
(using SYBR green PCR master mix; Applied Biosys-
tems) was performed to analyse the IP DNA. Signals
were normalized to respective inputs and compared with
negative control (anti-Flag IP). The primers (Euro-
gentec, Seraing, Belgium) used to amplify specific kB
sites of Pgf gene are resumed in Table 1.

Axonal Regeneration Study

To evaluate axonal regeneration, longitudinal sections
from the distal part of injured sciatic nerves were fluo-
rescently stained with anti-NF-H Ab as described above.
For the quantification, nonoverlapping successive fields
covering the entire tissue sections (which means the
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whole length of the distal part) were taken using Olym-
pus DP50 digital camera connected to an Olympus AX-
70 microscope (magnification 10x). The mean number of
fields/section was similar between wt and Pgf ~/~ mice
(7.47 £ 0.76 and 7.54 * 0.64, respectively), resulting in
comparable total tissue length. Each field was then allo-
cated to one of the following group: (i) field containing
only debris of degenerating axons; (ii) field containing a
majority of debris and few regenerating profiles; (iii)
field containing scarce debris and a majority of regener-
ating fibers; and (iv) field containing only regenerating
fibers. Data were expressed as a mean proportion of field
numbers in each of those 4 groups per total nerve sec-
tion (%)= standard error.

Motor Recovery Evaluation

Before lesion and at 3, 7, 10, 14, 17 and 21 days fol-
lowing unilateral left sciatic nerve axotomy, mice were
allowed to walk down a 60cm long corridor lined with
graph paper after inking their hind paws. For each ani-
mal (5 wt and 5 Pgf ~/~ mice), at every time point, at
least four clear footprints were obtained for each foot.
Measurements of print length were then made on the
operated side (OPL) and the normal side (NPL). A mean
of four values was then calculated for the OPL (xOPL)
and NPL (xNPL), and a print-length factor (PLF) was
calculated as follows: PLF = (xOPL - xNPL)/xNPL
(George et al., 2003).

Quantification of Schwann Cell Proliferation

In vivo

Longitudinal sections of sciatic nerves were stained
with anti-Ki67 Ab according to the above-described pro-
tocol (NCL-Ki67p; 1/250; Novocastra™, Leica Microsys-
tems GmbH). Ki67 positive SC nuclei (magnification
20x) were manually counted within nonoverlapping suc-
cessive fields covering the entire nerve section, and
results were expressed as a mean number * standard
error of Ki67 positive SC nuclei per mm? of nerve tissue.

In vitro

Cultured SCs were plated on coated glass coverslips
at a concentration of 25,000 cells/300 pL. 20uM bromo-
deoxyuridine (BrdU; Sigma-Aldrich) was directly added
to the cultures for 16h before fixation in 4% PFA for
10min. Cells were treated in HC1 2N for 10min at 37°C
and then washed in borate buffer (0.1M; pH 8.5). Cells
were permeabilised and nonspecific binding was pre-
vented by 1h incubation in 10% normal serum 0.1% tri-
ton-PBS solution. Then cells were incubated overnight
with anti-BrdU Ab (OBT0030; 1/250; Serotec) and anti-
p75NGFr Ab to assess the purity of SC culture. After 3
PBS washes, cells were incubated with their respective
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TABLE 2. RT-PCR probe informations

Gene Primer type Oligonucleotide sequence (5'-3') PCR product size (bp) Cycle nb
mPIGF Reverse TTCCCCTTGGTTTTCCTCCTT 130 45
Forward AGATCTTGAAGATTCCCCCCA
GAPDH Reverse GCCTTCTCCATGGTGGTGAAGAC 210 25
Forward GACCCCTTCATTGACCTCAACTACATG

Fig. 2. Double immunofluorescent stainings on uninjured sciatic
nerve (A-D) and dorsal root ganglion (E) sections. PIGF (Rhodamine)
and NF (A, B), PO (C), Pte-1 (D), NeuN (E) (FITC) double immunofluo-
rescent stainings, on transverse (A, C, D) and longitudinal (B) sections
of uninjured sciatic nerve. PIGF is expressed in axons and has a peri-

secondary Abs coupled with rhodamine or FITC, for 1h
at RT. Coverslips were then rinsed in PBS and distilled
water, and mounted on slides using vectashield solution
containing DAPI to visualize all nuclei for the determi-
nation of the total cell number. Double-stained

axonal expression pattern (A, B). However, PIGF is not present in the
myelin sheath, as no co-localization could be seen with PO (C). Finally,
besides its periaxonal localization, PIGF is also expressed by fibroblasts
in the endoneurium (D, arrows show PIGF/Ptc-1 labelled fibroblasts,
and * design axons). Scale bar: A, C, D: 20pm; B: 10pm, E: 50 pm.

p75NGFr/BrdU cells and total number of p75NGFr posi-
tive cells (magnification 20x) were manually counted
within nonoverlapping successive fields, and results
were expressed as a mean % * standard error of prolif-
erating SCs.
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Fig. 3. Double immunofluorescent stainings on normal and injured
sciatic nerve sections. PIGF (Rhodamine) and S100 (A, A’), p75NGFr
(B, B') or NF (C, D) (FITC) double immunostainings, on longitudinal
sections of normal (A, A’) and injured (distal segment, B, B, C, and D)
sciatic nerves. PIGF is not expressed by myelinating SCs, as no co-local-

RT-PCR

RNA from cultured SCs was extracted with TRIzol®
(Invitrogen™) and isolated according to the manufac-
turer’s protocol. PIGF and glyceraldehyde 3-phosphate
dehydrogenase (GAPDH, as internal control), mRNAs
were amplified with aliquot of 20 ng of total RNA using a
RT-PCR kit (GeneAmp Thermostable rTth reverse tran-
scriptase RNA PCR kit; Applied Biosystems, Foster City,
CA) and appropriate “forward” and “reverse” primers
(oligonucleotide sequences shown in Table 2; Eurogen-
tec, Seraing, Belgium). Reverse transcription was per-
formed at 70°C for 15 minutes followed by 2 minutes of
incubation at 95°C for denaturation of RNA-DNA hetero-
duplexes. Amplification consisted in cycles of 15 seconds
at 94°C, 20 seconds at 58°C, and 20 seconds at 72°C. RT-
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ization is observed with S100 (A, A’). SCs, which dedifferentiate and
proliferate after loss of axonal contact, express PIGF from the first day
after injury (B, B’). Axonal PIGF expression decreases after injury, fol-
lowing the time course of axonal degradation (C). 28 days postinjury,
PIGF reappears in the regenerating fibres (D). Scale bar: 60um.

PCR products were resolved on 10% polyacrylamide gel,
stained with GelStar (Lonza, Rockland, Maine).

DAB Immunostainings

Tissues were fixed with 4% PFA for 5 min, then incu-
bated in a 0.3% H50,, 0.1% Na azide solution in PBS for
20 min at RT to reduce endogenous peroxydase activity.
Nonspecific binding was prevented by 1h incubation in
3% normal serum and 1% bovine serum albumin solu-
tions in 0.1% triton-PBS. Sections were then incubated
overnight at RT with the specific Abs: anti-p75NGFr
(AB1554; 1/200; Millipore) to study SC dedifferentiation
or anti-CD11b (MCA74; 1/250; Serotec) to study macro-
phage recruitment. After 3 PBS rinses, they were incu-
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bated with their respective secondary biotinylated anti-
bodies (Vector Laboratories) diluted and centrifuged in a
3% mouse normal serum and 1% BSA in 0.1% triton-
PBS solution, for 1h at RT. Then sections were incu-
bated 1h with the avidin-biotin-peroxydase complex
(Vector Laboratories), diluted 1/1000 in PBS and the im-
munostaining revealed with 3,3’-diaminobenzidine.

Image Analysis

To quantify SC dedifferentiation, pictures (magnifica-
tion 20x) were converted to gray scale. A threshold in-
tensity of gray-colored staining was set and applied to
each slice. Then, immunostaining was quantified within
nonoverlapping successive fields covering the total nerve
tissue area using the Olympus AnalySIS computer pro-
gram. Data were expressed as the mean integral inten-
sity *+ standard error of total stained area (pixel?) per
total nerve tissue area (pixel?). For the macrophage
recruitment quantification, CD11b-positive macrophages
(magnification 10x) were manually counted within nono-
verlapping successive fields covering the entire nerve
section, and results were expressed as a mean number
+ standard error of CD11b-positive macrophages per 0.1
mm? of nerve tissue.

Toluidine Blue Staining

Mice were perfused with Karnovski solution contain-
ing 1% PFA and 1.25% glutaraldehyde in 0.2M Sorensen
buffer (~ 750 mOsm). Sciatic nerves were carefully har-
vested and postfixed with Karnovski overnight at 4°C.
After two washes in 0.1M Sorensen buffer, nerves were
postfixed with 1% osmium in Sorensen buffer for 1h at
4°C. Sciatic nerves were progressively dehydrated in
successive ethanol baths and then soaked in epoxypro-
pane twice during 10 min each. Tissues were embedded
in epon resin by soaking in a mixture of epoxypropane/
epon in proportions 2/1, then 1/1 and finally 1/2, 1h
each. The resin was harded at 265°C for 2 days. The
blocks were trimmed and semi-thin transverse sections
(1 pm) were cut with a Leica Ultracut UCT microtome,
picked up onto glass slides, and then dried on a hot
plate at 60°C for 1h. To have a good dye impregnation in
the tissue, sections were treated with 1% potassium tet-
raborate before staining with 0.5% toluidine blue. Intact
myelin sheaths (magnification 40x) were manually
counted within nonoverlapping successive fields covering
the entire nerve section, and results were expressed as a
mean number * standard error of intact myelin sheaths
per 0.01 mm? of nerve tissue.

Cytokine Array

Expressions of IL-la, IL-1B8, IL-6, TNF-a, IL-10,
VEGF, VEGF receptor-1 (VEGFr1), MCP-1, MIP-1a and
the pro-matrix metalloprotease-9 (proMMP-9) were
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Fig. 4. NF-kB binding on Pgf gene promoter after sciatic nerve
injury. (A) The prediction of NF-kB binding sites has revealed two
putative kB motifs (grey letters) located at positions 994-1004 (xB1)
and 1075-1084 (xB2) bps upstream the ATG translation initiation
site of the mouse Pgf gene. (B) p65 is specifically recruited to the
Pgf gene promoter after injury, as examined by chromatin immuno-
precipitation assays using normal uninjured sciatic nerves (UI) or 1
day-injured sciatic nerves (1d). After normalization to inputs and to
negative flag IP, signal in UI condition was set to 1 and the one
obtained in injured condition was expressed relative to it. Results
are from three independent experiments and error bars denote
standard deviation. We observed no fold induction for the kB1 pri-
mers. (C) The kB sites found in the Pgf promoter are functional in
activating NF-kB, as examined by Luciferase assay. Pgf-kB or Ig-kB
(positive control) vectors were transfected in 293 cells, with or with-
out the p50/p65 expression vectors, as indicated. Signals were nor-
malized by measuring Renilla activity of a co-transfected pRL vec-
tor. For each vector, the value obtained in the absence of p50/p65
was set to 1 and the other was expressed relative to it. Results are
from three independent experiments and error bars denote standard
deviation.

measured in tissue extracts of Ul and injured sciatic
nerves from wt and Pgf ~/~ mice using RayBio® Cyto-
kine Antibody Arrays (RayBiotech, Norcross, Georgia).
200pg of total protein were used per sample. The cyto-
kine array membranes were scanned with a Las-4000
luminescent image analyser (Fujifilm, Tokyo, Japan).
The intensity of the signal was measured with the
Quantity One 1-D Analysis software (Bio-RAD Laborato-
ries, Hercules, CA). The results were expressed as the
mean relative signal intensity, i.e. the ratio of sample
signal intensity/positive control signal intensity. Each
signal intensity of positive controls and samples was
normalized by the background substraction.
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Fig. 5. In vivo cell proliferation. (A) Ki67 immunoreactivity in longitudinal sections of wt and
Pgf ~/~ sciatic nerves 3 days after axotomy (scale bar: 50 pm). (B) Cell quantification shows a signifi-
cant difference between wt and Pgf ~/~ mice in the number of Ki67 positive cells 1 and 3 days postin-
jury. ¥*P < 0.01; *P < 0.05 (mean + SE; N = 5 mice per group).

Statistical Analysis

Means and standard errors for each experimental
time point were calculated. Statistical significance was
set at P < 0.05. The statistical significances between wt
and Pgf '~ mice were tested separately at each time
points using a Student t-test (for CD11b, NGFr immuno-
staining and Toluidine blue quantifications).

To evaluate the group effect in motor recovery during
time (foot-print data), we used Zerbe’s nonparametric
model, which compares both the global evolution of two
groups and the values at the different time point sepa-
rately. All quantifications were performed blind to the
genotype. Statistical analyses were supervised by the
Department of Biomedical Statistics of the University of
Liege.

RESULTS
PIGF Expression in Normal and Injured
Adult Mouse Sciatic Nerve

To investigate PIGF expression in the normal nerve
and after axotomy, we performed various double immu-
nofluorescent stainings to screen all cell types and/or
structures present in the nerve: axons, myelin, myeli-
nating and proliferating SCs, fibroblasts, ECs, and
invading macrophages.

GLIA

Based on PIGF/NF double staining, PIGF is found
within the axons of the normal sciatic nerve and more
precisely at the periphery of axons (Fig. 2A,B). This
expression is found in close contact with, but not within
the myelin sheath, as no co-localization can be seen with
the PO/PIGF double staining (Fig. 2C). Fibroblasts
within the endoneurium, labeled with the Ptc-1 Ab,
express PIGF (Fig. 2D). to further assess neuronal
expression of PIGF, we also performed PIGF/NeulN dou-
ble immunofluorescent staining on lumbar dorsal root
ganglion sections, where neuronal cell bodies are
located. This staining clearly shows that PIGF is
expressed within the neuronal cell body (Fig. 2E).
Finally, vWF Ab, used to identify endothelial cells, never
co-localized with PIGF (data not shown). PIGF/S100
staining confirms that myelinating Schwann cells (SCs)
do not express PIGF (Fig. 3A,A’). After nerve transec-
tion, the detection of proliferating SCs by immunostain-
ing with p75NGFr interestingly shows that PIGF is seen
in these cells as soon as 1 day postaxotomy (Fig. 3B,B’)
and persists during the first week after injury (data not
shown). Concomitantly, PIGF is no more detectable in
the degenerating fibres (Fig. 3C). When axonal regener-
ation occurs, starting as soon as 14 days postinjury,
PIGF-positive fibres reappear in the distal segment of
the sciatic nerve (Fig. 3D). Finally, after injury, no PIGF
was observed in invading macrophages nor in ECs (data
not shown).
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p75NGFr (FITC) immunostaining of wt and Pgf '~ SCs after BrdU
incorporation (scale bar: 50um). (B) Quantification shows a significant
decrease of Pgf ~/~ SC proliferation. *P < 0.05 (mean + SE; N = 3 cul-

PIGF Expression Induction:
Role of NF-kB

During WD, one of the main transcription factor that
regulates the cyto- and chemo-kine expression by SCs is
NF-xB (Fu et al., 2010; Subang and Richardson, 2001).
As we demonstrated that PIGF is expressed by SCs in a
postinjury inflammatory context, we investigated the
potential implication of NF-xB in the induction of PIGF
expression during WD by ChIP assay. Firstly, we ana-
lysed the Pgf promoter sequence, using transcription
factor binding site prediction programs, to identify puta-
tive kB motifs on the mouse Pgf promoter. We detected
the presence of two putative NF-«B binding sites within
the mouse Pgf promoter region (Fig. 4A). To investigate
the NF-xB binding to these two kB motifs, we immuno-
precipitated the chromatin, from Ul and one day-injured
sciatic nerves, using an anti-p65 Ab. DNA fragments of
IP chromatin were amplified by quantitative PCR, using
primers specifically designed to amplify predicted kB1 or
kB2 site (Table 1). The Fig. 4B shows a threefold

ture experiments). (C) Polyacrylamide gel showing PIGF (P) and
GAPDH (G) RT-PCR amplification products from wt and Pgf ~/~ cul-
tured SCs. RT-PCR confirmed PIGF expression in wt SCs in culture
conditions and, as expected, no expression in Pgf ~/~ SCs.

increase in NF-kB binding to the kB2 site after injury
compared with Ul nerve controls, whereas no significant
recruitment of NF-kB was observed to the xB1 site. To
further prove that the sites were functional in activating
gene expression, they were inserted into a luciferase re-
porter vector, transfected into 293 cells and NF-«B acti-
vation was assessed upon co-transfection with two NF-
kB subunits, p50 and p65. As shown in the Fig. 4C, the
kB sites found in the Pgf promoter (Pgf-xB) were indeed
functional as the p50/p65 heterodimer induced luciferase
gene expression (about 4-5 fold).

PIGF in WD

Role of PIGF on Schwann cell proliferation and
formation of Biingners’ bands

The WD process in the distal stump of the injured
nerve is associated with activation and proliferation of

SCs, which form the bands of Biingner and express

GLIA
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Fig. 7. P75NGFr immunostaining and quantification. (A) P75NGFr immunoreactivity in longitudi-
nal sections of wt and Pgf ~'~ sciatic nerves before (UIl) and after axotomy (scale bar: 100um). (B)
Image analysis and staining quantification show a significant difference between wt and Pgf ~/~ mice
in the intensity of P75NGFr staining 7, 21 and 28 days postinjury. **P < 0.01; *P < 0.05 (mean *

SE; N = 5-9 mice per group).

p75NGFr. To assess the role of PIGF in these processes,
we compared the proliferation of SCs within the sciatic
nerves of wt and Pgf ~/~ mice after axotomy. Using im-
munofluorescent staining against Ki67, a nuclear pro-
tein expressed in cells undergoing proliferation, we
quantified the number of proliferating cells at 1, 3 and 7
days after axotomy in the distal stump of nerves from
wt and Pgf /™ mice (Fig. 5A,B). We found a significant
decrease of cell proliferation in Pgf =/~ mice at 1 and 3
days postinjury (Fig. 5B). Because of a conflict between
Abs, we were not able to perform the double immunoflu-
orescent staining Ki67/p75NGFr to identify the prolifer-
ating cells as SCs. We can nevertheless attest that the
Ki67-positive cells are not inflammatory cells, such as
invading macrophages, as they do not express CD11lb
(data not shown).

To confirm the in vivo finding of decreased SC prolifer-
ation in mice lacking PIGF, we compared the prolifera-
tion of primary cultures of SCs isolated from wt or
Pgf =/~ mice. Using BrdU incorporation and double im-
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munofluorescent staining against BrdU and p75NGFr
(Fig. 6A), we counted the mean number of proliferating
SCs. The number of BrdU positive Pgf /~ SC nuclei
was significantly decreased (Fig. 6B). To attest that SCs
express PIGF in culture condition, which corresponds to
the proliferating state they adopt after a nerve injury,
we performed a RT-PCR for PIGF on RNA extracts from
wt and Pgf /= SC cultures, using GAPDH as house-
keeping gene. The polyacrylamide gel showing RT-PCR
amplification products (Fig. 6C) confirmed a PIGF
expression in proliferating wt SCs. We then assessed
p75NGFr expression in wt and Pgf ~/~ mice after sev-
eral post-transection survival times. As illustrated in
Fig. 7, p75NGFr is weakly expressed in Ul nerves (Fig.
7A). In wt animals, its expression increases 3 days after
axotomy and reaches a peak at day 7 (Fig. 7B). At that
time, the longitudinal aspect of the p75NGFr staining is
likely due to the alignment of SCs to form the bands of
Bilingner, still observed 14 days after the lesion. In
Pgf ~/~ mice, the peak of expression of p75NGFr is only
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mice per group).

reached 14 days after the lesion, and decreases more
rapidly afterwards. Also, at day 7, the longitudinal as-
pect of the staining is much less pronounced than in tis-
sue sections of wt animals (Fig. 7A).

Role of PIGF on macrophage recruitment and
myelin sheath degradation

The other main cell type involved in the WD process
are macrophages, which accumulate within the degen-
erating nerve segment and facilitate the removal of
axonal and myelin debris. As PIGF plays a role in the
chemo-attraction of macrophages (Clauss et al., 1996),
we first quantified the number of invading macro-
phages within the degenerating segment at several
postinjury times, comparing wt and Pgf /= mice.
CD11b immunostaining of longitudinal nerve sections
revealed a clear delay in the macrophage infiltration in
Pgf =/~ nerves respective to wt nerves (Fig. 8A). While
infiltration peaked between the 3rd and the 7th day

postinjury in wt mice, it did so only between 14 and 21
days in Pgf /™ tissue (Fig. 8B). To verify if this delay
affects the degradation of myelin sheaths, we stained
the latter with toluidine blue and counted them on
semi-thin transverse wt and Pgf /™ nerve sections at
various survival times (Fig. 9A). These counts clearly
confirmed that the clearance of myelin sheaths is
slower in Pgf ~/~ mice (Fig. 9B).

Role of PIGF on cytokine and chemokine
expression

WD is orchestrated by a large cyto-/chemo- kine net-
work, which regulates SC and macrophage functions. As
PIGF absence affects more particularly early events of
WD, we compared the expression of 10 cyto/chemokines
in extracts of UI, and 1, 3 and 7 days- injured sciatic
nerves from wt and Pgf ~/~ mice. The following mole-
cules were studied: IL-1«, IL-1B, IL-6, IL-10, TNF-a,
VEGF, VEGFr1l, MCP-1, MIP-1a and proMMP-9. The
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Fig. 9. Myelin sheath quantification. (A) Toluidine blue staining on semithin transverse sections
from wt and Pgf /™ sciatic nerves before (UI) and 7 days after axotomy (scale bar: 20 pm). Quantifi-

cation shows a significant difference between wt and Pg,

mice in the number of intact myelin

sheaths (white arrowheads) 3 and 7 days postinjury. *P < 0.05 (mean = SE; N = 5-9 mice per group).

quantitative analysis of the signal intensity revealed sig-
nificant decreases in Pgf ~/~ extracts of MCP-1 at 1 day,
and proMMP-9 at 7 days postinjury (P < 0,05) (Fig. 10).

Role of PIGF in axonal regeneration and
functional recovery

As SC and macrophage functions appear to be delayed
during WD in Pgf '~ animals, axonal regeneration
might also be altered. To test this hypothesis, we com-
pared the NF-H immunostainings of transected sciatic
nerves in wt and Pgf /™ mice. At 7 days postinjury, all
axons are degraded in both wt and Pgf ~/~ nerve distal
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parts, as illustrated by the high number of axonal debris
(Fig. 11A). At 14 days, regeneration starts in wt nerves,
as more longitudinal profiles can be observed in wt than
in Pgf /" nerves. This observation was confirmed by
counting the proportion of fields containing either axonal
debris (dotted aspect of NF staining), axonal profiles (lon-
gitudinal profiles on NF staining), or both (Fig. 11B).
Almost 60% of the total length of the nerve corresponds
to fields containing only axonal debris in Pgf ~/~ mice,
while debris-containing fields occupy less than 10% in wt
mice. As a corollary, fields with higher proportions of
regenerating axons occupy 50% of the nerve length in wt
mice compared with less than 5% in Pgf /~ mice. No
field containing only axonal profiles was observed 14
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days postinjury. After 21 days, regenerating profiles were
more numerous, reflecting the repair progress, and there
were no more difference between wt and Pgf /™ mice.
This finding suggests therefore that absence of PIGF
leads to a transient delay of axonal regeneration. To
assess the consequence of this delayed axonal regenera-
tion on functional recovery, we further evaluated motor
recovery after sciatic nerve axotomy in Pgf /= compared
with wt mice, using the walking track method in which
footprints are analysed (Fig. 12A). The print-length of
uninjured (NPL) and injured (OPL) sciatic nerves were
measured preoperatively, as well as 3, 7, 10, 14, 17 and
21 days after axotomy and were used to calculate the
print-length factor (PLF, described in Methods section).
During the first week following injury, this PLF increases
and reaches after 7 days the value of about 0.5 and 0.35
for wt and Pgf /~ mice, respectively, indicating a
marked disability in the injured paw. At day 10, the PLF
of wt mice starts to decrease and reaches a value of about
0.3 at 21 days after injury, whereas the PLF of Pgf ~/~
mice continues to get worse and reaches a value of about
0.6 at 21 days. Figure 12B illustrates the recovery of
motor function determined by the PLF. We observe no
functional recovery for the Pgf /= mice. **P < 0.01; *P <
0.05 (mean = SE; N = 5 mice per group).
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DISCUSSION

This study provides evidence of a new function for
PIGF within the PNS, where its expression had never
been described. Using immunohistochemistry, double im-
munofluorescent stainings, in vivo and in vitro cell prolif-
eration assays, cytokine arrays, RT-PCR, foot-prints, Luc
assay and ChIP assay, we propose an original model for
PIGF role in the inflammatory context of WD (Fig. 13).

PIGF is Expressed in the Peripheral
Nervous System

Since its initial discovery in the placenta in 1991,
PIGF has been found in other organs, including the
brain (Beck et al., 2002). Until now, nothing was known
about its distribution in the PNS. As the goal of our
study was to investigate its potential role in WD in a
model of sciatic nerve injury, the first part of our work
focused on the expression of PIGF in the sciatic nerve.
Using immunostaining on intact nerve and DRG, we are
providing evidence that PIGF is expressed in neuronal
cell bodies and axons, but not in SCs, nor in myelin
sheaths. The peculiar peri-axonal localization of PIGF
could be due to its particular basic carboxyl end that
confers him the ability to bind polyanionic molecules
like acidic phopholipids of cell membranes (Autiero et
al., 2003a; De Falco et al., 2002; Persico et al., 1999).

PIGF Expression During WD

Axotomy results in axonal breakdown and disintegra-
tion, which can explain the decrease of PIGF expression
observed in injured axons during the first week postin-
jury. Thereafter, WD in the PNS leads to successful axo-
nal regeneration, explaining the re-expression of PIGF
in axons. Our results also show that SCs transiently
express PIGF after nerve injury. An induction of VEGF
expression in injured peripheral nerves has been previ-
ously reported (Hoke et al., 2001; Scarlato et al., 2003).
Axonal rupture causes a loss of contact between the axo-
lemma and its corresponding SC that switches from a
differentiated state to an undifferentiated, proliferating
state. This SC response is, among others, due to a neu-
ronal release of the cytokine TGF-B1, which induces SC
proliferation (Rogister et al., 1993). Interestingly, TGF-
B1 has been shown to activate PIGF expression in cul-
tured keratinocytes (Failla et al., 2000) and in retinal
pigment epithelial cells (Hollborn et al., 2006). Hence,
the transient expression of PIGF in SC observed after
injury might be due to axonal released TGF-31.

PIGF: A Target of NF-xB
The NF-kB factor plays important roles in immune,
inflammatory and apoptotic responses through the

induction of the transcription of numerous genes coding
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for pro-inflammatory cytokines (Ledeboer et al., 2005;
Vallabhapurapu and Karin, 2009), chemokines (Giraud
et al., 2010; Grove and Plumb, 1993), matrix metallopro-
teases (Hnia et al., 2008; Rhee et al., 2007), and adhe-
sion molecules (Haddad et al., 2010; Moynagh et al.,
1994). After axotomy, activation of NF-kB in SCs is also
implicated in the regulation of the inflammatory
response occurring during WD (Fu et al., 2010; Subang
and Richardson, 2001). Previous study has revealed that
human PIGF expression during hypoxia was regulated
by NF-kB (Cramer et al, 2005). Our results of chromatin
immunoprecipitation assay agree with the fact that
PIGF transcription is regulated by the NF-kB signalling
pathway. By Luciferase assay, we further confirmed that
the kB sites found in the Pgf promoter are functional in
activating NF-«kB.
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Quantification shows that after 14 days, Pgf ~/~ nerves contain a sig-
nificant higher proportion of debris than wt nerves, while more regen-
erating profiles are observed in wt nerves than Pgf '~ ones. **P <
0.001; **P < 0.01 (mean * SE; N = 5-7 mice per group).

PIGF Deletion Causes a Delay in Cellular and
Molecular Events of WD

Lack of PIGF delays Schwann cell
dedifferentiation and decreases their
proliferation

Nerve injury stimulates the generation of proliferative
nonmyelinating SCs within 24h after the lesion. In
Pgf ~'~ mice, SC proliferation rates were shown, both in
vitro and in vivo, significantly delayed. Flt-1, which
binds both VEGF and PIGF-2, mediates VEGF-triggered
proliferation of astroglial cells (Krum et al., 2008; Mani
et al., 2005). It is thus possible that in wt animals the
PIGF released by injured axons activates Flt-1 receptors
on SC membranes hence inducing their proliferation. As
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Fig. 12. Functional recovery. (A) Representative footprints obtained
from wt and Pgf '~ mice, 21 days after unilateral left sciatic nerve
transection. Measures of the length of the operated footprints (OPL)
and the normal footprints (NPL) were used to calculate the print-length
factor (PLF). (B) Graph showing the recovery of motor function after
sciatic nerve transection determined by the PLF (described in the
Methods section). Worse recovery is evident in mice lacking PIGF com-
pared with their wt controls.

other mitotic agents act on SCs during WD (D’Antonio
et al., 2006; Kwon et al., 1997; Li et al., 2005; Ogata et
al., 2006), the sole absence of PIGF can only decrease
SC proliferation, but not abolish it.

Lack of PIGF delays macrophage recruitment
and myelin clearance

Macrophages play an essential role during WD. In
addition to rapid clearance of axonal and myelin debris,
they secrete neurotrophins (Barrette et al., 2008), pro-
moting successful axonal regeneration. PIGF is chemo-
attractive for macrophages (Clauss et al., 1996), and
stimulates chemokine secretion (Selvaraj et al., 2003). It
is therefore not surprising to observe a significant delay
in macrophage invasion during the first week of WD in
Pgf '~ mice. This observation is corroborated by our
cytokine array results, where significant difference of
MCP-1 expression was observed between wt and Pgf /'~
mice. Indeed, while MCP-1 rapidly increases after injury
in wt nerves, it takes 2 more days before an increase
occurs in Pgf~/~ nerves. MCP-1 mRNA is known to be
induced very early after transection in the distal portion
of the sciatic nerve (Perrin et al., 2005; Toews et al.,
1998). MCP-1 is necessary for specific and full recruit-
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Fig. 13. Model of PIGF function in the injured peripheral nerve. Fol-
lowing axonal breakdown, the released PIGF can bind to its flt-1 recep-
tor on SC, which in turn (i) produces PIGF and chemokines through
the activation of the NF-xB signaling pathway, (ii) proliferate, and (iii)
align to form bands of Biingner, promoting axonal regeneration. PIGF
also influences directly monocyte chemoattraction, thereby increasing
macrophage activity of myelin debris phagocytosis, necessary to suc-
cessful axonal regeneration.

ment of monocytes during WD (Perrin et al., 2005; Sie-
bert et al., 2000).

The delay observed in myelin degradation and clear-
ance, which is dependent on SCs and macrophages, is
therefore the consequence of the delayed recruitment
and reduced activity of these two cell types.

Lack of PIGF delays the formation of
Biingner’s bands

In addition to their role in the inflammatory response,
SCs migrate and line up to form the bands of Bilingner.
SC migration involves several molecules like cell-signal-
ing factors, integrins, as well as proteases (Lauffen-
burger and Horwitz, 1996). Among them, MMP-9, which
is over-expressed by SCs after nerve injury and pro-
motes SC migration (Mantuano et al., 2008), was found
to be a target for PIGF (Hattori et al., 2002). Indeed, our
cytokine arrays show a significant decrease of proMMP-9
expression 7 days after injury in Pgf /'~ mice relative
to wt. NGF and its low affinity receptor p75NGFr are
also involved in SC migration (Anton et al., 1994) and in
our study p75NGFr expression is delayed in Pgf /=
mice after injury. Interestingly, mice lacking the neuro-
pilin-2 receptor for PIGF-2 do also show a delayed regen-
eration after sciatic crush injury, due to a delayed re-
establishment of contact between axons and SCs (Ban-
nerman et al., 2008). Moreover, it is known that VEGF
has migratory effects on SCs mainly through its tyrosine
kinase receptors flk-1 and flt-1 (Mani et al., 2010;
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Schratzberger et al., 2000) and that flt-1, the PIGF re-
ceptor, mediates migration of endothelial cells (Bae et
al., 2005; Li et al., 2006), and retinal pigment epithelial
cells (Hollborn et al., 2006). The delay of SC alignment
could thus also be related to a dampened action of
VEGEF, of which the effects are normally amplified by
PIGF via various mechanisms (Autiero et al., 2003b;
Carmeliet et al., 2001; Ribatti, 2008).

Lack of PIGF delays cyto/chemokine expression

A large cyto/chemokine network regulates the sequen-
tial WD cellular events described above. PIGF is able to
induce an increase of several of these molecules like
inflammatory cyto/chemokines (Bottomley et al., 2000;
Selvaraj et al., 2003) or enzymes such as metallopro-
teases (Hattori et al., 2002). In our cytokine arrays
PIGF has a significant effect on the expression of MCP-1
and proMMP-9. These molecules are essential for early
WD events: MCP-1 attracts macrophages (Perrin et al.,
2005), and MMP-9 is responsible for SC migration (Man-
tuano et al., 2008). Thus, PIGF lack of expression can
directly affect macrophage invasion as well as MCP-1
and MMP-9 levels of expression. Additionally, as SCs
increase their expression of both MCP-1 (Taskinen and
Royttd, 2000) and MMP-9 (Chattopadhyay and Shu-
bayev, 2009) after injury, their delayed proliferation in
the absence of PIGF can also trigger a decrease in MCP-
1 and MMP-9 expression, leading indirectly to a
decrease of macrophage activation and a delayed axonal
regrowth.

In conclusion, we show that PIGF is involved in the
early postaxotomy SC proliferation and macrophage
chemoattraction, which can explain that in Pgf /=
mice, axonal regeneration and functional recovery are
delayed. Indeed, the delay in myelin and axonal debris
clearance by SCs and macrophages leads to an unfav-
orable environment for regeneration. Also, the delay of
SC p75NGFr expression and bands of Biingner forma-
tion could decrease the beneficial effect that neurotro-
phins have on the regenerating axons (Taniuchi et al.,
1988). This work is the first demonstration of the
implication of a new member in the cytokine network
regulating WD, the cytokine PIGF, whose function(s)
in the intact and injured nervous system were not
known up to now. The original observation that PIGF
is in particular instrumental in the early events of
WD like Schwann cell proliferation and macrophage
invasion raises important questions and perspectives
for regeneration in the CNS. It is well known indeed
that following injury in the CNS, axonal regeneration
partly fails because of a less pronounced macrophage
invasion compared with PNS. What about PIGF
expression after a CNS injury? Could regeneration be
promoted by providing PIGF after a CNS lesion? In
addition to its potential beneficial effect on the postin-
jury inflammatory reaction, PIGF treatment could also
enhances neo-angiogenesis (Takeda et al., 2009), which
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is also known to be beneficial to axonal regrowth
(Dray et al., 2009; Hobson et al., 2000).
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