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Abstract

This paper presents a continuous facility locatrmdel with fuzzy methodology. The developments
concern mainly to some drawbacks in the initial Bloghich takes it far from being used in practiée.
fuzzy modeling method is proposed to estimate élgeired functions in the initial model. Structure
identification in the proposed fuzzy modeling methi® carried out using subtractive clustering, and
parameter identification is conducted via some iséos as well as an optimization problem.
Furthermore, a simulation method along with somgikic relations is used for implementation and
evaluation of the modified model. Efficiency of theposed method to fuzzy modeling as well as the

proposed simulation method is presented by a ngalezkample.

Keywords:. Facility location; fuzzy modeling; fuzzy rule basémulation.

1. Introduction

In the domain of supply chain management therévesecomplementary issues for
most production systems: facility layout and fagilocation. Facility layout problems
deal with the position of manufacturing machingstess, and manpower inside a firm.

It has attracted the attention of many researdbecause it can considerably reduce the
material handling costs and yet increase flexipiitthe manufacturing system. Facility
layout is usually regarded as an optimization pobto determine the most efficient
layout based on some prespecified criteria. [1,12]

Facility location, on the other hand, concernsdheice of the location of one or
multiple facilities, in a given geographical sparel subject to some constraints, to
optimally fulfill predetermined objectives. It issrategic decision making compared to
facility layout which is more operational. Facilitycation might be part of a more
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comprehensive problem named Production-DistribuBgstem Design (PDSD). In
general, a PDSD problem involves the determinaticthe best configuration,

regarding location and size of the facilities amtribution centers, their technology
content, commodity offerings, and transportatioaisiens, for achieving a firm’s long
term goals [11]. It is a strategic issue for battiustrial firms and governmental
agencies, in that an efficient PDSD can resuletlucing transportation costs, enforcing
operational efficiency and logistic performanceg anproving the quality of the

services.

Facility location problems are usually categoribaged on some characteristics such
as: number of facilities (single/multiple), obje@ifunction (single/multiple), solution
space (discrete/network/continuous), number of codities (single/multiple), capacity
limitation (yes/no), shape of facility (point/extwe), and demand
(discrete/continuous). However, it should be nabed these characteristics are not

restricted to the above mentioned ones [7,8,14019,2

The main decision variables in facility locatioroplems are coordination
(geographical location) of each facility. Besidesimber of facilities, capacity of each
facility, and its respective service region mightdecision variables of the model as
well. In problems with discrete solution space, fdmlities can conceptually be placed
only at a limited number of eligible points on thlane or in a network. On the other
hand, in a continuous solution space the poinketmcated can generally be placed

anywhere on the plane or in a network [18,20].

Typically, continuous location problems tend tonoalinear optimization problems,
while discrete location problems involve zero—ongables that result in integer
programming optimization problems. Moreover, coasitgy the number of facilities
and the capacity of each facility as the decisianables makes the model more
complicated, from both the problem formulation &nel problem solving perspectives.
As a result, the most complex facility location lplems are those that consider the
number of facilities as well as their coordinataomd capacities as decision variables in

a continuous solution space with multiple objediaad multiple commaodities.

Although the field of facility location is activedm the research point of view, when
it comes to applications, there appears to berafgignt deficit, at least as compared to
other similar fields [20]. One reason for this gald be that many applications cannot
be solved by the plain version of a location prabléut further constraints (e.g.

forbidden regions) must be introduced in orderdnstruct a reasonable model [7]. To



this end, many concepts, tools and techniquedtiital intelligence such as fuzzy
logic can be used to improve the implementationusherous models in operations
research [10,11,18,20].

The literature shows that the majority of the wark¢he area of facility location
have used fuzzy theory to fuzzify the parameteth®@imodel or have dealt with the
facility location problem as a fuzzy multiple dbtkte decision making problem
[2,3,10,16,24]. Wen and Kang [25], for example,sidar fuzzy demands to construct
some optimization models for facility location. ikd these models, a novel utilization
of fuzzy theory in facility location is proposedtims paper, in which we deal with
estimation of some required nonlinear functionstigh fuzzy modeling. Although the
proposed method is used to develop an existing hppdposed by Dasci and Verter
[6], it can be extended to formulate any facilitgation model in which a mathematical
function, especially a nonlinear one, is neededi&amand density, transportation cost,

operational cost, fixed cost, and so on.

The remaining of this paper is organized as folto8ection 2 concisely states the
initial model and its drawbacks. Section 3 introgluthe required materials for fuzzy
modeling and the proposed method. In section 4eldpment of the initial model
through fuzzy modeling and simulation is discussedetails. Section 5 indicates
implementation of the proposed method via a nurakexample. Finally, conclusions

of the paper and future works are presented incse6t

2. Problem Statement

Continuous models are successfully used in spat@homics and logistics, but there
are probably a few papers that use continuous raddefacility design [6]. Models of
this type assume that customers are spread oveem market area and prescribe the
optimal service region for each facility to be é$thed [6]. Dasci and Verter [6]
present a PDSD model in which the concentratiamifacility location with the

following main features:

1) the model consists of two multi-element layers: afaaturing facilities and end

customers,
2) the number of manufacturing facilities is a deasiariable,

3) the model is a single-product PDSD problem,



4) customers’ demand is deterministic and is speclied density function,
5) there is no limitation for manufacturing facilitiesapacity,
6) all customers’ demand must be satisfied.

The objective is to minimize the sum of total arlreests including fixed,
operational, and transportation costs. They presembdeling framework based on the
use of continuous functions to represent spatsdtidutions of cost and costumer

demand. Herein, the Dasci and Verter's model [®fisfly addressed.

Assume that a firm wants to open some manufactdadcigities in a demand area,
where each facility serves a single service rediosuch a case, decision variables are:
the number of facilities, the location of facilities, andthe service region of each facility.
Facilities can be located anywhere in the demaed. dret’'sM denotes the market area

for which the following variables and parameters @efined:

Decision variables:

n: number of facilities

(x,Y,) : location coordination of thih facility

R : service region to be served by facilityvhich is located a¢x ,y,) R

A area of the service regioigkm?)

Parameters:

D(x, y) : demand density atx, y) M (item/knf.year)

F(x,y) : fixed cost of opening a facility i, y) OM ($/year)

f (x,y,w): operational cost of opening a facility of simeat (x,y) M ($/year)

a(x,y,R): total transportation cost given facility locatigr, y) UM and service
region R ($/year)

It is assumed that the whole demand is to be satighus service region must cover
the demand area. Furthermore, each service regmerved by a single facility.

Generally, service regions can have irregular ematian just geometrical, shapes. Fig. 1

depicts a hypothetical sample solution.
Fig. 1. A sample solution of the initial model.

The objective is to minimize total annual costduding annual fixed, operational,



and transportation costs. It is assumed that aflrpaters vary slowly within a service

region. Also, the operational cost is assumed ta lb@ear function as:
f(x,y,w) =0(X,Yy).w 1) (

where,O & y )is the production cost in the facility located(ix y) for each unit of the

product anadw is the total annual production. As a result, thitaltannual operational

cost is defined as:

2060 yw =X, i D(x, y)dxdy) @)
Since

A = i dxdy 3)
and

l D(x, y)dxdy = D(x,, y,).A )

Eq. (2) is transformed to:

> 06w = Y F (X, Y, D%, Y,)-A) = Y O(X, ¥,).D(X,y,)-A (5)
By assuming that the transportation costs are lysciahrged on ger item.km basis,

the following variables can be defined:

T(x,y): freight rate for shipments originating from ¢ , ($/item.km),

k: a constant that depends on the distance metiitrenshape of the service region in

the neighborhood ofx(y, .)

Each facility is assumed to be located at the cenftits respective service region.
Such assumption minimizes the average distance therfacility to each demand point

inside the service region. Hence, annual transpont&ost in regionR can be defined

as:
9(x,¥,,R) = [T(x,y,)-d(x,y).D(x, y)dxdy (6)
R

The average distance between the facility and dantand point in its respective

service region can be estimated by:

d =d(x y) = kA" (7)



Thus, we have:
9(%, Y, R) =T(x,y, ) kKA".D(x,Y,).A (8)

So, the total annual transportation cost is:
2,90, ¥, R) =2 T(x,y)kD(x,y,)-A™ 9)
Accordingly, the facility location model is summeed as follows:

Min TC = ZF(xi Y,)+O(X,y,).D(X,Y,).A +ZT(xi Y KD(X,Y,).A%?

St. | |

UR =M (10)
RNR =®;0i # |

(x,y,)OR;0

The decision variables are the numbgrand the locatior{x ,y, pf facilities as well
as the boundaries and areas of service regiBns &nd A’s). All parameters are
assumed to vary smoothly within a service regi@t,tiye model allows large
differences across areas likely to be served Wgreint facilities.

Dasci and Verter [6] use some assumptions to solvielem (10). Their method ends
to the result that giveKix, y) as a facility location point, the best area asaspective
service region is:

A= 2PV e (11)
T (X,y)k.D(X,Yy)

and the total annual cost correspondingtds estimated by:

TC' = [(0(x,Y)D(x, y) + T (x,y)kD(x, Y)) " F (, ).~ xcly (12)

Despite of the Dasci and Verter’s excellent work {bere are two cardinal problems
to implement the initial model in practice. Firste model depends on four
mathematical functions on a two-dimensional spdeejand density, fixed cost,
operational cost, and transportation cost. Inweald problems, such functions are
difficult, if not impossible, to be obtained by a@mtional regression models. For
instance, consider a city as the service regiowlnich we want to find a two-
dimensional mathematical function representingddi®and density in each point.
Obviously, such a function is extremely nonlineavihg several extrema all over the

service region. Thus, finding a mathematical fumrctihat fits on the sample data is not



a trivial task. We are faced with the same probddrout the three other functions.

The second problem arises in the selection of thetp as facility locations. The
initial model does not present any procedure tectehe facility location points. The
final solution of the initial model just states tlggven (x, y) as a facility location point,
the area of its respective service region is catedl by Eqg. (11). So, the main questions
are: which strategy should be used to select teedoint, and how the selection of

other facility location points should be continued?

3. Fuzzy Modeling
3.1. Fuzzy Rule Base

Since fuzzy sets theory was first introduced byetaith 1965 [26], it has impressed a
wide variety of disciplines. Among the applicatiamfduzzy sets theory, Fuzzy Rule
Base (FRB) is a popular technique in which theti@tabetween inputs and outputs of a
system is made in the form of fuzzy if-then rulather than a pure mathematical
function. Each rule in a Takagi-Sugeno FRB (TSFRByspecial type of FRBSs,

consists of two main parts: antecedent (if part) e@nsequent (then part) as follows:

If X, isp,(x,)and X, isp,(x,)and...and X isu (X,)Theny. =a, +Za1j X

=1

TSFRBs can be viewed as an expansion of pieceiwmisarlpartitioning in which
fuzzy transitions between the linear functionswalfor the modeling of complex
nonlinear systems with a good global accuracy. Gev& SFRB and the input vector,

X = (X, X,,....X,,) , the inference procedure is as follows:

1) fuzzfication: calculate the degree of membership ofjtheelement of the input

vector in its corresponding fuzzy number in ttrerule:
M (%) i=12,...c;j=12..m (13)
where,c is the number of rules.

2) degree of matching: calculate the degree of matching of the inputmeet, with the

ith rule:

14(X) = ﬁ,u” (x):i=12,..c (14)



3) output of each rule: calculate the output of each rule using input eand

consequent of that rule:

9i(x):aio+zaij X; (15)
i=1

4) aggregation: calculate the weighted average of the outputs:

> 4 (X).9,(X)
y(x) =2 (16)
2H(X)

y(X) is the final output of the FRB.

3.2. Clustering

The process of extracting a FRB from input-outpatadf the system is an interesting
and promising research area called fuzzy modekngzy modeling is a powerful
technique to estimate nonlinear functions in threnfof a FRB. Many methods have
been proposed by different authors in this dom&jhd,15,22,23].

Fuzzy modeling methods usually comprise two maimsphl: 1) structure
identification (rough tuning), and 2) parametemitiiecation (fine tuning). Structure
identification is mostly associated with partitingiof the input-output space, whereas
parameter identification concerns to estimatingapeaters of the Membership
Functions (MFs) and coefficients of the linear fuos. In other words, the purpose of
structure identification is to construct an initiakzy model to describe the inherent
structure of the given input-output data, while pinecedure of parameter identification
is applied to obtain a more precise fuzzy modeldatermination of the most

appropriate MFs and coefficients of linear function

Clustering algorithms are the most popular tootsstaucture identification by which
we deal with partitioning of the input-output spac®l assigning MFs to the partitions.
Sadrabadi and Zarandi [21] propose an algorithpidassify input-output points into
two categories: the points located in the lineatgpand the point located in the extrema.
This is preparation of the data for fuzzy clustgriand a special clustering algorithm is
appropriate to be implemented on each categoruiproposed method to fuzzy
modeling we use subtractive clustering for strueidentification. Subtractive

clustering was introduced by Chiu [5] in which ealata point is considered as a



potential cluster center. Such a potentiality iswated for each data poink, , based

on the density of other surrounding data pointe€hEane a cluster center is obtained,
the data points in the vicinity of the previousster center are removed in order to
facilitate the emergence of the new cluster ce@ebtractive clustering algorithm is as

follows:

Subtractive Clustering Algorithm

Begin:

Step 1. seti=1 and calculate the potentiality of each data tpagna cluster center in the
first iteration by:

X=Xl

-\ .l =
Dk(l)—gexp( 127 ):k=12,...n (17)

where, r, is a positive constant defining the neighborhamte of the cluster or simply

the radius of hypersphere cluster in data space.
Step 2. select the data point with the highest potentiafitthe first iteration as the first

cluster center. In other words, selé(:gl as the first cluster center, such that:
D, =max{D, (1) ;k=12,...,n} (18)

Step 3. seti=2 and calculate the revised potentiality of thma@ing data points in the

second iteration by:

B X =X _
Dy(2=D,@®-D,.expt———5—) :k=12..nkK#¢ (19)
(r,12)
where,
r, =nr, (20)

and D, is the potentiality of the first cluster center tine previous iteration. The

positive constantr,, defines the efficient subtractive range somevgraater thanr,
which helps avoiding closely spaced cluster censassquash factory , is a positive
constant greater than 1.

Step 4. selectX . as the second cluster center such that:

D., =max{D, (2) ;k=12,...n ;k#c} (22)

C.
Step 5. seti=i+1 and calculate the revised potentialities ofgbmts in thdth iteration
by:

| X = X I

D.()= Dy~ ~D, -expt-—

):;k=12,...n;k#c,C,,....C, (22)



where,

n=nr (23)
Step 6. considerX,. as the only candidate for thé cluster center such that:

D. =max{D, (i) ;k=12,...n ;K#¢C,,Cy,....C;} (24)
Step 7.if D, < ¢ the algorithm is terminated without selecting ittecluster center,
otherwise go to step & is a rejection threshold.

Step 8.if D, > & selectX, as theth cluster center and go to step 5, otherwise go to

step 9.£ is an acceptance threshold.

Step 9.if £< D, <& and inequality:

D
i+—‘%21 (25)
D
where,
d, = min{]| Xe =X, ;I =12,...,1 -1} (26)

holds, selectX,. as thdth cluster center and go to step 5, otherwise teataithe

algorithm without selecting thi¢h cluster center. ||.|| is the Euclidean norm.

End.

As mentioned in the algorithm, subtractive clustgrnas four parameters, namely,
acceptance threshold, reject threshold , cluster radiug, , and squash factay.
These parameters have influence on the numbetesf amd error performance
measures. Large values &fand £ will result in small number of rules. Conversely,
small values off and £ will increase the number of rules. A large valfieg,ogenerally
results in fewer clusters that leads to a coarsgetavhereas a small value of
produces excessive number of rules that may rasah overfitted system. The
suggested values fer andr, are 125<7 <15 and 02<r, <05 [5,17]. In this paper,
r,=04,n=125, € =05, £ = 015 are considered.

It should be noted that a method for scalelessatd thust be applied before data

clustering, in that different dimensions of theadaan be of different scales. The data in

this paper are interval data which can be scaletkas follows [9]:



7, =2 =120 =12,0m (27)
j
where
X,
m = k:ln j=12,...m (28)
|ij -m |
s zkﬂf 1 =12,....m (29)

After clustering, the cluster centers are returioeithe initial scale using:

X, =m +s.z, ;k=12,..,nj=12..m (30)

3.3. The Proposed M ethod to Fuzzy M odeling

In this section, a fuzzy modeling method is proplosewhich subtractive clustering
is used for structure identification. Moreover, graeters of the antecedents and the
consequents are identified by some heuristics ar@ptimization problem,

respectively. Suppose sample input-output datasybtem are given as:
(Xii Vi) = (K Xepre- X Vi) s K=12,...,0n (31)

based on which we are going to extract a TSFRBderao make the relation between
input vector and output of the system. In the pssgbmethod, Gaussian MFs are
considered to guarantee that the whole of the ispate is covered. Gaussian MFs are

represented as:

(%) = exp052 =" (32)

Generally, a FRB consists pfrules in an-dimensional input space; so, MF of flie
variable in the antecedent of title rule can be presented as:

4, (x,) = exp(05(—1yz)

1j

(33)

Furthermore, the linear function in the consequéniheith rule can be presented as:

Ji(X) =3, + 2.8, (34)



Therefore, the parameters of the FRB are the atheetgarameters,

m,,s; ;i=212,..,p;j=12...,m and the consequent parameters,
3,8, ;i=12..,p;j=12,...m

Obviously, structure of the FRB must be specifietbke parameter identification,
i.e., the number of rules and rough partitioningha input space must be specified.
Structure Identification

For structure identification, subtractive clustgrion the input-output space is applied.

This leads to identifying the number of clustgrsas well as the center of each cluster:
(ml’mZ' mm) C X _(Xcl’ c2""’Xclm) ’I =12""’p (35)

The weighted variance of tlih MF in theith cluster is estimated by:

z kij * (XkJ _ml
s =L 1=12...,p;j =12,....m (36)

]
: : kij

where,

W, = peXp(_'B'lxk" ™D o120 =12,...,p; ] =12,...,m (37)

2 expEA. % —m; |)

and S is an arbitrary coefficient. The bigger value®fimplies the more stress on the

data near the cluster center to determine theneeiaf its respective MF. In other

words, the bigger value @f leads to MFs with less measures of fuzzinesshi t
paper, 5 = 025 is considered for its satisfactory results in saveumerical examples;

it leads to more accurate FRBs.
Parameter |dentification

An optimization problem is used to calculate thesemuent parameters of the FRB
where sum of squared errors is minimized. By carang the MF of thgth variable in

theith rule asy; (x; ) the degree of matching of input vec¥oin theith rule is

calculated as:
M(X)=|]ui,-(xj) i=12,..,p (38)

Moreover, the output of each rule is calculated by:



J(X)=a,+ a,.x (39)
j=1
Eventually, the final output of the input veckrs:

> 4 (X),(X)
9(X) == 48)
2H(X)

y(X) is the estimated output for the inpby FRB. Given the real value of the
output, y(X ), the optimization problem, in which the decisiariables are coefficients

of the linear functions in consequents, is as follo

Min > (y(X*) = §(X*))*

> (X).9,(¢%)
Y(X ) =F— k=12,...,n
2 H(X)
= (40)
J(X)=a,+> ax ;i=12..,p;k=12..,n

4(X,) = |j,u”. (x):i=12...pk =12,

X, —m
1, (%) :exp(—0.5(k’s—m‘)2) i=12,...,p;j =12,...mk=12...n

1j

By solving the above problem, parameter identifacabf the FRB is completed.

4. Development of the I nitial Model
4.1. Estimating the Required Functions via Fuzzy Modeling

In order to utilize fuzzy modeling to resolve thest mentioned problem in section 2,
we first specify the service region and cover ishyall cells as indicated in Fig. 2.

Fig. 2. Covering the service region by small cells.

This strategy can be regarded as a bridge betwsdmuoous and discrete facility
location models and is applicable by any arbitgagcision; the smaller cells, the more

precise model, but more computational effort isdeeke

Each cell encompasses a certain region with seeal is specified by an ordered pair

(c,r) wherec andr indicate the cell’s column and row, respectivélgre, the lower



left corner is considered as the center of cootidinaxes. Them cells are selected
randomly and their respective values of functibng, O, andT are determined as their
average values in the corresponding cell. Accollglirige sample data are in hand as

indicated in Table I.
Tablel Sample data of functions.

The input-output data in Table I is used to extfaat distinct FRBs. In the all FRBs
(c,r) are input variables arld, F, O, andT are output variables of the four FRBSs,
respectively. After extracting the four above menéd FRBs and gives ( ,, }he

average value of each function in its respectiVieced be estimated. So, the first

problem of the initial model can be resolved viazyimodeling.

4.2. Implementation of the Modified Model via Simulation in a Discrete Area

To select the cells to locate the facilities, atstgy must be specified. Lef,, and
r... be the number of columns and rows of a hypothletezdangle encompassing the

entire service region, respectively. So, the totahber of the cells of the rectangle is:
q = Cmax'rmax (41)

Obviously, some of the cells are outside the serxegion inadmissible to locate
facilities in them. Moreover, it is likely to exae some cells inside the service region
inasmuch as the facility locations are not perdittebe there. For example, an airport,
a park, or an extensive residence area even thoigjit have demand but are not
permitted to locate the facilities in them. Let ttedl located in the lower left corner of

the hypothetical rectangle indicatédl, and the cell located in the upper right corner of
the hypothetical rectangle indicat€sll . There is a unique relation between the cell

number and its row and column as follows:

Cel =c_,.(r-D+c 142
c=Cdl, -c_.[Cdl /c.] (43)
r=[Cdl /c,]+1 (44)

In order to determine the location of the firstiliag we generate a random integer

1<k<gq. If Cell, is aninadmissible cell, we generate another nanitbeger,

otherwise its respective row and columa,r (,,is)characterized by Egs. (43)-(44). In



such a case(c,r) are considered as input values of the four FRBg the output value
from each FRB is calculated based on the fuzzyemee, i.e.D 1, ) F(c,r), O(c,r)
,andT € r ). In the next step, the area that should be sdyye@Hll, is calculated by:

2F (c,r)

Aer) = (= c.r)kD(cr)

)2/3 (45)

Then, coordination of the center of the cellr( is)determined using:
x=+/s.(c— 05) (46)
y=+/s.(r - 05) (47)

where,sis the area of each cell.
The number of cells that must be served by thefslity is calculated as,
n(c,r) =[A(c,r)/ s +1 (48)

The first facility is located on the poink {y, and its respective cell is considered as
the first covered cell. Then, its neighbor cells annularly covered until the number of
cells meetsn d'r, )When an inadmissible cell is encountered it ipséd and the

process proceeds to cover other cells. Fig. 3@ysla sample solution with
n(612) = 28 for the first cell.

Fig. 3. An iteration of the simulation procegs) selecting the first locatiorfb) selecting the

second location(c) all possible locations, ar{d) allocating all cells to the suitable facility.

In this paper, the facilities are supposed to sarsguare-shape area around
themselves. Moreover, rectangular metrics are UBaas, average distance from the

facility located in the center of the square to point inside it is:

al2
_ (Ix]+]y [)dxdy 3
g =X _ 053’ _ oo e - os/A 499
J'_ * dxdy a

Therefore, constark = 05 is assigned in Eq. (45).

The all cells assigned to the first facility arenswlered as the s& . Then, all
Cell, S, are added to the set of inadmissible cells. Thegss of locating the second
facility is similar to the first one. Fig. 3(b) irwhtes the sample solution in which the

first two facilities are located.

After locating some facilities, an admissible ¢rlght be selected to locate the next



facility, yet the new cell is in a narrow bar beamgwo previously served areas. In such
cases, the new facility can not serve a square Hege, it is better to select another
cell, in that it is an undesirable situation. Hoe sake of simplicity in the following

relations, suppose:
k=c_.r-D)+c (50)

max

Such cases can be controlled by:

|ck—c|>% 51]
Irk-rl>% 52}

If at least one of the Eqgs. (51)-(52) holds forkal(for all located facilities before the
new one), the selected cell is considered as tmcati the new facility, otherwise
another integer number is generated. Generatioanaiom integers is continued till no
cell is remaining able to satisfy Eq. (51) or (32p. 3(c) shows the situation in which
Egs. (51)-(52) are no longer satisfied by any pdimthis case, there are some cells that
are not served by any facility, and yet no faciign be located on the service region, as
they do not satisfy Eqgs. (51)-(52). Since all over $ervice region must be served, the
remaining cells are assigned to the located fesliia an allocation function.

Assigning the remainingell, to the located facilitk imposes cosh, on the facility

consisting of the operational cost and the trartaion cost as:

T +T af2
hkl :Ok'DI 'S+(%)-D| ¥ (I G —¢C |+|rk - ) 53

Cell, is assigned to the facility, the respectiyeof which is minimum in comparison

to the other facilities. Similarly, other remainioglls are assigned to the proper facility

based on the amounts hf’s.

Solving several numerical examples has shown thsbietter to calculaté, not
only for the remaining cells, but also for the seheells. Hencel, is calculated for all

k's and all cells. This might lead to eliminatingrs® located facilities and so reduction
in their number; when all the cells around a fac#ire allocated to another facility. Fig.
3(d) shows the final solution after the allocatadrcells to suitable facilities. After

allocation, the total annual cost caused bykthdacility can be calculated by:



TC, =F,+0,.D,.s+T,.D, s k+> O,.D s
10S,

54)
T +T (
+ Z(g)D| '53/2'(| G —¢G | + | re—n |)
I0S, 2
and the total annual cost caused by all the faeglits,
TC=)TC, (55)

k=1

TC shows the total annual cost of the first iteratdthe simulation process. The
simulation process is carried out several timed,tha plan with the lowe3iC is

selected as the final one.

Implementation of the modified model via computesgramming by Visual Basic 6
has been successfully carried out. In this progthemnumber of iterations is specified
arbitrary, and plan generation is carried out aatibrally. Finally, the best plan is

shown along with its respectiveC.

5. Numerical Example

This section provides a numerical example to demnatesthe proposed fuzzy
modeling method and also implementation of thishoetalong with the proposed
heuristic relations to develop the initial facilipcation model. As discussed in the
previous sections, the first step to fuzzy modeiggathering numerical input-output
data of the system under studied. Here, the systéime regiorM in which the cell

coordination,(c,r), is the input an@®, F, O, andT are the outputs. Since transportation
cost,T, is usually constant, we considg(c,r) =0. 000&ble Il shows 106 cells in

the regionM for which the other required numerical input-outgata are gathered.
Table |l Numerical input-output data for regidvh

Since the variables are from different scales, gteyuld be scalelessed before
subtractive clustering is applied; so, ands' are calculated. The values wf ands
for each dimension are presented in Table lll. Adewly, the original data are

scalelessed based upon Table Il and Egs. (27)-(29).
Tablelll Mean and standard deviation of each dimension.

Now, a distinct FRB should be constructed to obésioh outpub, F, andO.
Obviously, € r )is the input for all FRBs. Therefore, subtracithastering is applied



on the scalelessed da@L e s M'saaeser » Pemeees 10 ODtAIN the number of clusters and

to specify the center of each cluster in the #RB. Table IV shows the results.

TablelV Center of each cluster in both the scalelessedmBimns and the rescalled dimensions
in the FRB with the outpud.

Similarly, Tables V-VI show the results of implent&ion of subtractive clustering
to construct the second and the third FRB.

TableV Center of each cluster in both the scalelessedmBmns and the rescalled dimensions
in the FRB with the outpuk.

Table VI Center of each cluster in both the scalelessedmBions and the rescalled dimensions
in the FRB with the outpud.

Now, the valuess, ands, can be calculated using Egs. (36)-(37). Henceamater

identification of the antecedents is completed.r[lweefficients of the linear functions
in the consequents are determined based on thmetns of the antecedents and using
the optimization problem (40). The results for tingt FRB are listed in Table VII.

Table VII Parameters of the FRB with the output

According to the above table, thh rule can be written as,

mc()) )yandrisu (r) =exp 05( —m ()
s. (i) s, (i)

Then D =a(i)c+b(i)r +c(i)

Rule :If cisy (c)=exp(—05( )?)

The first rule, for example, is,

c— 2999 24996
Rul If cisu, (c) =exp05(——) )andris . (r ex 05—2
&, If cis () = exp(-05( 61968)) 44(r) = eXp(OS(— - 0))

Then D = -2.905c — 0.204r +56£.297

In order to evaluate the efficiency of each FRBaWMef Squared Errors (MSE) and

Mean of Relative Absolute Errors (MRAE) are rel@bliteria which are defined as:

> (Output - Output,")?

MSE =+ . (56)
Z”: | Output,” —Output,” |
R
MRAE — k=1 Outputk (57)

n



where, Output,; and Output,” are the real output and the model’s output, resdyg,

for thekth data. For the FRB presented in Table VI we M#=983.309 that with
regard to the values @f is an acceptable error. Fig. 4 shows the first WRB the
outputD in a 3-dimensional space. We also heARAE=0.041 for this FRB.

Fig. 4. The FRB with the outpud

Similarly, Tables VIII-IX present the parametersttoé second and the third FRB
with the outpuf andO, respectively.

Table VIII Parameters of the FRB with the output
Table I X Parameters of the FRB with the out@ut

The MSE for the second and the third FRB M&E=400.729 and/1SE=0.000009,
respectively. Again, regarding to the values@&ndO, the obtainedMSEs show
acceptable FRBs. The valuglRAE=0.003 andVIRAE=0.012 are also obtained for the
second and the third FRB, respectively. Figs. Bdésthe FRBs associated wihand
O in a 3-dimensional space.

Fig. 5. The FRB with the outpuf
Fig. 6. The FRB with the outpu®

Now, the required FRBs with good accuracy are mdh&Ve cover regiom
presented in Fig. 7 bgxr =90x 60 = 5400 cells.

Fig. 7. Covering the regioM by cells

Suppose that each cell has the aseadkm’. Also, k = 05is considered as the
shape factor, in that rectangular metrics are clemed as the distance criterion.

Suppose that the first random selected ce(tjs,) = (2428) . By using the FRBs
and the other required relations, we haxe,,r,) = n (2428) = 410. Therefore, the first

facility is located in the cell (24,28) and shouatuver 410 cells. This is presented in Fig.
8 with blue color. Suppose that the next threesai(c,,r,) = G113 with

n(c,,r,) =612, (c,,r,) = (4940) with n(c,,r,) = 348, and(c,,r,) = (7238) with
n(c,,r,) =329, represented in Fig. 8 with red, green, and yellolors, respectively.
Fig. 8. The random selected cells and their respectiwacgeregions.

After locating the four presented facilities, thare no other cells which can satisfy
conditions (51)-(52). Hence, the remaining celks assigned to the most suitable

facility, according to Eq. (53). Fig. 9 shows tlesult of such assignment.



Fig. 9. Assigning the other cells to the located faciitie

The presented solution in Fig. 9 is not the besigasent, in that some cells can be
allocated to a different facility with lower coS§o, all cells in the regiol are allocated

to the most suitable located facility. Fig. 10 skdwe result of such allocation.
Fig. 10. Allocating all cells to the most suitable locafadility.

Fig. 10 is the final solution for the first iterati of the simulation process with,
TC, =230098 TC, = 265555, TC, = 342108 andTC, = 250582 The total annual

cost for the first iteration i$C=1088343 which is considered as the criterion for
evaluation of this solution. Other simulation it@vas are conducted by selecting new
random cells and calculating the fiffldl. The best solution is one with the low&&L

6. Conclusion and Future Works

In this paper, a fuzzy modeling method has beepgs®ed to develop a continuous
facility location model in the literature. Four tinct FRBs have been extracted based
upon sample input-output data. Subtractive clusggisome heuristics, and an
optimization problem have been used to identifyRR&. Moreover, some heuristic
relations have been proposed to implement the meodihodel via simulation in an
arbitrary discrete space and to evaluate the stioalalans. Implementation of the
modified model has been carried out successfullgdmputer programming in Visual
Basic 6. A complete numerical example has beerepted in the paper to demonstrate
implementation of the proposed method to fuzzy nindeand development of the
initial facility location model via the proposeduistic relations. Future works can be
associated with elimination of some assumptiorteénnitial model; the assumption of
smooth transition of the functions, for exampldikiely changes some relations in the

initial model and so the other following relations.
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Fig. 1. A sample solution of the initial model.

Fig. 2. Covering the service region by small cells.
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Fig. 3. An iteration of the simulation procega) selecting the first locatiortb) selecting the second

location,(c) all possible locations, ar{d) allocating all cells to the suitable facility.
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Fig. 6. The FRB with the outpu®



Fig. 8. The random selected cells and their respectiwécgeregions.

Fig. 9. Assigning the other cells to the located facistie

Fig. 10. Allocating all cells to the most suitable locatadility.



Tablel Sample data of functions.

k |c D F o | T

1 G, r D1 Fl 01 T1
2 2 r, Dz Fz Oz Tz
n Cn rl’l D n Fl‘l OI'I Tn

Table Il Numerical input-output data for regidh

k c r D F k D F (0] k c r D F (0]

1 15 20 524 6644 0.205 7 A4 0 3p0 5955 204 Y35 [535 580 5929 0.208
2 15 | 25| 520 | 6674| 0.209] 38 4 5 3B3 5973 02 745 |50 | 696 | 6057 | 0.211
3 15 | 30 | 516 | 6736| 0.212] 39 A4 20 4po 5989 OO0 755 |45 | 750 | 6186 | 0.214
4 20 10 518 6488 0.208 0 4 25 413 6Q04 .03 Y65 |50 792 6399 0.219
5 20 15 512 6516 0.205 a1 4 0 442 6Q93 .07 (75 |55 800 6718 0.226
6 20 | 20 | 508 | 6544 | 0.204] 4R 4 5 4u8 6173 .10 780 |615 | 263 | 5584 | 0.199
7 20 | 25 | 502 | 6570| 0.207] 4B 4 40 4p5 6355 P13 190 |60 | 371 | 5632 | 0.198
8 20 30 489 6634 0.211 M4 45 5p0 6340 217 800 |625 600 5672 0.201
9 20 | 35| 482 | 6656| 0.214| 46 4 0 5p4 6423 P21 810 |630 | 686 | 5781 | 0.204
10 | 25 | 10 | 516 | 6357 0.206 46 4 2B0 5666 .07 820 (635 | 720 | 5921 | 0.207
11 25 15 508 6381 0.204 47 4 |0 2P8 5318 203 8360 40 738 6063 0.210
12 25 20 497 6403 0.203] 48 4 |5 3RO 5837 201 8460 45 750 6208 0.214
13 | 25 | 25| 488 | 6425| 0.206] 49 4 PO 360 5854 199 8560 | 50 | 750 | 6432| 0.218
14 | 25 | 30| 495| 6498 0.209] 50 4 P5  4p0 5470 L03 8665 | 20 | 440 | 5582 | 0.196
15 25 35 449 6534 0.213] 1 4 0 4pb1 5958 LR06 8765 25 600 5626 0.199
16 25 40 398 6572 0.216 2 4 5 500 6054 209 8865 30 640 5732 0.203
17 | 30 | 5 512 | 6026| 0.209| 58 4 0 5B4 6152 P12 895 |635 | 667 | 5868 | 0.206
18 | 30 | 10 | 506 | 6224| 0.206] H4 4 15 547 6253 L16 9065 | 40 | 686 | 6010 | 0.209
19 30 15 497 6245 0.203] 35 4 0 575 6445 220 9165 45 700 6155 0.212
20 30 20 480 6264 0.202] 36 4 5 6p0 6760 R27 9265 50 702 6369 0.217
21 | 30 | 25| 467 | 6282| 0.205 H7 § 2p2 5352 .06 930 (720 | 477 | 5524 | 0.195
22 | 30 | 30| 476 | 6363| 0.208) 38 § |0 2)18 5680 L03 9470 | 25 | 600 | 5572 | 0.198
23 30 35 440 6413 0.212] q9 |5 232 5701 200 9570 30 615 5673 0.201
24 30 40 396 6465 0.215] g0 § PO 280 5720 199 9670 35 629 5805 0.204
25 | 30 | 45| 400 | 6519| 0.219] 41 4§ P5 360 5738 L02 9770 | 40 | 640 | 5944 | 0.207
26 | 35 | 5 490 | 5903| 0.208] 6 § 0 5p7 5823 .05 980 |745 | 650 | 6090 | 0.211
27 35 10 483 6090 0.205] g3 f 5 587 5936 208 9975 25 504 5507 0.196
28 35 15 476 6109 0.202] g4 i 0 6B5 6051 R11 1005 30 515 5602 0.199
29 | 35 | 20| 470 | 6126| 0.201] 65 § 15 640 6168 p15 1025 | 35 | 520 | 5727 | 0.202




30 | 35 | 25 | 462 6142 0.204 30 0 6p4 6370 020 1025 | 40 | 535 | 5862 0.205
31 | 35 | 30| 451 6228 0.207 30 5 700 6496 0.226 1085 | 45 | 557 | 6006 0.209
32 | 35 | 35| 424 | 6292 0.211 95 10 200 5616 O0.g02 1080 | 30 | 582 | 5515 0.197
33 | 35 | 40 | 394 | 6359 0.214 95 15 26 5451 O0.g00 1080 | 35 | 619 | 5630 0.200
34 | 35 | 45| 400 | 6428 0.218 95 20 280 5682 0.198 1080 | 40 | 662 | 5756 0.203
35 | 35 | 50 | 412 6603 0.222 95 25 360 5708 O0.p01

36 | 40 | 5 377 5783 0.207 g5 0 4p3 5804 0.p04

Tablelll Mean and standard deviation of each dimension.

c r D F (@]
m | 46| 29| 503 6090 0.20f
s | 14| 11| 103] 298| 0.006

Table |V Center of each cluster in both the scalelesseéminns and the rescalled dimensions in the

FRB with the outpub.

CI uaer C&:a]el&:l r&:a]elmi D&:a]el&:l r D

1 -1.143 | -0.364 | -0.35 29.998 24996 466.950
2 1.357 1 1.777 64.998 40 686.0B1

3 -0429 | 1 -0.466 39.994 40 455.0p2

4 -0.071 | -1.273| -1.777 45.006 14.997 319.969
5 -1.5 -1.727 | 0.126 25 10.003 515.978

6 1.714 -0.364 | 0.942 69.996 24.996 600.026
7 0.286 1.909 1.563 50.004 49.9p9 663.989

TableV Center of each cluster in both the scalelesseémiinns and the rescalled dimensions in the

FRB with the outpuF.

1 0.643 -0.364 | -1.281 55.002 24.996 5708.262
2 -0.071 1 0.209 45.006 40.000 6152.282
3 -1.5 -0.364 | 1.122 25 24996 6424.3b6
4 -0.429 | -1.273| -0.393 39.994 14.997 5972.886
5 1.714 1 -0.49 69.996 40.000 5943.980
6 -1.143 1.455 1.439 29.998 45.005 6518.§22
7 2.071 0.091 -1.638 74.994 30.001 5601.876
8 0.64 1.91 1.04 55.002 49.999 6398.430
9 0.29 -1.73 -1.38 50.004 10.003 5679.954
10 -1.50 -1.73 0.90 25 10.003 6356.7[L0
11 -0.07 2.36 2.25 45.006 55.004 6759.904




Table VI Center of each cluster in both the scalelesseéminns and the rescalled dimensions in the

FRB with the outpu®©.

Cl uaer CScaIeieﬁed rScaIeiem:i O’Ex:ale{&&aa:i c r O

1 -0.429 | -1.273 | -0.882 39.994 14997 0.402
2 0.643 0.545 0.083 55.002 34.995 0.407
3 -1.143 | 0.545 0.778 29.998 34.995 0.412
4 1.357 -0.364 | -1.262 64.998 24.996 0.199
5 0.286 1.909 2.117 50.004 49.999 0.420
6 -1.857 | -0.818 | -0.542 20.002 20.0p2 0.404
7 2.071 1 -0.333 74.994 40 0.205

8 -1.14 -2.18 0.28 29.998 4.99¢ 0.2p9

Table VIl Parameters of the FRB with the output

Rule m, s m, s a b c

1 29.998 | 6.196 | 24.996| 5.657 -2.904 -0.204 565.297
2 64.998 | 6.585| 40 5.706) -5.524 4.296 835.815
3 39.994 | 6.026| 40 5.706 7.890 1.254 93.473

4 45.006 | 6.333| 14.997| 5.714 -12.416  4.049 815.0B6
5 25 6.120 | 10.003| 5.203 0.028 -0.029 515.615
6 69.996 | 6.728 | 24.996| 5.657 -1.431 13.931 284.1B2
7 50.004 | 5.586| 49.999| 5.191 17.21p 1.9746 -272.632

Table VIl Parameters of the FRB with the output

Rule | m S, m, S a b c

1 55.002 | 5.951| 24.996 5.360 -6.826 16.440 5681.322
2 45.006 | 6.303| 40.000 5.22p -16.347 17.857 6203.164
3 25 6.256 | 24.996| 5.360 -24.920 15.709 6648.1|76
4 39.994 | 5.376| 14.9977 5.232 -20.949 0.68B 6846.980
5 69.996 | 5.356| 40.000 5.222 -15.6p0 23.087 6129.675
6 29.998 | 5.646| 45.005 5.244 -16.1p5 14.5p2 6371.920
7 74.994 | 5.496| 30.001 4.848 -12.4f2 15.456 6060.894
8 55.002 | 5.951| 49.999 5.213 -4.21p 47.194 4360.021
9 50.004 | 6.212| 10.003 5.489 -8.878 17.464 5918.009
10 25 6.256| 10.003| 5.489 -30.346 25.433 6827.965
11 45.006 | 6.303| 55.004 6.013 -25.6/4 72.049 3981.%8

Table | X Parameters of the FRB with the outgut

Rue | m S, m S a b c

1 39.994 | 5.086| 14.997, 5.135 -0.00004 -0.00028 @207

2 55.002 | 5.611| 34.995 5.809 -0.00017 0.00068 02931
3 29.998 | 6.021| 34.995 5.809 -0.00019 0.000p3 049%8
4 64.998 | 5.437| 24.996 5.054 -0.00082 0.00044 02094
5 50.004 | 5.368| 49.999 4.719 -0.00015 0.00114 013707
6 20.002 | 4.932| 20.002 5.395 -0.00081 0.00080 0&0%7
7 74,994 | 5.121| 40 5.374 -0.00041 0.00064 0.21482
8 29.998 | 6.021| 4.998 5.014 -0.00016 -0.00044 02166




