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Can mass loss and overshooting prevent the excitation of g-modes in blue
supergiants?
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ABSTRACT
Thanks to their past history on the main-sequence phase, supergiant massive stars develop
a convective shell around the helium core. This intermediate convective zone (ICZ) plays
an essential role in governing which g-modes are excited. Indeed, a strong radiative damping
occurs in the high-density radiative core but the ICZ acts as a barrier preventing the propagation
of some g-modes into the core. These g-modes can thus be excited in supergiant stars by the
κ-mechanism in the superficial layers due to the opacity bump of iron, at log T = 5.2. However,
massive stars are submitted to various complex phenomena such as rotation, magnetic fields,
semiconvection, mass loss, overshooting. Each of these phenomena exerts a significant effect
on the evolution and some of them could prevent the onset of the convective zone. We develop
a numerical method which allows us to select the reflected, thus the potentially excited, modes
only. We study different cases in order to show that mass loss and overshooting, in a large
enough amount, reduce the extent of the ICZ and are unfavourable to the excitation of g-modes.
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1 IN T RO D U C T I O N

Hipparcos data set has provided new samples of periodically vari-
able B-type stars. Among them, about 30 periodically variable su-
pergiant stars have been detected (Waelkens et al. 1998; Aerts et al.
1999; Mathias et al. 2001). Lefever, Puls & Aerts (2006) have re-
cently re-examined this sample and they derived the atmospheric
parameters through line profile fitting. From the location in the
(log g, log T eff ) diagram (Fig. 1), they suggest that the variability
is due to non-radial pulsations excited by the κ-mechanism. Saio
et al. (2006) also reported the discovery of p- and g-mode pulsa-
tions in a B supergiant star HD 163899 (B2 Ib/II; Klare & Neckel
1977; Schmidt & Carruthers 1996) which has been observed by the
MOST satellite. For this star, 48 frequencies have been detected
(�2.8 c/d) with amplitudes of a few millimagnitudes.

At first sight, the presence of g-mode pulsations in a supergiant
star is quite unexpected. Indeed, such stars present a rather con-
densed radiative helium core with a very large Brunt–Väisälä fre-
quency which produces an important radiative damping. This radia-
tive damping is so strong that no g-modes entering the core should
be excited. However, Saio et al. (2006) have shown that the pres-
ence of excited g-modes is indeed possible thanks to an intermediate
convective zone (ICZ) which prevents some of the modes from en-
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tering the radiative damping core. In that case, the κ-mechanism
in the superficial layers can be sufficient to excite the modes. The
presence of this ICZ is therefore crucial to have excited g-modes in
supergiant stars.

However, massive stars are submitted to various complex phe-
nomena such as rotation, strong mass loss, magnetic fields, semi-
convection and overshooting. Each of these phenomena exerts a
significant effect on the evolution and some could prevent the for-
mation of an ICZ. An enlightening and still widely used review on
massive star evolution is to be found in Chiosi & Maeder (1986)
while a more recent review has been made by Maeder (1998). We
shall here limit our discussion to slow rotators, slow enough to be
able to ignore the additional mixing induced by rotation. Magnetic
fields will also be ignored.

We shall here consider models on the main sequence (MS) or
close to it and analyse the effect of mass loss and/or overshooting.
Mass loss induces a faster receding convective core during the MS
phase (Chiosi & Maeder 1986). If a large enough mass-loss rate is
taken into account during the MS, no ICZ can be formed during
the post-MS phase. Overshooting will be discussed according to
two different aspects: (1) overshooting during MS can prevent the
formation of an ICZ during the supergiant phase and (2) with a
large amount of overshooting, a star located in the supergiant region
could still be on the MS, i.e. with a convective hydrogen-burning
core. Although the location of these stars in the (log g, log T eff )
diagram could also be attributed to stars undergoing central helium

C© 2009 The Authors. Journal compilation C© 2009 RAS



1834 M. Godart et al.

Figure 1. log g − log T eff diagram in which the sample of periodically
variable B type supergiants from Lefever et al. (2006) and some evolutionary
tracks from 10 to 50 M� computed with CLES are displayed. The MOST
star is also shown with the error box derived from photometric studies
(Schmidt & Carruthers 1996) by Saio et al. (2006). Lefever et al. (2006)
have divided their sample into four groups depending on the reliability of
the derived stellar parameters (mainly Teff and log g). Red points are the
results considered as very reliable, restricted reliability is shown in blue.
Green points stand for the stars for which they had no means to derived
accurate stellar parameters, the results are thus considered as unreliable and
must be taken with caution. They used 12 comparison stars in which nine
of them appear to be periodically variable too (magenta points).

burning at the blue part of the He loop, we shall concentrate in
this paper on the H-burning phases: either the MS or the supergiant
phase.

2 MO D E L S

Most of the models were computed with the Code liégeois
d’Evolution Stellaire (CLES; Scuflaire et al. 2008b). We used
the OPAL opacities (Iglesias & Rogers 1996), completed with
the Alexander & Ferguson (1994) opacities at low temperature.
We adopted the CEFF equation of state (Christensen-Dalsgaard
& Daeppen 1992) and the old standard heavy-element mixture
(Grevesse & Noels 1993) with a metallicity of 0.02. Boundary
conditions at the surface are derived from a radiative grey model
atmosphere computed in the Eddington approximation and with the
OPAL equation of state. Stellar evolution models with the Ledoux’s
criterion for convective instability have been calculated with the
CESAM code (Morel & Lebreton 2008) with a metallicity of 0.0245.
The adiabatic oscillation frequencies are computed with the Liège
Oscillation Code (LOSC; Scuflaire et al. 2008a) and the excitation
of oscillation modes is computed using the non-adiabatic code MAD

(Dupret et al. 2003).

3 RO L E O F A N IC Z I N T H E EX C I TAT I O N O F
G - M O D E S IN SU P E R G I A N T S TA R S

3.1 Internal structure

B supergiant stars are post-MS massive stars which are burning
hydrogen in a shell surrounding the helium core. Some of them

are already burning helium in the core. The He core is very dense
and is contracting whereas the low-density radiative envelope is
expanding. The structure of the star in the vicinity of the hydrogen-
burning shell depends on the structure of the star during the MS. In
particular, depending on this past history, an ICZ can develop above
the core.

The formation of the ICZ requires a region where the neutrality of
temperature gradients is reached: ∇ rad

∼= ∇ad during the MS phase.
This region is formed by the decrease of the radiative and the adi-
abatic temperature gradient during the MS. The transformation of
H into He decreases the opacity and thus the radiative temperature
gradient which, in less massive stars, leads to a receding convective
core. However, the larger the initial mass, the higher the central
temperature and massive stars have therefore a large radiation pres-
sure which increases during MS. This results in a decrease of the
adiabatic temperature gradient and the convective core either re-
cedes much more slowly or even increases in mass during the MS.
When this happens, a semiconvective zone appears, and adopting
the Schwarzschild criterion for convective stability a partial mixing
occurs in a region surrounding the convective core with a radiative
temperature gradient very close to the adiabatic one (Fig. 2). In the
post-MS phase, when H-shell burning starts in this region, the ra-
diative gradient becomes very rapidly larger than the adiabatic one
since L/m becomes very large (∇ rad ∝ κL/m) and an ICZ appears
in, or near, the H-burning shell.

However, that MS ‘neutral’ region as well as the post-MS
ICZ can be affected by various physical processes occurring
during MS. If a large enough mass-loss rate is taken into ac-
count during the MS phase, the central temperature increases
less quickly. Hence, the adiabatic gradient no longer decreases
significantly. Mass loss also results in a convective core reced-
ing more quickly and which does not leave behind it a region
where ∇ rad

∼= ∇ad (Chiosi & Maeder 1986). Therefore, with sig-
nificant mass loss, no ICZ appears during the post-MS phase.
Overshooting during MS can also prevent the formation of an
ICZ during the supergiant phase. Finally, the criterion used to
define the boundaries of the convective zones: Schwarzschild
∇ rad = ∇ad or Ledoux ∇ rad = ∇ad + [β/(4 − 3β)]∇μ = ∇L also
affects the appearance or not of an ICZ (Lebreton et al. 2009).
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Figure 2. Radiative and adiabatic temperature gradients (dashed and solid
lines, respectively) in a model of 16 M� on the MS phase. The dotted
line stands for the hydrogen abundance. During the MS, both the radiative
and the adiabatic gradients decrease and the region with the neutrality of
gradients is formed.
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Figure 3. Propagation diagram for two supergiants model (13 M�, Ṁ =
0, log Teff = 4.26, log L/L� = 4.50; solid line) and (16 M�, Ṁ =
10−7 M� yr−1, log Teff = 4.26, log L/L� = 4.47; dotted line). The
squared dimensionless Lamb frequencies [L2

� R3/(GM); similar for both
models] are shown by solid lines for l = 1. The squared dimensionless
Brunt–Väisälä frequencies [N2 R3/(GM)] are shown by solid and dotted
lines for the model with ICZ (without mass loss) and without ICZ (with
mass loss), respectively. The horizontal dashed line corresponds to a typical
SPB type g-mode.

3.2 Excitation of g-modes

The structure of a supergiant star is similar to the one of a red giant:
it is characterized by a high-density contrast between the small size
core and the expanding envelope. This problem has been discussed
for giant stars by Dziembowski (1971), Dziembowski (1977) and
Dziembowski et al. (2001). The regions of mode trapping are shown
in the propagation diagram (Fig. 3) in which the dimensionless
squared Brunt–Väisälä (N2) and Lamb (L2

�) frequencies are plotted
as a function of log T . We first consider a model without ICZ
(dotted line). The behaviour of L� = √

�(� + 1) c/r is qualitatively
similar from star to star, being infinite at the centre and decreasing
monotically towards the surface. This is not the case for the Brunt–
Väisälä frequency:

N 2 = −g

(
d ln ρ

dr
− 1

�1

dlnP

dr

)
(1)

� g2ρ

P
(∇ad − ∇ + ∇μ) for a fully ionized gas, (2)

which is affected by the presence of convective region where N2

is close to zero and by the mean molecular weight gradient, ∇μ,
which leads to bumps in the Brunt–Väisälä frequency. Moreover, the
Brunt–Väisälä frequency depends on g2 ρ/P , which in supergiant
stars, due to the contrast between the contracting helium core and
the expanding envelope, takes huge values within the radiative core.
Hence, the eigenmodes of any moderate frequency (ω � 100) show
a g-mode behaviour in the core, where σ 	 N , L�: all non-radial
modes are mixed modes. Moreover, the eigenfunctions have a large
wavenumber, k, in the core since

k2 = (N 2 − σ 2)(L2
� − σ 2)

(σc)2

� N 2

σ 2

�(� + 1)

r2
if σ 	 N, L�.

(3)

In this radiative g-mode cavity, where oscillations present short
wavelengths, a strong radiative damping always occurs. Indeed, lo-
cally, the mechanical energy lost per unit length by the mode during
each pulsation cycle due to radiative heat exchanges is approxi-
mately given by

dWrad/dr ∼= L

σ d ln T /dr

δT

T

d2(δT /T )

dr2

= �(� + 1)
N 2

σ 3

T 4

κρ

∣∣∣∣ δTT
∣∣∣∣

2 16πac

3
. (4)

This expression will be detailed more rigorously in Section 4.1. It is
obtained by substituting one of the dominating term in equation (6)
(last term) into equation (7). This radiative damping of non-radial
modes is thus very large due to the huge values of N2 in the core, and
it seems that there are no hopes to observe such modes in post-MS
stars.

However, in the reasoning above we have assumed that the eigen-
function square modulus |δ T /T |2 is not negligible, which is not
always the case due to the presence of an ICZ (Fig. 3, solid line).
In a convective zone, N 2 < 0 and g-modes are evanescent. There-
fore, the ICZ can act as a potential barrier: some modes can cross
it, others are reflected. This is illustrated in Fig. 4. For the mode
that crosses the convective barrier (grey line), the amplitudes of
short-wavelength oscillations are significant in the radiative core
and strong radiative damping ensues (see the grey line on the work

Figure 4. Radial displacement eigenfunction versus the temperature of the
star. The ICZ is shown by vertical solid lines. Two modes are shown, the
grey one crosses the ICZ and enters the radiative core in which it has large
amplitude, whereas the other (black dashed line) is reflected on the ICZ. In
that case, the amplitude in the core is small. The amplitudes in the envelope
are roughly the same. The behaviour of the eigenfunctions in the centre is
an artefact coming from our use of the asymptotic approximation (equation
10, where N and r come to zero). Top panel: representation of the whole
star. Bottom panel: zoom on the central regions.
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Figure 5. Work integral versus the temperature of the star. The work is
positive at the surface if the mode is excited. The reflected mode (in black)
is thus excited whereas the non-reflected one (in grey) suffers the strong
damping in the radiative core.

integral, shown in Fig. 5): this mode cannot be observed. The other
mode, whose frequency is very close, is reflected on the convective
barrier, i.e. has small amplitudes in the radiative core (black line).
In this case, the radiative damping remains small compared to the
κ-mechanism occurring in the iron opacity bump near the surface
(see the increasing work at log T � 5.2; black line in Fig. 5); this
mode is unstable and could be observed. In the dense spectrum of
non-radial modes, some are reflected on the convective shell and
can be excited and observed. In order to select the reflected modes,
i.e. those with small amplitudes in the radiative core, we impose
a rigid boundary condition at the base of the ICZ (see Section 4).
If the wavelength of the considered mode is a lot smaller than the
width of the ICZ, this condition allows to achieve small amplitudes
in the radiative core. It is useful to note that, if only reflected modes
are considered, the mode propagation cavity exactly looks like a MS
B star: because of the reflection, the radiative core can be somehow
forgotten and the bottom of the cavity is a convective region. As
a consequence, the frequencies of reflected modes behave like fre-
quencies in a MS star. Limited to the reflected modes, the frequency
pattern is sparse enough and asteroseismology of blue supergiants
becomes possible.

4 SUPERGIANT STARS: NUMERICAL
M E T H O D

The main numerical problem when solving the non-adiabatic pul-
sation equations in supergiant stars is the large number of mixed
modes with a huge number of nodes. Indeed, for a given period
range, the number of nodes, n, depends on the Brunt–Väisälä fre-
quency:

Pn,� � 2π2(n + �

2 + ε)√
l(l + 1)

∫ r

0
N

r
dr

. (5)

For a β Cephei type mode with a period of the order of the fun-
damental radial mode, the number of nodes is of the order of 100,
or even 1000 for SPB (Slowly Pulsating B star) type g-modes. The
problem is numerical: it is difficult to solve the differential equa-
tions in such a cavity with such a large number of nodes. We shall,
however, see that it is possible to avoid the computation of the full

dense spectrum of non-radial modes by pre-selecting the modes that
are reflected at the bottom of the ICZ (and potentially excited).

First of all, in order to select the reflected modes only, we impose
a rigid boundary condition at the bottom of the convective shell:
ξ r = 0. This condition leads to small amplitudes of all eigenfunc-
tions in the radiative core since |P ′| is much smaller than |δP |. As a
consequence, |δP | � ρg|ξ r | stays also small. This condition allows
us to solve the ‘envelope problem’ individually, without taking care
of what is happening below. All the computations are performed
with the standard fully non-adiabatic code. Artificially imposing a
boundary condition inside the star will of course not provide the real
frequencies of the full star. But, as the frequency spectrum of the
full star is very dense there always exists a mode with a frequency
close to the one corresponding to such a rigid reflection and the
error introduced by this approach is very small.

Once the non-adiabatic pulsation equations are solved in the
envelope, we cannot completely disregard the radiative core because
reflection is only partial. In the radiative core, we have seen that the
eigenfunctions have a huge number of nodes (up to n ≈ 1000!). This
makes very difficult to accurately solve the differential problem in
this region. But, at the same time two approximations are valid with
high accuracy in this region.

4.1 Quasi-adiabatic treatment

First, the internal energy of these deep layers is very high, which
justifies the so-called quasi-adiabatic approximation. This approx-
imation can be presented in different ways (Dziembowski 1977;
Unno et al. 1989), but leading always to the same final result. We
can present it also as follows. First, the adiabatic problem is solved
to get the eigenfunctions ξ r, δ P ,. . . Next, these adiabatic eigen-
functions are used to determine δ L from the perturbed diffusion
equation:

δL

L
= 4

ξr

r
+ 3

δT

T
− δκ

κ
− �(� + 1)

ξh

r
+ d δT /dr

dT /dr
. (6)

Finally, with all these ingredients the work integral can be computed
and divided by the inertia to get the damping rate of the modes,
which gives in a pure radiative zone without nuclear reactions:

η =
∫ M

0
δT

T

[
∂δL

∂m
− �(�+1) L

4πρr3
T ′

dT /d ln r

]
dm

2 σ 2
∫ M

0 |�ξ |2 dm
, (7)

where σ (resp. η) are the real (resp. imaginary) parts of the angular
frequency [time-dependence: exp(iσ t − ηt)]. The quasi-adiabatic
treatment is used for the integration in the radiative core (r < r0)
and the full non-adiabatic eigenfunctions are used for the envelope
(r ≥ r0).

4.2 Asymptotic treatment

Secondly, another important simplification is to use the asymptotic
theory in the radiative core. This theory applies perfectly there
since the wavelength of the eigenfunctions is by far smaller than the
scaleheights of different equilibrium quantities. A full non-adiabatic
asymptotic treatment was derived by Dziembowski (1977). Here,
we use instead the standard adiabatic asymptotic theory, which
gives the following expressions for the radial (ξ r) and transversal
(ξ h) components of the displacement far from the edges of a cavity
(Unno et al. 1989):

ξr

r
= K

r2 √
c ρ σ

(
L2

� − σ 2

N 2 − σ 2

)1/4

sin

(∫ r

r0

kr dr

)
(8)
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ξh

r
= P ′

σ 2r2ρ

= K

r3

√
c

σ 3ρ

(
N 2 − σ 2

L2
� − σ 2

)1/4

cos

(∫ r

r0

kr dr

)
. (9)

In a g-mode cavity (σ 2 	 L2
� , N 2), this gives

ξr

r
= K

[�(� + 1)]1/4√
σ r5 ρ N

sin

(∫ r

r0

kr dr

)
(10)

ξh

r
= P ′

σ 2r2ρ

= K

[�(� + 1)]1/4

√
N

σ 3 r5 ρ
cos

(∫ r

r0

kr dr

)
,

(11)

where the local radial wavenumber is given by kr =√
�(� + 1) N / (σ r). The K constant is obtained by applying the

continuity of δP at the bottom of the ICZ (r0), which is equiv-
alent to the continuity of P′ because of our rigid boundary con-
dition. We note from these equations that |ξ h|/|ξ r | ≈ N/σ � 1
and |P ′|/|dP/dr ξ r | ≈ Nσ r/g ≈ σ/L� 	 1. Hence, δP/P �
(d ln P/dr) ξ r (the same for T and ρ) and |δρ/ρ | 	 �(� + 1) |ξ h/r |
(near incompressibility), so that dξ r/dr � �(� + 1) ξ h/r .

Substituting equations (10) and (11) in equation (6) and keeping
only the dominating terms in the asymptotic limit gives thus:

δL

L
� d (δT /T )

d ln T
− �(� + 1)

ξh

r

� �(� + 1)

(∇ad

∇ − 1

)
ξh

r
. (12)

We obtain then from the equation of energy conservation and ne-
glecting the transversal component of the divergence of the flux
[since d ln T /dr and kr � �(� + 1)/r]:

iσTδs � −dδL

dm

� K
[�(� + 1)]5/4

4π
L

(∇ad

∇ − 1

)
√

N 3

ρ3σ 5r11
sin

(∫ r

r0

kr dr

)

� �(� + 1)

4π

(∇ad

∇ − 1

)
N 2 L

σ 2 r3ρ

ξr

r
. (13)

The contribution of the radiative core to the numerator of equation
(7) is thus simply given by∫ m0

0

δT

T

∂δL

∂m
dm

� �(� + 1)

σ 2

∫ r0

0

ρg

P

∇ad − ∇
∇ ∇adN

2L

(
ξr

r

)2

dr

� K2 [�(� + 1)]3/2

2σ 3

∫ r0

0

∇ad − ∇
∇

∇ad N g L

P r5
dr

(14)

and for the denominator:

2σ 2

∫ m0

0
|�ξ |2 dm � 4π K2

∫ r0

0
kr dr . (15)

These equations are perfectly compatible with those given in Van
Hoolst, Dziembowski & Kawaler (1998) and Dziembowski et al.
(2001). Finally, it is important to emphasize that using Lagrangian
or Eulerian formalisms can lead to different numerical results. In our
first computations, we used a Lagrangian formalism, but it did not

lead to the appropriate evanescent behaviour of the eigenfunctions
in the ICZ; instead, they showed a large wavelength oscillation. This
comes from the fact that no control of the Brunt–Väisälä frequency
is possible in a Lagrangian formalism. Because of numerical trun-
cation errors, the code does not know if N2 is slightly positive or
negative in the ICZ. With an Eulerian formalism instead, N2 appears
explicitly in the movement equation, and the correct value can be
attributed to it. As was already pointed out by Dziembowski (private
communication) years ago, we emphasize thus that it is much better
to use an Eulerian formalism for the finite difference scheme inside
a deep convective zone.

Our numerical method gives us therefore the frequencies of the
reflected and potentially excited modes by solving numerically, with
the fully adiabatic code, the ‘envelope problem’ first. We then com-
pute the damping rate of the modes taking into account the envelope
and the core for which we made some valid approximations: the use
of the quasi-adiabatic approximation and the eigenfunctions of the
asymptotic theory.

5 R ESULTS AND D ISCUSSION

New samples of B supergiant stars have been observed and it is
now commonly admitted that they present non-radial pulsations
(Waelkens et al. 1998; Aerts et al. 1999; Mathias et al. 2001; Saio
et al. 2006; Lefever, Puls & Aerts 2007). The Canadian MOST
satellite observed the B supergiant HD 163899 in 2005 June dur-
ing 37 days and detected 48 frequencies �2.8 c/d with ampli-
tudes of a few millimagnitudes. Blue supergiants are, however,
characterized by a radiative core in which the Brunt–Väisälä fre-
quency takes huge values. A strong radiative damping ensues and
no such modes should be observed. Saio et al. (2006) have sug-
gested that the presence of an ICZ around the core prevents some
modes from entering the core. In that case, the radiative damping
is largely reduced and the κ-mechanism in the superficial layers
can excite the mode. Some physical processes could, however, pre-
vent that ICZ from developing; this is the case with mass loss and
overshooting. We shall successively envision six different physical
situations.

5.1 A supergiant star without mass loss and without
overshooting

As mentioned, the excitation of the g-modes in supergiant stars is
due to the opacity bump of iron in the surface layers thanks to the
blocking effect of an ICZ (Section 3). Saio et al. (2006) computed
evolutionary models for a mass range of 7 � M/M� � 20 with an
initial composition of (X, Z) = (0.7, 0.02) and the OPAL opacities.
Their models fit quite well the observations, though a frequency
gap between p- and g-modes still appears in the theoretical excited
frequencies compared to the observed ones. They derived the esti-
mated effective temperature from photometric analysis (Schmidt &
Carruthers 1996): for a B2Ib/II type star, log T eff is roughly between
4.22 and 4.32. The model which best reproduces the observed fre-
quency range is a model of 15 M� at log T eff ≈ 4.36 for which they
assume that the frequency gap would be filled at least partially by
rotationally splitted modes. We have computed models with mass
from 10 to 18 M�. Fig. 6 shows evolutionary tracks with instability
region for p- and g-modes from 10 to 14 M� (top panel). In agree-
ment with the work of Saio et al., we find excited g-modes on the
supergiant phase.
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Figure 6. Evolutionary tracks and stability data in the HR diagram. The
black box is the error box of the MOST star from Saio et al. (2006).
Top panel: without mass loss (from 10 to 14 M�). All sequences present
excited g-modes (crosses) on the supergiant phase. Bottom panel: with
Ṁ = 10−7 M� yr−1 (from 16 to 20 M�), excited g-modes are present only
for a mass higher or equal to 17 M�.

5.2 A supergiant star with mass loss and without overshooting

The occurrence of stellar winds is ubiquitous for stars of almost all
mass and constitutes a key aspect of stellar physics. In terms of the
mass loss integrated over the whole star lifetime, it is most extreme
in massive luminous stars, where the winds are almost certainly
radiatively driven. Most of hot massive stars (O, B, WR) indeed
present a wind essentially due to the radiation pressure: winds are
driven by the resonant scattering of the stellar radiation (Lamers &
Cassinelli 1999). When taking mass loss into account, the central
temperature and the radiation pressure increase less rapidly in the
course of central H burning. As a result, the adiabatic temperature
gradient decreases less and less as the mass-loss rate increases. If a
large enough mass-loss rate is assumed during the MS, no ICZ is
formed during the supergiant phase (Chiosi & Maeder 1986).

We adopted a mass-loss rate of 10−7 M� yr−1 which is slightly
larger than most observed MS mass-loss rates in order to emphasize
the effect of mass loss on the excitation of g-modes. Indeed, the
mass-loss recipe of Vink, de Koter & Lamers (2000); Vink, de
Koter & Lamers (2001) gives mass-loss rates of the order of 10−9

to 10−8 M� yr−1 during the MS and of about 10−7 M� yr−1 on the
post-MS phase for 14 and 16 M� stars. But, the real mass-loss
rates are still under discussion until now (see e.g. Bouret, Lanz &
Hillier 2005; Martins et al. 2005; Puls, Markova & Scuderi 2006;
Oskinova, Hamann & Feldmeier 2007; Mokiem et al. 2007 and
references therein).

Figure 7. Frequency distribution of excited p- and g-modes for supergiant
models of 13 M� computed without mass loss (left-hand panel) and of
18 M� computed with Ṁ = 10−7 M� yr−1 (right-hand panel). The hori-
zontal dotted lines stand for the observed frequency of MOST (Saio et al.
2006).

We have computed evolutionary tracks with and without mass
loss. Their location in the HR diagram is shown in Fig. 6: tracks on
the top panel (resp. bottom panel) are computed without (resp. with)
mass loss. We performed non-adiabatic computations to determine
whether unstable modes were present or not. For the sequences com-
puted without mass loss, there are indeed excited g-modes during the
supergiant phase for models within the error box for the MOST star
HD 163899. Even at 10 M� the supergiant phase is characterized
by excited g-modes. This is true for all higher masses. On the other
hand, in the sequences computed with mass loss, we find excited
g-modes only for stars initially more massive than about 17 M�,
i.e. with an instantaneous mass of 13.7 M� on the supergiant phase.
With an even higher mass-loss rate, this value becomes larger and
larger. These sequences without any excited g-modes differ by the
absence of ICZ on the supergiant phase, due to the mass-loss effect
during the MS phase. Hence, all the modes enter the radiative core
and suffer the strong radiative damping. The frequency distribution
of the theoretical excited modes is shown in the same kind of fig-
ure as in Saio et al. (2006) but here comparing without and with
mass loss (Fig. 7). In both cases, the frequency distribution of the
theoretical excited modes is in good agreement with the observed
frequencies.

5.3 A supergiant star without mass loss and with overshooting

The convective stability criterion fixes the boundary of the convec-
tive core as the layer where the buoyancy acceleration vanishes.
The velocity of the globule is, however, different from zero and the
globule can penetrate the radiative region. Such an enlargement of
the mixed core makes the star more luminous, it also increases the
core H-burning lifetime while, in the HR diagram, the MS track
is more extended. We model here overshooting by just extending
the mixed region but keeping ∇ = ∇ rad in the overshooting region.
When assuming a large enough overshooting during the MS, the
MS ‘neutral’ region (where ∇ rad

∼= ∇ad) does not exist above the
convective core and this can prevent the formation of an ICZ during
the post-MS phase. No g-modes are thus found to be excited. We
have checked the presence of an ICZ by progressively increasing
the overshooting parameter from one evolutionary sequence to the
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Figure 8. Evolution of the mass extension of the ICZ during the supergiant
phase. On the x-axis, we have the effective temperature decreasing after the
MS. Each point of this axis is a model. For each model, the mass fraction
of the limits of the convective zone are indicated on the y-axis. For a small
amount of overshooting αov = 0.2, the ICZ is well develops, it is much
smaller for 0.3 and it disappears for 0.4.

next (Fig. 8). For a model of 12 M�, the ICZ is well develop for a
small amount of overshooting αov = 0.2, it is much smaller for 0.3
and it completely disappears for 0.4. In the cases considered here,
the overshooting is, however, small enough to keep the error box
well within the post-MS phase. Let us note that in case the ∇ad is
assumed in a large overshooting region an ICZ is likely to appear
during the post-MS phase.

5.4 A main-sequence star without mass loss
and with overshooting

Another possibility to solve the problem of the presence of excited
g-modes would be to bring MS evolutionary tracks into the error
box of HD 163899. This could be achieved by including larger over-
shooting in MS models. Indeed, with overshooting, the MS phase
of evolution reaches lower effective temperatures. We computed
evolutionary tracks with different overshooting parameter, ranging
from αov = 0.2 to 0.5 (Fig. 9). MS evolutionary tracks cross the
error box for an overshooting parameter equal to or larger than 0.3.
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Figure 9. MS evolutionary tracks computed with different overshooting
parameters ranging from αov = 0.2 to 0.5. The black box is the error box of
HD 163899. MS evolutionary tracks with at least αov = 0.3 cross this error
box.

Figure 10. Frequency distribution of the excited p- and g-modes during
the MS (decreasing T eff ) and near the turn-off (increasing Teff ) for 13 M�
models computed with overshooting. The horizontal dotted lines stand for
the observed frequency of MOST (Saio et al. 2006). The agreement between
the observed frequencies and the theoretical mode spectrum is not as good
as it was for the supergiant models. Top panel: αov = 0.4. Bottom panel:
αov = 0.5.

On the MS phase, massive stars present a convective core sur-
rounded by a radiative envelope. The Brunt–Väisälä frequency
is therefore zero in the core and no damping can occur. The
κ-mechanism due to the Fe-opacity bump at log T = 5.2 excites
p- and g-modes. We performed non-adiabatic computations which
revealed excited g-modes in all the sequences. The spectrum of the
theoretical excited modes is shown in Fig. 10 for αov = 0.4 and
0.5 during the MS (decreasing effective temperatures) and near the
turn-off (increasing effective temperatures). The agreement in the
mode spectrum is, however, not as good as it was for the supergiant
model.

5.5 A supergiant star in the helium-burning phase

Blue supergiants could also be He-burning stars. Their structure
shows a small convective core surrounded by a radiative envelope
in which an ICZ may still exist. As long as such an ICZ is present,
g-modes can still be excited. After the disappearance of the ICZ,
the radiative damping is no longer reduced by this reflective barrier
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Figure 11. Temperature gradients, opacity, κ , and hydrogen abundance, X,
in a model of 15 M� computed with the Ledoux’s criterion for convective
instability. The vertical solid lines stand for the boundary of the ICZ. ∇�
is the real stellar temperature gradient. These figures were created from the
CESAM models presented by Lebreton et al. (2009). Top panel: MS model.
Bottom panel: post-MS model.

and g-modes are all stable. In a forthcoming paper, we shall analyse
the excitation of g-modes in He-burning models.

5.6 Ledoux’s criterion

The hydrogen rich layers surrounding the core during the MS phase
are potentially unstable towards convection and a partial or semi-
convective mixing is supposed to take place in order to achieve
neutrality versus the convective criterion. This criterion is either the
Schwarzschild criterion or the Ledoux criterion and we choose here
the Schwarzschild one for which a region is convective if ∇ rad ≥
∇ad. However, adopting the Ledoux’s criterion {∇ rad = ∇L = ∇ad +
[β/(4 − 3β)]∇μ, where ∇μ = d ln μ/d ln P and β is the gas pressure
to total pressure ratio} alters the structure of the star since it adds to
the adiabatic temperature gradient the mean molecular weight gra-
dient which is formed on top of the convective core during MS. The
appearance and behaviour of convective zones in models adopting
the Ledoux’s criterion have been studied by Lebreton et al. (2009).
They showed that while the MS convective core is not altered by
the choice of criterion (∇μ = 0), interestingly adopting Ledoux’s
criterion affects the size and the location of the ICZ on the post-MS.
During the MS, the presence of the mean molecular weight gradient

prevents the formation of a region in which the neutrality of gradi-
ents is reached (∇ rad

∼= ∇ad). However, outside the core, the radiative
gradient increases due to a larger opacity resulting from the increase
in the hydrogen abundance. As a result, they showed that an ICZ
appears above the region of variable mean molecular weight (Fig.
11, top panel). This ICZ develops in an homogeneous region where
no nuclear reactions take place. The bottom of the ICZ corresponds
to the base of the constant hydrogen rich envelope, which corre-
sponds to the maximum extent of the MS convective core. On the
post-MS phase, this ICZ remains at the same location, well outside
the nuclear-burning shell (Fig. 11, bottom panel).

6 C O N C L U S I O N S

The formation of an ICZ during the post-MS phase is a result of the
MS evolution. The presence of excited g-modes in B supergiant stars
depends therefore on physical processes during the MS: overshoot-
ing; mass loss; convective criterion. We show that with significant
mass loss or overshooting during the MS, no ICZ appears during
the post-MS phase. In a future work, we shall extend this prelim-
inary analysis in order to define an instability strip depending on
those physical aspects and compare it to the observations. In this
confrontation process, it is clear that asteroseismology of massive
supergiant stars can give us a better understanding on the physical
processes not only during the supergiant phase but also during the
MS phase.
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eds, Origin and Evolution of the Elements. Cambridge Univ. Press,
Cambridge, p. 15

Iglesias C. A., Rogers F. J., 1996, ApJ, 464, 943
Klare G., Neckel T., 1977, A&AS, 27, 215
Lamers H. J. G. L. M., Cassinelli J. P., 1999, Introduction to Stellar Winds.

Cambridge Univ. Press, Cambridge
Lebreton Y., Montalbán J., Godart M., Morel P., Noels A., Dupret M. A.,

2009, CoAst, in press
Lefever K., Puls J., Aerts C., 2006, Mem. Soc. Astron. Ital., 77, 135
Lefever K., Puls J., Aerts C., 2007, A&A, 463, 1093
Maeder A., 1998, in Bedding T., Booth A. J., Davis J., eds, Proc. IAU

Symp. 189, Fundamental Stellar Properties: the Interaction Between
Observation and Theory. Kluwer, Dordrecht, p. 313

Martins F., Schaerer D., Hillier D. J., Meynadier F., Heydari-Malayeri M.,
Walborn N. R., 2005, A&A, 441, 735

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 396, 1833–1841



g-modes in supergiants 1841

Mathias P., Aerts C., Briquet M., De Cat P., Cuypers J., Van Winckel H., Le
Contel J. M., 2001, A&A, 379, 905

Mokiem M. R., de Koter A., Vink J. S. et al., 2007, A&A, 473, 603
Oskinova L. M., Hamann W.-R., Feldmeier A., 2007, A&A, 379, 905
Puls J., Markova N., Scuderi S., 2006, preprint (astro-ph/0607290)
Saio H., Kuschnig R., Gautschy A. et al., 2006, ApJ, 650, 1111
Schmidt E. G., Carruthers G. R., 1996, ApJS, 104, 101
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