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Abstract   

This paper presents a continuous facility location model with fuzzy methodology. The developments 

concern mainly to some drawbacks in the initial model which takes it far from being used in practice. A 

fuzzy modeling method is proposed to estimate the required functions in the initial model. Structure 

identification in the proposed fuzzy modeling method is carried out using subtractive clustering, and 

parameter identification is conducted via some heuristics as well as an optimization problem. 

Furthermore, a simulation method along with some heuristic relations is used for implementation and 

evaluation of the modified model. Efficiency of the proposed method to fuzzy modeling as well as the 

proposed simulation method is presented by a numerical example. 
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1. Introduction 

In the domain of supply chain management there are two complementary issues for 

most production systems: facility layout and facility location. Facility layout problems 

deal with the position of manufacturing machines, stores, and manpower inside a firm. 

It has attracted the attention of many researchers because it can considerably reduce the 

material handling costs and yet increase flexibility of the manufacturing system. Facility 

layout is usually regarded as an optimization problem to determine the most efficient 

layout based on some prespecified criteria. [1,12] 

Facility location, on the other hand, concerns the choice of the location of one or 

multiple facilities, in a given geographical space and subject to some constraints, to 

optimally fulfill predetermined objectives. It is a strategic decision making compared to 

facility layout which is more operational. Facility location might be part of a more 
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comprehensive problem named Production-Distribution System Design (PDSD). In 

general, a PDSD problem involves the determination of the best configuration, 

regarding location and size of the facilities and distribution centers, their technology 

content, commodity offerings, and transportation decisions, for achieving a firm’s long 

term goals [11]. It is a strategic issue for both industrial firms and governmental 

agencies, in that an efficient PDSD can result in reducing transportation costs, enforcing 

operational efficiency and logistic performance, and improving the quality of the 

services. 

Facility location problems are usually categorized based on some characteristics such 

as: number of facilities (single/multiple), objective function (single/multiple), solution 

space (discrete/network/continuous), number of commodities (single/multiple), capacity 

limitation (yes/no), shape of facility (point/extensive), and demand 

(discrete/continuous). However, it should be noted that these characteristics are not 

restricted to the above mentioned ones [7,8,14,19,20]. 

The main decision variables in facility location problems are coordination 

(geographical location) of each facility. Besides, number of facilities, capacity of each 

facility, and its respective service region might be decision variables of the model as 

well. In problems with discrete solution space, the facilities can conceptually be placed 

only at a limited number of eligible points on the plane or in a network. On the other 

hand, in a continuous solution space the points to be located can generally be placed 

anywhere on the plane or in a network [18,20].  

Typically, continuous location problems tend to be nonlinear optimization problems, 

while discrete location problems involve zero–one variables that result in integer 

programming optimization problems. Moreover, considering the number of facilities 

and the capacity of each facility as the decision variables makes the model more 

complicated, from both the problem formulation and the problem solving perspectives. 

As a result, the most complex facility location problems are those that consider the 

number of facilities as well as their coordination and capacities as decision variables in 

a continuous solution space with multiple objectives and multiple commodities. 

Although the field of facility location is active from the research point of view, when 

it comes to applications, there appears to be a significant deficit, at least as compared to 

other similar fields [20]. One reason for this gap could be that many applications cannot 

be solved by the plain version of a location problem, but further constraints (e.g. 

forbidden regions) must be introduced in order to construct a reasonable model [7]. To 



this end, many concepts, tools and techniques of artificial intelligence such as fuzzy 

logic can be used to improve the implementation of numerous models in operations 

research [10,11,18,20].  

The literature shows that the majority of the works in the area of facility location 

have used fuzzy theory to fuzzify the parameters of the model or have dealt with the 

facility location problem as a fuzzy multiple attribute decision making problem 

[2,3,10,16,24]. Wen and Kang [25], for example, consider fuzzy demands to construct 

some optimization models for facility location. Unlike these models, a novel utilization 

of fuzzy theory in facility location is proposed in this paper, in which we deal with 

estimation of some required nonlinear functions through fuzzy modeling. Although the 

proposed method is used to develop an existing model proposed by Dasci and Verter 

[6], it can be extended to formulate any facility location model in which a mathematical 

function, especially a nonlinear one, is needed for demand density, transportation cost, 

operational cost, fixed cost, and so on. 

The remaining of this paper is organized as follows: Section 2 concisely states the 

initial model and its drawbacks. Section 3 introduces the required materials for fuzzy 

modeling and the proposed method. In section 4, development of the initial model 

through fuzzy modeling and simulation is discussed in details. Section 5 indicates 

implementation of the proposed method via a numerical example. Finally, conclusions 

of the paper and future works are presented in section 6.   

 

2. Problem Statement 

Continuous models are successfully used in spatial economics and logistics, but there 

are probably a few papers that use continuous models for facility design [6]. Models of 

this type assume that customers are spread over a given market area and prescribe the 

optimal service region for each facility to be established [6]. Dasci and Verter [6] 

present a PDSD model in which the concentration is on facility location with the 

following main features: 

1) the model consists of two multi-element layers: manufacturing facilities and end 

customers, 

2) the number of manufacturing facilities is a decision variable, 

3) the model is a single-product PDSD problem, 



4) customers’ demand is deterministic and is specified by a density function, 

5) there is no limitation for manufacturing facilities’ capacity, 

6) all customers’ demand must be satisfied. 

The objective is to minimize the sum of total annual costs including fixed, 

operational, and transportation costs. They present a modeling framework based on the 

use of continuous functions to represent spatial distributions of cost and costumer 

demand. Herein, the Dasci and Verter’s model [6] is briefly addressed. 

Assume that a firm wants to open some manufacturing facilities in a demand area, 

where each facility serves a single service region. In such a case, decision variables are: 

the number of facilities, the location of facilities, and the service region of each facility. 

Facilities can be located anywhere in the demand area. Let’s M denotes the market area 

for which the following variables and parameters are defined: 

Decision variables: 

n: number of facilities 

),( ii yx : location coordination of the ith facility 

iR : service region to be served by facility i, which is located at iii Ryx ∈),(   

iA : area of the service region i (km2) 

Parameters: 

),( yxD : demand density at Myx ∈),( (item/km2.year) 

),( yxF : fixed cost of opening a facility at Myx ∈),( ($/year) 

),,( wyxf : operational cost of opening a facility of size w at Myx ∈),( ($/year) 

),,( iRyxg : total transportation cost given facility location Myx ∈),(  and service 

region iR  ($/year) 

It is assumed that the whole demand is to be satisfied, thus service region must cover 

the demand area. Furthermore, each service region is served by a single facility. 

Generally, service regions can have irregular, rather than just geometrical, shapes. Fig. 1 

depicts a hypothetical sample solution. 

Fig. 1.  A sample solution of the initial model. 

The objective is to minimize total annual costs including annual fixed, operational, 



and transportation costs. It is assumed that all parameters vary slowly within a service 

region. Also, the operational cost is assumed to be a linear function as:  

wyxOwyxf ).,(),,( =                                                                                                      (1) 

where, ),( yxO  is the production cost in the facility located in ),( yx  for each unit of the 

product and w is the total annual production. As a result, the total annual operational 

cost is defined as: 
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Eq. (2) is transformed to: 
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By assuming that the transportation costs are usually charged on a per item.km basis, 

the following variables can be defined: 

),( yxT : freight rate for shipments originating from ),(yx  ($/item.km), 

k: a constant that depends on the distance metric and the shape of the service region in 

the neighborhood of ),( yx . 

Each facility is assumed to be located at the center of its respective service region. 

Such assumption minimizes the average distance from the facility to each demand point 

inside the service region. Hence, annual transportation cost in region iR  can be defined 

as: 

∫=
iR

iiiii dxdyyxDyxdyxTRyxg ),().,().,(),,(                                                                 (6) 

The average distance between the facility and each demand point in its respective 

service region can be estimated by: 
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Thus, we have: 

iiiiiiiii AyxDAkyxTRyxg ).,(..).,(),,( 2/1≈                                                                       (8) 

So, the total annual transportation cost is: 
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Accordingly, the facility location model is summarized as follows: 
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The decision variables are the number (n) and the location ),( ii yx  of facilities as well 

as the boundaries and areas of service regions (iR ’s and iA ’s). All parameters are 

assumed to vary smoothly within a service region, yet the model allows large 

differences across areas likely to be served by different facilities.  

Dasci and Verter [6] use some assumptions to solve problem (10). Their method ends 

to the result that given ),( yx  as a facility location point, the best area as its respective 

service region is: 
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and the total annual cost corresponding to*A  is estimated by: 
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Despite of the Dasci and Verter’s excellent work [6], there are two cardinal problems 

to implement the initial model in practice. First, the model depends on four 

mathematical functions on a two-dimensional space; demand density, fixed cost, 

operational cost, and transportation cost. In real world problems, such functions are 

difficult, if not impossible, to be obtained by conventional regression models. For 

instance, consider a city as the service region on which we want to find a two-

dimensional mathematical function representing the demand density in each point. 

Obviously, such a function is extremely nonlinear having several extrema all over the 

service region. Thus, finding a mathematical function that fits on the sample data is not 



a trivial task. We are faced with the same problem about the three other functions.  

The second problem arises in the selection of the points as facility locations. The 

initial model does not present any procedure to select the facility location points. The 

final solution of the initial model just states that given ),( yx  as a facility location point, 

the area of its respective service region is calculated by Eq. (11). So, the main questions 

are: which strategy should be used to select the first point, and how the selection of 

other facility location points should be continued? 

 

3. Fuzzy Modeling 

3.1. Fuzzy Rule Base 

Since fuzzy sets theory was first introduced by Zadeh in 1965 [26], it has impressed a 

wide variety of disciplines. Among the applications of fuzzy sets theory, Fuzzy Rule 

Base (FRB) is a popular technique in which the relation between inputs and outputs of a 

system is made in the form of fuzzy if-then rules rather than a pure mathematical 

function. Each rule in a Takagi-Sugeno FRB (TSFRB), a especial type of FRBs, 

consists of two main parts: antecedent (if part) and consequent (then part) as follows: 

∑
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TSFRBs can be viewed as an expansion of piecewise linear partitioning in which 

fuzzy transitions between the linear functions allow for the modeling of complex 

nonlinear systems with a good global accuracy. Given a TSFRB and the input vector,

),...,,( 21 mxxxX = , the inference procedure is as follows: 

1) fuzzification: calculate the degree of membership of the jth element of the input 

vector in its corresponding fuzzy number in the ith rule: 

mjcix jij ,...,2,1;  ,...,2,1;  )( ==µ                                                                                 (13) 

where, c is the number of rules. 

2) degree of matching: calculate the degree of matching of the input vector, X, with the 

ith rule: 

cixX
m

j
jiji ,...,2,1;  )()(

1

== ∏
=

µµ                                                                                    (14) 



3) output of each rule: calculate the output of each rule using input vector and 

consequent of that rule: 
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4) aggregation: calculate the weighted average of the outputs: 
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)(ˆ Xy  is the final output of the FRB. 

 

3.2. Clustering 

The process of extracting a FRB from input-output data of the system is an interesting 

and promising research area called fuzzy modeling. Fuzzy modeling is a powerful 

technique to estimate nonlinear functions in the form of a FRB. Many methods have 

been proposed by different authors in this domain [4,13,15,22,23]. 

Fuzzy modeling methods usually comprise two main phases: 1) structure 

identification (rough tuning), and 2) parameter identification (fine tuning). Structure 

identification is mostly associated with partitioning of the input-output space, whereas 

parameter identification concerns to estimating parameters of the Membership 

Functions (MFs) and coefficients of the linear functions. In other words, the purpose of 

structure identification is to construct an initial fuzzy model to describe the inherent 

structure of the given input-output data, while the procedure of parameter identification 

is applied to obtain a more precise fuzzy model via determination of the most 

appropriate MFs and coefficients of linear functions.  

Clustering algorithms are the most popular tools for structure identification by which 

we deal with partitioning of the input-output space and assigning MFs to the partitions. 

Sadrabadi and Zarandi [21] propose an algorithm to classify input-output points into 

two categories: the points located in the linear parts and the point located in the extrema. 

This is preparation of the data for fuzzy clustering, and a special clustering algorithm is 

appropriate to be implemented on each category. In our proposed method to fuzzy 

modeling we use subtractive clustering for structure identification. Subtractive 

clustering was introduced by Chiu [5] in which each data point is considered as a 



potential cluster center. Such a potentiality is calculated for each data point, kX , based 

on the density of other surrounding data points. Each time a cluster center is obtained, 

the data points in the vicinity of the previous cluster center are removed in order to 

facilitate the emergence of the new cluster center. Subtractive clustering algorithm is as 

follows: 

 

Subtractive Clustering Algorithm 

Begin: 

Step 1. set i=1 and calculate the potentiality of each data point as a cluster center in the 

first iteration by: 
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where, 1r  is a positive constant defining the neighborhood range of the cluster or simply 

the radius of hypersphere cluster in data space.  

Step 2. select the data point with the highest potentiality in the first iteration as the first 

cluster center. In other words, select 
1cX  as the first cluster center, such that: 

},...,2,1;  (1)max{
1

nkDD kc ==                                                                                    (18) 

Step 3. set i=2 and calculate the revised potentiality of the remaining data points in the 

second iteration by: 
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where, 

12 rr η=                                                                                                                           (20) 

and 
1cD is the potentiality of the first cluster center in the previous iteration. The 

positive constant, 2r , defines the efficient subtractive range somewhat greater than 1r  

which helps avoiding closely spaced cluster centers; so, squash factor, η , is a positive 

constant greater than 1.  

Step 4. select 
2cX  as the second cluster center such that: 

};  ,...,2,1;  (2)max{ 12
cknkDD kc ≠==                                                                       (21) 

Step 5. set i=i+1 and calculate the revised potentialities of the points in the ith iteration 

by: 
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where, 

1−= ii rr η                                                                                                                         (23) 

Step 6. consider 
icX  as the only candidate for the ith cluster center such that: 

},...,,;  ,...,2,1;  (i)max{ 121 −≠== ikc cccknkDD
i

                                                      (24) 

Step 7. if ε<
icD  the algorithm is terminated without selecting the ith cluster center, 

otherwise go to step 8. ε  is a rejection threshold. 

Step 8. if ε>
icD  select 

icX  as the ith cluster center and go to step 5, otherwise go to 

step 9. ε  is an acceptance threshold. 

Step 9. if εε ≤≤
icD  and inequality: 
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where,  

}1,...,2,1||;min{|| −=−= ilXXd
li cci                                                                          (26) 

holds, select 
icX  as the ith cluster center and go to step 5, otherwise terminate the 

algorithm without selecting the ith cluster center. ||.|| is the Euclidean norm. 

End. 

 

As mentioned in the algorithm, subtractive clustering has four parameters, namely, 

acceptance threshold ε , reject threshold ε , cluster radius 1r , and squash factor η . 

These parameters have influence on the number of rules and error performance 

measures. Large values of ε  and ε  will result in small number of rules. Conversely, 

small values of ε  and ε  will increase the number of rules. A large value of 1r  generally 

results in fewer clusters that leads to a coarse model, whereas a small value of 1r  

produces excessive number of rules that may result in an overfitted system. The 

suggested values for η  and 1r  are 5.125.1 ≤≤ η  and 5.02.0 1 ≤≤ r  [5,17]. In this paper, 

4.01 =r , 25.1=η , 5.0=ε , 15.0=ε  are considered. 

It should be noted that a method for scaleless of data must be applied before data 

clustering, in that different dimensions of the data can be of different scales. The data in 

this paper are interval data which can be scalelessed as follows [9]: 
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After clustering, the cluster centers are returned to the initial scale using: 

mjnkzsmx kjjjkj ,...,2,1;,...,2,1;  . ==′+′=                                                                    (30) 

 

3.3. The Proposed Method to Fuzzy Modeling 

In this section, a fuzzy modeling method is proposed in which subtractive clustering 

is used for structure identification. Moreover, parameters of the antecedents and the 

consequents are identified by some heuristics and an optimization problem, 

respectively. Suppose sample input-output data of a system are given as: 

nkyxxxyX kkmkkkk ,...,2,1;  ),,...,,(),( 21 ==                                                                  (31) 

based on which we are going to extract a TSFRB in order to make the relation between 

input vector and output of the system. In the proposed method, Gaussian MFs are 

considered to guarantee that the whole of the input space is covered. Gaussian MFs are 

represented as: 
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Generally, a FRB consists of p rules in a m-dimensional input space; so, MF of the jth 

variable in the antecedent of the ith rule can be presented as: 
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Furthermore, the linear function in the consequent of the ith rule can be presented as: 
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Therefore, the parameters of the FRB are the antecedent parameters, 

mjpism ijij ,...,2,1;  ,...,2,1;  , ==  and the consequent parameters, 

mjpiaa iji ,...,2,1;  ,...,2,1;  ,0 == .  

Obviously, structure of the FRB must be specified before parameter identification, 

i.e., the number of rules and rough partitioning of the input space must be specified.  

Structure Identification 

For structure identification, subtractive clustering on the input-output space is applied. 

This leads to identifying the number of clusters, p, as well as the center of each cluster: 
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The weighted variance of the jth MF in the ith cluster is estimated by: 
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and β  is an arbitrary coefficient. The bigger value of β  implies the more stress on the 

data near the cluster center to determine the variance of its respective MF. In other 

words, the bigger value of β  leads to MFs with less measures of fuzziness. In this 

paper, 25.0=β  is considered for its satisfactory results in several numerical examples; 

it leads to more accurate FRBs. 

Parameter Identification 

An optimization problem is used to calculate the consequent parameters of the FRB 

where sum of squared errors is minimized. By considering the MF of the jth variable in 

the ith rule as )( jij xµ , the degree of matching of input vector X in the ith rule is 

calculated as: 
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Moreover, the output of each rule is calculated by: 
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Eventually, the final output of the input vector X is: 
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)(ˆ Xy  is the estimated output for the input X by FRB. Given the real value of the 

output, )(Xy , the optimization problem, in which the decision variables are coefficients 

of the linear functions in consequents, is as follow: 
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By solving the above problem, parameter identification of the FRB is completed.  

 

4. Development of the Initial Model 

4.1. Estimating the Required Functions via Fuzzy Modeling 

In order to utilize fuzzy modeling to resolve the first mentioned problem in section 2, 

we first specify the service region and cover it by small cells as indicated in Fig. 2.  

Fig. 2. Covering the service region by small cells. 

This strategy can be regarded as a bridge between continuous and discrete facility 

location models and is applicable by any arbitrary precision; the smaller cells, the more 

precise model, but more computational effort is needed. 

Each cell encompasses a certain region with area s and is specified by an ordered pair

),( rc  where c and r indicate the cell’s column and row, respectively. Here, the lower 



left corner is considered as the center of coordination axes. Then, n cells are selected 

randomly and their respective values of functions D, F, O, and T are determined as their 

average values in the corresponding cell. Accordingly, the sample data are in hand as 

indicated in Table I.  

Table I Sample data of functions. 

The input-output data in Table I is used to extract four distinct FRBs. In the all FRBs 

),( rc  are input variables and D, F, O, and T are output variables of the four FRBs, 

respectively. After extracting the four above mentioned FRBs and given ),(rc , the 

average value of each function in its respective cell can be estimated. So, the first 

problem of the initial model can be resolved via fuzzy modeling. 

 

4.2. Implementation of the Modified Model via Simulation in a Discrete Area 

To select the cells to locate the facilities, a strategy must be specified. Let maxc  and 

maxr  be the number of columns and rows of a hypothetical rectangle encompassing the 

entire service region, respectively. So, the total number of the cells of the rectangle is: 

maxmax.rcq =                                                                                                                    (41) 

Obviously, some of the cells are outside the service region inadmissible to locate 

facilities in them. Moreover, it is likely to exclude some cells inside the service region 

inasmuch as the facility locations are not permitted to be there. For example, an airport, 

a park, or an extensive residence area even though might have demand but are not 

permitted to locate the facilities in them. Let the cell located in the lower left corner of 

the hypothetical rectangle indicates 1Cell  and the cell located in the upper right corner of 

the hypothetical rectangle indicates qCell . There is a unique relation between the cell 

number and its row and column as follows: 

crcCellk +−= )1.(max                                                                                                    (42) 

]/.[ maxmax cCellcCellc kk −=                                                                                           (43) 

1]/[ max += cCellr k                                                                                                         (44) 

In order to determine the location of the first facility, we generate a random integer

qk ≤≤1 . If kCell  is an inadmissible cell, we generate another random integer, 

otherwise its respective row and column, ),(rc , is characterized by Eqs. (43)-(44). In 



such a case, ),( rc  are considered as input values of the four FRBs, and the output value 

from each FRB is calculated based on the fuzzy inference, i.e., ),( rcD , ),( rcF , ),( rcO

, and ),( rcT . In the next step, the area that should be served by kCell  is calculated by: 

3/2)
),(.).,(

),(2
(),(

rcDkrcT

rcF
rcA =                                                                                        (45) 

Then, coordination of the center of the cell ),(rc  is determined using: 

)5.0.( −= csx                                                                                                             (46) 

)5.0.( −= rsy                                                                                                             (47) 

where, s is the area of each cell. 

The number of cells that must be served by the first facility is calculated as, 

1]/),([),( += srcArcn                                                                                                  (48) 

The first facility is located on the point ),(yx  and its respective cell is considered as 

the first covered cell. Then, its neighbor cells are annularly covered until the number of 

cells meets ),( rcn . When an inadmissible cell is encountered it is skipped and the 

process proceeds to cover other cells. Fig. 3(a) shows a sample solution with 

28)12,6( =n  for the first cell. 

Fig. 3. An iteration of the simulation process: (a) selecting the first location, (b) selecting the 

second location, (c) all possible locations, and (d) allocating all cells to the suitable facility. 

In this paper, the facilities are supposed to serve a square-shape area around 

themselves. Moreover, rectangular metrics are used. Thus, average distance from the 

facility located in the center of the square to any point inside it is: 

Aa
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Therefore, constant 5.0=k  is assigned in Eq. (45). 

The all cells assigned to the first facility are considered as the set 1S . Then, all 

1SCellk ∈  are added to the set of inadmissible cells. The process of locating the second 

facility is similar to the first one. Fig. 3(b) indicates the sample solution in which the 

first two facilities are located.  

After locating some facilities, an admissible cell might be selected to locate the next 



facility, yet the new cell is in a narrow bar between two previously served areas. In such 

cases, the new facility can not serve a square area. Hence, it is better to select another 

cell, in that it is an undesirable situation. For the sake of simplicity in the following 

relations, suppose: 

crck +−= )1.(max                                                                                                          (50) 

Such cases can be controlled by: 

s

AA
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k
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>−                                                                                                      (51) 
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||
+

>−                                                                                                      (52) 

If at least one of the Eqs. (51)-(52) holds for all k’s (for all located facilities before the 

new one), the selected cell is considered as location of the new facility, otherwise 

another integer number is generated. Generation of random integers is continued till no 

cell is remaining able to satisfy Eq. (51) or (52). Fig. 3(c) shows the situation in which 

Eqs. (51)-(52) are no longer satisfied by any point. In this case, there are some cells that 

are not served by any facility, and yet no facility can be located on the service region, as 

they do not satisfy Eqs. (51)-(52). Since all over the service region must be served, the 

remaining cells are assigned to the located facilities via an allocation function. 

Assigning the remaining lCell  to the located facility k imposes cost klh  on the facility 

consisting of the operational cost and the transportation cost as: 

|)||.(|.).
2

(.. 2/3
lklkl

lk
lkkl rrccsD

TT
sDOh −+−

+
+=                                                   (53) 

lCell  is assigned to the facility, the respective klh  of which is minimum in comparison 

to the other facilities. Similarly, other remaining cells are assigned to the proper facility 

based on the amounts of klh ’s.  

Solving several numerical examples has shown that it is better to calculate klh  not 

only for the remaining cells, but also for the served cells. Hence, klh  is calculated for all 

k’s and all cells. This might lead to eliminating some located facilities and so reduction 

in their number; when all the cells around a facility are allocated to another facility. Fig. 

3(d) shows the final solution after the allocation of cells to suitable facilities. After 

allocation, the total annual cost caused by the kth facility can be calculated by: 
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and the total annual cost caused by all the facilities is, 

∑
=

=
m

k
kTCTC

1

                                                                                                                 (55) 

TC shows the total annual cost of the first iteration of the simulation process. The 

simulation process is carried out several times, and the plan with the lowest TC is 

selected as the final one. 

Implementation of the modified model via computer programming by Visual Basic 6 

has been successfully carried out. In this program, the number of iterations is specified 

arbitrary, and plan generation is carried out automatically. Finally, the best plan is 

shown along with its respective TC. 

 

5. Numerical Example 

This section provides a numerical example to demonstrate the proposed fuzzy 

modeling method and also implementation of this method along with the proposed 

heuristic relations to develop the initial facility location model. As discussed in the 

previous sections, the first step to fuzzy modeling is gathering numerical input-output 

data of the system under studied. Here, the system is the region M in which the cell 

coordination, ),( rc , is the input and D, F, O, and T are the outputs. Since transportation 

cost, T, is usually constant, we consider 0008.0),( =rcT . Table II shows 106 cells in 

the region M for which the other required numerical input-output data are gathered.    

Table II Numerical input-output data for region M. 

Since the variables are from different scales, they should be scalelessed before 

subtractive clustering is applied; so, m′  and s′  are calculated. The values of m′  and s′  

for each dimension are presented in Table III. Accordingly, the original data are 

scalelessed based upon Table II and Eqs. (27)-(29). 

Table III Mean and standard deviation of each dimension. 

Now, a distinct FRB should be constructed to obtain each output D, F, and O. 

Obviously, ),( rc  is the input for all FRBs. Therefore, subtractive clustering is applied 



on the scalelessed data ),,( dScalelessedScalelessedScalelesse Drc  to obtain the number of clusters and 

to specify the center of each cluster in the first FRB. Table IV shows the results. 

Table IV Center of each cluster in both the scalelessed dimensions and the rescalled dimensions 

in the FRB with the output D. 

Similarly, Tables V-VI show the results of implementation of subtractive clustering 

to construct the second and the third FRB. 

Table V Center of each cluster in both the scalelessed dimensions and the rescalled dimensions 

in the FRB with the output F. 

Table VI Center of each cluster in both the scalelessed dimensions and the rescalled dimensions 

in the FRB with the output O. 

 Now, the values cs  and rs  can be calculated using Eqs. (36)-(37). Hence, parameter 

identification of the antecedents is completed. Then, coefficients of the linear functions 

in the consequents are determined based on the parameters of the antecedents and using 

the optimization problem (40). The results for the first FRB are listed in Table VII. 

Table VII Parameters of the FRB with the output D. 

According to the above table, the ith rule can be written as, 
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The first rule, for example, is, 
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In order to evaluate the efficiency of each FRB, Mean of Squared Errors (MSE) and 

Mean of Relative Absolute Errors (MRAE) are reliable criteria which are defined as: 
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where, R

kOutput  and M

kOutput  are the real output and the model’s output, respectively, 

for the kth data. For the FRB presented in Table VI we have MSE=983.309 that with 

regard to the values of D is an acceptable error. Fig. 4 shows the first FRB with the 

output D in a 3-dimensional space. We also have MRAE=0.041 for this FRB. 

Fig. 4. The FRB with the output D 

Similarly, Tables VIII-IX present the parameters of the second and the third FRB 

with the output F and O, respectively. 

Table VIII Parameters of the FRB with the output F. 

Table IX Parameters of the FRB with the output O. 

The MSE for the second and the third FRB are MSE=400.729 and MSE=0.000009, 

respectively. Again, regarding to the values of F and O, the obtained MSEs show 

acceptable FRBs. The values MRAE=0.003 and MRAE=0.012 are also obtained for the 

second and the third FRB, respectively. Figs. 5-6 show the FRBs associated with F and 

O in a 3-dimensional space. 

Fig. 5. The FRB with the output F 

Fig. 6. The FRB with the output O 

Now, the required FRBs with good accuracy are in hand. We cover region M 

presented in Fig. 7 by 54006090 =×=× rc  cells.  

Fig. 7. Covering the region M by cells 

Suppose that each cell has the area 24kms = . Also, 5.0=k  is considered as the 

shape factor, in that rectangular metrics are considered as the distance criterion.  

Suppose that the first random selected cell is )28,24(),( 11 =rc . By using the FRBs 

and the other required relations, we have 410)28,24(),( 11 == nrcn . Therefore, the first 

facility is located in the cell (24,28) and should cover 410 cells. This is presented in Fig. 

8 with blue color. Suppose that the next three cells are )13,51(),( 22 =rc  with 

612),( 22 =rcn , )40,49(),( 33 =rc  with 348),( 33 =rcn , and )38,72(),( 44 =rc  with 

329),( 44 =rcn , represented in Fig. 8 with red, green, and yellow colors, respectively.     

Fig. 8. The random selected cells and their respective service regions. 

After locating the four presented facilities, there are no other cells which can satisfy 

conditions (51)-(52). Hence, the remaining cells are assigned to the most suitable 

facility, according to Eq. (53). Fig. 9 shows the result of such assignment.  



Fig. 9. Assigning the other cells to the located facilities. 

The presented solution in Fig. 9 is not the best assignment, in that some cells can be 

allocated to a different facility with lower cost. So, all cells in the region M are allocated 

to the most suitable located facility. Fig. 10 shows the result of such allocation. 

Fig. 10. Allocating all cells to the most suitable located facility. 

Fig. 10 is the final solution for the first iteration of the simulation process with, 

2300981 =TC , 2655552 =TC , 3421083 =TC , and 2505824 =TC . The total annual 

cost for the first iteration is TC=1088343 which is considered as the criterion for 

evaluation of this solution. Other simulation iterations are conducted by selecting new 

random cells and calculating the final TC. The best solution is one with the lowest TC.  

 

6. Conclusion and Future Works 

In this paper, a fuzzy modeling method has been proposed to develop a continuous 

facility location model in the literature. Four distinct FRBs have been extracted based 

upon sample input-output data. Subtractive clustering, some heuristics, and an 

optimization problem have been used to identify the FRB. Moreover, some heuristic 

relations have been proposed to implement the modified model via simulation in an 

arbitrary discrete space and to evaluate the simulation plans. Implementation of the 

modified model has been carried out successfully by computer programming in Visual 

Basic 6. A complete numerical example has been presented in the paper to demonstrate 

implementation of the proposed method to fuzzy modeling and development of the 

initial facility location model via the proposed heuristic relations. Future works can be 

associated with elimination of some assumptions in the initial model; the assumption of 

smooth transition of the functions, for example. It likely changes some relations in the 

initial model and so the other following relations. 
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Fig. 1.  A sample solution of the initial model. 

 

Fig. 2. Covering the service region by small cells. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 



Fig. 3. An iteration of the simulation process: (a) selecting the first location, (b) selecting the second 

location, (c) all possible locations, and (d) allocating all cells to the suitable facility. 

 

 

Fig. 4. The FRB with the output D 

 

 

Fig. 5. The FRB with the output F 

 

 

Fig. 6. The FRB with the output O 
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Fig. 7. Covering the region M by cells 

 

 

Fig. 8. The random selected cells and their respective service regions. 

 

 

 

Fig. 9. Assigning the other cells to the located facilities. 

 

 

Fig. 10. Allocating all cells to the most suitable located facility. 



Table I Sample data of functions. 

k c r D F O T 

1 
1c  1r  1D  1F  1O  1T  

2 
2c  2r  2D  2F  2O  2T  

M  M  M  M  M  M  M  
n 

nc  nr  nD  nF  nO  nT  

  

Table II Numerical input-output data for region M. 

k c r D F O k c r D F O k c r D F O 

1 15 20 524 6644 0.205 37 40 10 360 5955 0.204 73 55 35 580 5929 0.208 

2 15 25 520 6674 0.209 38 40 15 383 5973 0.202 74 55 40 696 6057 0.211 

3 15 30 516 6736 0.212 39 40 20 400 5989 0.200 75 55 45 750 6186 0.214 

4 20 10 518 6488 0.208 40 40 25 413 6004 0.203 76 55 50 792 6399 0.219 

5 20 15 512 6516 0.205 41 40 30 442 6093 0.207 77 55 55 800 6718 0.226 

6 20 20 508 6544 0.204 42 40 35 448 6173 0.210 78 60 15 263 5584 0.199 

7 20 25 502 6570 0.207 43 40 40 455 6255 0.213 79 60 20 371 5632 0.198 

8 20 30 489 6634 0.211 44 40 45 500 6340 0.217 80 60 25 600 5672 0.201 

9 20 35 482 6656 0.214 45 40 50 504 6523 0.221 81 60 30 686 5781 0.204 

10 25 10 516 6357 0.206 46 45 5 280 5666 0.207 82 60 35 720 5921 0.207 

11 25 15 508 6381 0.204 47 45 10 298 5818 0.203 83 60 40 738 6063 0.210 

12 25 20 497 6403 0.203 48 45 15 320 5837 0.201 84 60 45 750 6208 0.214 

13 25 25 488 6425 0.206 49 45 20 360 5854 0.199 85 60 50 750 6432 0.218 

14 25 30 495 6498 0.209 50 45 25 400 5870 0.203 86 65 20 440 5582 0.196 

15 25 35 449 6534 0.213 51 45 30 461 5958 0.206 87 65 25 600 5626 0.199 

16 25 40 398 6572 0.216 52 45 35 500 6054 0.209 88 65 30 640 5732 0.203 

17 30 5 512 6026 0.209 53 45 40 534 6152 0.212 89 65 35 667 5868 0.206 

18 30 10 506 6224 0.206 54 45 45 547 6253 0.216 90 65 40 686 6010 0.209 

19 30 15 497 6245 0.203 55 45 50 575 6445 0.220 91 65 45 700 6155 0.212 

20 30 20 480 6264 0.202 56 45 55 600 6760 0.227 92 65 50 702 6369 0.217 

21 30 25 467 6282 0.205 57 50 5 202 5552 0.206 93 70 20 477 5524 0.195 

22 30 30 476 6363 0.208 58 50 10 218 5680 0.203 94 70 25 600 5572 0.198 

23 30 35 440 6413 0.212 59 50 15 232 5701 0.200 95 70 30 615 5673 0.201 

24 30 40 396 6465 0.215 60 50 20 280 5720 0.199 96 70 35 629 5805 0.204 

25 30 45 400 6519 0.219 61 50 25 360 5738 0.202 97 70 40 640 5944 0.207 

26 35 5 490 5903 0.208 62 50 30 507 5823 0.205 98 70 45 650 6090 0.211 

27 35 10 483 6090 0.205 63 50 35 587 5936 0.208 99 75 25 504 5507 0.196 

28 35 15 476 6109 0.202 64 50 40 635 6051 0.211 100 75 30 515 5602 0.199 

29 35 20 470 6126 0.201 65 50 45 640 6168 0.215 101 75 35 520 5727 0.202 



30 35 25 462 6142 0.204 66 50 50 664 6370 0.220 102 75 40 535 5862 0.205 

31 35 30 451 6228 0.207 67 50 55 700 6696 0.226 103 75 45 557 6006 0.209 

32 35 35 424 6292 0.211 68 55 10 200 5616 0.202 104 80 30 582 5515 0.197 

33 35 40 394 6359 0.214 69 55 15 246 5651 0.200 105 80 35 619 5630 0.200 

34 35 45 400 6428 0.218 70 55 20 280 5682 0.198 106 80 40 662 5756 0.203 

35 35 50 412 6603 0.222 71 55 25 360 5708 0.201       

36 40 5 377 5783 0.207 72 55 30 493 5804 0.204       

 

Table III Mean and standard deviation of each dimension. 

  c r D F O 

m′  46 29 503 6090 0.207 

s′  14 11 103 298 0.006 

 

Table IV Center of each cluster in both the scalelessed dimensions and the rescalled dimensions in the 

FRB with the output D. 

Cluster 
dScalelessec  dScalelesser  dScalelesseD  c r D 

1 -1.143 -0.364 -0.35 29.998 24.996 466.950 
2 1.357 1 1.777 64.998 40 686.031 

3 -0.429 1 -0.466 39.994 40 455.002 

4 -0.071 -1.273 -1.777 45.006 14.997 319.969 

5 -1.5 -1.727 0.126 25 10.003 515.978 

6 1.714 -0.364 0.942 69.996 24.996 600.026 

7 0.286 1.909 1.563 50.004 49.999 663.989 

 

Table V Center of each cluster in both the scalelessed dimensions and the rescalled dimensions in the 

FRB with the output F. 

Cluster 
dScalelessec  dScalelesser  dScalelesseF  c r F 

1 0.643 -0.364 -1.281 55.002 24.996 5708.262 
2 -0.071 1 0.209 45.006 40.000 6152.282 

3 -1.5 -0.364 1.122 25 24.996 6424.356 

4 -0.429 -1.273 -0.393 39.994 14.997 5972.886 

5 1.714 1 -0.49 69.996 40.000 5943.980 

6 -1.143 1.455 1.439 29.998 45.005 6518.822 

7 2.071 0.091 -1.638 74.994 30.001 5601.876 

8 0.64 1.91 1.04 55.002 49.999 6398.430 

9 0.29 -1.73 -1.38 50.004 10.003 5679.654 

10 -1.50 -1.73 0.90 25 10.003 6356.710 

11 -0.07 2.36 2.25 45.006 55.004 6759.904 

 

  



Table VI Center of each cluster in both the scalelessed dimensions and the rescalled dimensions in the 

FRB with the output O. 

Cluster 
dScalelessec  dScalelesser  dScalelesseO  c r O 

1 -0.429 -1.273 -0.882 39.994 14.997 0.202 
2 0.643 0.545 0.083 55.002 34.995 0.207 

3 -1.143 0.545 0.778 29.998 34.995 0.212 

4 1.357 -0.364 -1.262 64.998 24.996 0.199 

5 0.286 1.909 2.117 50.004 49.999 0.220 

6 -1.857 -0.818 -0.542 20.002 20.002 0.204 

7 2.071 1 -0.333 74.994 40 0.205 

8 -1.14 -2.18 0.28 29.998 4.998 0.209 
  

Table VII Parameters of the FRB with the output D. 

Rule 
cm  cs  rm  rs  a b c 

1 29.998 6.196 24.996 5.652 -2.905 -0.204 565.297 
2 64.998 6.585 40 5.706 -5.524 4.296 835.875 

3 39.994 6.026 40 5.706 7.890 1.254 93.473 

4 45.006 6.333 14.997 5.716 -12.416 4.048 815.086 

5 25 6.120 10.003 5.203 0.028 -0.029 515.615 

6 69.996 6.728 24.996 5.652 -1.431 13.931 284.182 

7 50.004 5.586 49.999 5.191 17.212 1.976 -272.632 
 

Table VIII Parameters of the FRB with the output F. 

Rule 
cm  cs  rm  rs  a b c 

1 55.002 5.951 24.996 5.360 -6.826 16.440 5681.322 
2 45.006 6.303 40.000 5.222 -16.347 17.857 6203.764 

3 25 6.256 24.996 5.360 -24.920 15.709 6648.176 

4 39.994 5.376 14.997 5.232 -20.949 0.683 6846.980 

5 69.996 5.356 40.000 5.222 -15.600 23.087 6129.675 

6 29.998 5.646 45.005 5.244 -16.105 14.522 6371.920 

7 74.994 5.496 30.001 4.848 -12.472 15.456 6060.894 

8 55.002 5.951 49.999 5.213 -4.219 47.194 4360.021 

9 50.004 6.212 10.003 5.489 -8.873 17.464 5918.009 

10 25 6.256 10.003 5.489 -30.346 25.433 6827.965 

11 45.006 6.303 55.004 6.013 -25.674 72.049 3981.581 
 

Table IX Parameters of the FRB with the output O. 

Rule 
cm  cs  rm  rs  a b c 

1 39.994 5.086 14.997 5.135 -0.00004 -0.00028 0.20779 
2 55.002 5.611 34.995 5.809 -0.00017 0.00068 0.19317 

3 29.998 6.021 34.995 5.809 -0.00019 0.00063 0.19586 

4 64.998 5.437 24.996 5.054 -0.00032 0.00044 0.20948 

5 50.004 5.368 49.999 4.719 -0.00015 0.00114 0.17075 

6 20.002 4.932 20.002 5.395 -0.00031 0.00030 0.20576 

7 74.994 5.121 40 5.374 -0.00041 0.00064 0.21082 

8 29.998 6.021 4.998 5.014 -0.00016 -0.00044 0.21664 

 


