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Abstract. We solve the problem of steering a three-level quantum system from one eigen-

state to another in minimum time and study its possible extension to the time-optimal

control problem for a general n-level quantum system. For the three-level system we find all

optimal controls by finding two types of symmetry in the problems: Z2 ×S3 discrete sym-

metry and S1 continuous symmetry, and exploiting them to solve the problem through

discrete reduction and symplectic reduction. We then study the geometry, in the same

framework, which occurs in the time-optimal control of a general n-level quantum system.
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1 Problem Statement

In this paper we study the time-optimal control problem for the following
3-level system:







ẋ1 = −ω3x2

ẋ2 = ω3x1 − ω1x3

ẋ3 = ω1x2

(1)

with the initial and final conditions

x(0) = (1, 0, 0), x(Tmin) = (0, 0, 1) (2)

and the control constraints

|ω1| ≤ 1, |ω3| ≤ 1. (3)

We show that there are exactly two optimal control laws which are

(ω1, ω3) = ±(1, 1)
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and the minimum time cost is π√
2
. Furthermore, we show how the same

technique can be extended to understanding the geometry in the time-optimal
control problem for the general n-level system:



























ẋ1 = −u1x2

ẋ2 = u1x1 − u2x3

...
ẋn−1 = un−2xn−2 − un−1xn

ẋn = un−1xn−1

(4)

with the initial and final conditions

x(0) = (1, 0, · · · , 0), x(Tmin) = (0, · · · , 0, 1)

and the control constraints

|ui| ≤ 1, i = 1, . . . , n − 1.

In the context of quantum mechanics, the model considered in this paper
is a finite-dimensional low-energy approximation of a Schrödinger equation
driven by rotating fields and averaged over a time interval longer than the
inverse energy splittings, where each xi corresponds to the coefficient of the
eigen wave function of the i-th energy level, and controls ui’s correspond to
the amplitudes of lasers [10].

Various open-loop control problems for quantum systems have been stud-
ied. In particular, the energy-optimal control problem for the dynamics in
(4) without any magnitude constraints on control was studied at the level
of Lie groups in [6, 4]. For that problem, the author in [6] combined Lie-
Poisson reduction theory with the Pontryagin Maximum Principle (PMP),
and the authors in [4] utilized sub-Riemannian geometry with the PMP. In
[10] the trajectory generation problem for the dynamics in (4) was studied
via flatness theory. In [3] the time-optimal control problem for the dynamics
in (1)–(3) was studied using sub-Riemmanian geometry. The same problem
and its generalization are studied in the present paper using a different ap-
proach. Our main tool, distinct from those in [3, 4, 6, 10], is the detection
and exploitation of both continuous and discrete symmetry in the problem:
for example, an S1 continuous symmetry and a Z2 × S3 discrete symmetry
in the dynamics (1)–(3) where we employ discrete reduction and symplectic
reduction theory to remove the symmetry and simplify the dynamics. This
technique can also be effectively generalized to the time-optimal control of a
general n-level quantum system.

2 Pontryagin Maximum Principle

We review the Pontryagin Maximum Principle for time-optimal control prob-
lems. Consider a control system

ẋ = f(x, u), (x, u) ∈ R
n × U (5)
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where U is a compact subset of R
k. Define a Hamiltonian function on R

n ×
R

n × U
H(x, p, u) = 〈p, f(x, u)〉 (6)

where p ∈ R
n is a covector. Then the following holds:

Theorem 2.1. ([8]) Let u(t) be a time-optimal control on [0, Tmin] for the
system (5) with the boundary conditions

x(0) ∈ N0, x(Tmin) ∈ N1 (7)

where N0 and N1 are regular submanifolds of R
n. Let x(t) be the corre-

sponding optimal trajectory. Then, there exists a nonzero continuous covector
function p(t) ∈ R

n such that (x(t), p(t), u(t)) satisfies

ẋ =
∂H

∂p
, ṗ = −∂H

∂x

with H in (6) where

1. u(t) = arg supv∈U H(x(t), p(t), v) ∀ t ∈ [0, Tmin].

2. H(x(t), p(t), u(t)) = M(x(t), p(t)) almost everywhere in [0, tf ] where

M(x, p) = sup
v∈U

H(x, p, v).

3. M(x(t), p(t)) = constant on [0, Tmin].

4. 〈p(0), Tx(0)N0〉 = 0, 〈p(Tmin), Tx(Tmin)N1〉 = 0 (transversality condi-
tions).

If a given optimal control problem can be interpreted as one on a regular
submanifold of R

n, then a transversality condition is obtained in the ambient
space R

n.

Corollary 2.2. Suppose that the boundary conditions in (7) are fixed points
as follows:

x(0) = x0, x(Tmin) = x1,

and that there exists a regular submanifold L ⊂ R
n containing all trajectories

of (5) reaching x1. Then,

p(0) ∈ Tx0
L ⊂ R

n.

Proof. One can construct a sufficiently small m-dimensional open box B
which contains x0 at its center and is transversal to L at x0 so that B ∩L =
{x0} and Tx0

B ⊕ Tx0
L = R

n where m is the codimension of L. By the
definition of L, the original time-optimal control problem is equivalent to
finding the time-optimal trajectories from B to x1. From the transversality
condition in Theorem 2.1, 〈p(0), Tx0

B〉 = 0. Hence, p(0) ∈ Tx0
L ⊂ R

n.
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3 Time-optimal Control of the 3-level Quan-

tum System

Existence of Optimal Trajectories. It is straightforward to see that
our optimal control problem satisfies the conditions in Theorem 4 in § 4.4
of [7]. Hence, there exist time-optimal trajectories for our system with the
minimum time cost Tmin.

Discrete Symmetry. We study the discrete symmetry in the system. For
brevity, we write (1) in compact form as follows:

ẋ = A(ω1, ω3)x (8)

where

A(ω1, ω3) =





0 −ω3 0
ω3 0 −ω1

0 ω1 0



 . (9)

Let g1, g2 and g3 respectively, be the reflection in the plane P1 = {x1 = 0},
P2 = {x2 = 0} and P3 = {x3 = 0} respectively. They are given in matrix
form by

g1 =





−1 0 0
0 1 0
0 0 1



 , g2 =





1 0 0
0 −1 0
0 0 1



 , g3 =





1 0 0
0 1 0
0 0 −1



 .

We claim that the system in (1) with (3) is invariant under g1, g2 and g3.
For example, notice that

(g2)
−1A(ω1, ω3)g2 =





0 ω3 0
−ω3 0 ω1

0 −ω1 0



 .

Suppose that there is a control (ω1(t), ω3(t)) on the time interval [0, T ] and
there exists a sub-interval [t1, t2] ⊂ [0, T ] such that the trajectory x(t) =
(x1(t), x2(t), x3(t)) driven by the control satisfies

x2(t1) = x2(t2) = 0, and x2(t) < 0 for t ∈ (t1, t2).

If the following control

(ω̃1(t), ω̃3(t)) =







(ω1(t), ω3(t)) for 0 ≤ t ≤ t1,
(−ω1(t),−ω3(t)) for t1 < t < t2,
(ω1(t), ω3(t)) for t2 ≤ t ≤ T

is used, then the associated trajectory x̃(t) = (x̃1(t), x̃2(t), x̃3(t)) will satisfy

x̃(t) =







(x1(t), x2(t), x3(t)) for 0 ≤ t ≤ t1,
(x1(t),−x2(t), x3(t)) for t1 < t < t2,
(x1(t), x2(t), x3(t)) for t2 ≤ t ≤ T .
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In particular,

x̃2(t1) = x̃2(t2) = 0 and x̃2(t) > 0 for t ∈ (t1, t2).

Notice that x(0) = x̃(0), x(T ) = x̃(T ), and that the trajectory x̃(t) has
the same time cost T . Hence, there always exists a time-optimal trajectory
contained in the set {x2 ≥ 0}. By applying similar arguments to g1 and g3,
the following lemma can be deduced:

Lemma 3.1. There exists a time-optimal trajectory contained in the closure
O1 of the first (open) octant

O1 = {(x1, x2, x3) ∈ R
3 | x1 > 0, x2 > 0, x3 > 0}.

We now consider the reflection g4 in the plane

Π = {x1 = x3},

where g4 is given in matrix form by

g4 =





0 0 1
0 1 0
1 0 0



 .

Notice that

(g4)
−1A(ω1, ω3)g4 =





0 ω1 0
−ω1 0 −ω3

0 ω3 0



 . (10)

Since the hyperplane Π divides R
3 into two regions such that x(0) = (1, 0, 0)

and x(Tmin) = (0, 0, 1) belong in distinct regions, every trajectory from
(1, 0, 0) to (0, 0, 1) must intersect with Π. Suppose that there is a con-
trol (ω1, ω3) : [0, T ] → [− 1, 1]2 for (1) such that the associated trajectory
(x1(t), x2(t), x3(t)) with the initial condition (1, 0, 0) reaches Π at t = T for
the first time. We extend the control to the time interval [0, 2T ] as follows:

ω1(T + s) = ω3(T − s), ω3(T + s) = ω1(T − s) (11)

for s ∈ [0, T ]. By (10) and the consideration of time-reversal, x(t) on [0, 2T ]
satisfies

g4(x(T − s)) = x(T + s), s ∈ [0, T ].

Hence, the trajectory x(t) for t ∈ [0, 2T ] is invariant under the reflection with
respect to the plane Π, and thus x(2T ) = (0, 0, 1). This observation leads us
to the following lemma:

Lemma 3.2. Consider the time-optimal control problem for the system (1)
with (2) and (3). Then the following holds.

1. There exists a time-optimal trajectory which is symmetric with respect
to the plane Π.
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2. Every time-optimal trajectory reaches Π in minimum time, which is
half of the total minimum time cost.

3. Every time-optimal trajectory intersects with Π only once. As a result,
there is no segment in any optimal trajectory which totally lies in Π.

Lemma 3.3. Consider the time-optimal control problems for the system (1)
with the constraint (3) and the following eight distinct initial and final con-
ditions:

x0 x1

(1, 0, 0) (0, 0, 1)
(1, 0, 0) (0, 0,−1)

(−1, 0, 0) (0, 0, 1)
(−1, 0, 0) (0, 0,−1)

x0 x1

(0, 0, 1) (1, 0, 0)
(0, 0, 1) (−1, 0, 0)

(0, 0,−1) (1, 0, 0)
(0, 0,−1) (−1, 0, 0)

Then, they all have the same minimum time cost.

Proof. Use g1, g2, g3 and time reversal.

We remark that the group generated by {gi | i = 1, 2, 3, 4} is isomorphic
to Z2 × S3 where S3 is the symmetric group on 3 letters.

Maximum Principle. By Lemma 3.1 we will initially look for all time-
optimal trajectories which are contained in O1, i.e.,

x([0, Tmin]) ⊂ O1 (12)

However, it is important to notice that this does not impose any state con-
straints on our optimal control problem. Hence, we can apply the ordinary
Pontryagin Maximum Principle, which does not take into account any state
constraints, to the system (1) – (3) satisfying (12).

Following (6), we construct the Hamiltonian

H = ω1(x2p3 − x3p2) + ω3(x1p2 − x2p1) (13)

where p = (p1, p2, p3) is a nonzero covector satisfying

ṗ = A(ω1, ω3)p (14)

with A(ω1, ω3) in (9). The optimal control satisfies

{

ω1(t) = sign(x2(t)p3(t) − x3(t)p2(t)),
ω3(t) = sign(x1(t)p2(t) − x2(t)p1(t))

(15)

where it is assumed that the sign function at 0 can take an arbitrary value
between −1 and 1. By the third statement of Theorem 2.1, we have

M(x,p) = |x2p3 − x3p2| + |x1p2 − x2p1| (16)
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and
M(x(t),p(t)) = M(x(0),p(0)) (17)

for t ∈ [0, Tmin] along each optimal trajectory (x(t),p(t)).
Since the vector field (8) at x ∈ R

3 is orthogonal to x and the initial and
final points in (2) belong to the unit 2-sphere

S2 = {x ∈ R
3 | ‖x‖ = 1},

the time-optimal control problem is essentially defined on S2. By Corol-
lary 2.2 we have the following transversality condition at t = 0:

p1(0) = 0. (18)

Since p(0) 6= 0 by the Maximum Principle and ‖p(t)‖ = ‖p(0)‖ 6= 0 by (14),
the p-dynamics is defined on R

3 − {(0, 0, 0)}. From (8) and (14), it follows
that d

dt
〈x,p〉 = 0. Hence,

〈x(t),p(t)〉 = 〈x(0),p(0)〉 = 0 (19)

where (2) and (18) were used. Therefore, the (x,p)-dynamics in (8) and (14)
are defined on

P = {(x,p) ∈ R
3 × R

3 | ‖x‖ = 1, 〈x,p〉 = 0,p 6= 0}. (20)

The manifold P is equipped with the symplectic form which is the restriction
of the canonical symplectic form

∑3
i=1 dxi ∧ dpi on T ∗

R
3 = R

3 × R
3 to P .

Lemma 3.4. The manifold P in (20) is diffeomorphic to SO(3) × (0,∞).

Proof. It is well-known that the unit tangent space

T1S
2 = {(x,v) ∈ TS2 ⊂ R

3 × R
3 | ‖v‖ = 1}

of the 2-sphere S2 is diffeomorphic to SO(3) (∵ (x,v) ∈ T1S
2 7→ [x,v,x×v] ∈

SO(3)). Hence P is diffeomorphic to T1S
2 × (0,∞) from which the result

follows.

Symplectic Reduction. We will find an S1 symmetry in our time-optimal
control problem and perform a symplectic reduction of the problem by this
symmetry. Refer to [1] for the symplectic reduction theory and to [2] for its
application to optimal control.

Define an S1-action on P in (20) as follows:

eiθ · (x,p) = (Rx×p

θ · x, Rx×p

θ · p) (21)

for eiθ ∈ S1, (x,p) ∈ P where Rx×p

θ is the 3 × 3 rotational matrix by angle
θ with the axis in the direction of x × p. One can check that this action is
symplectic and its momentum map J : P → R is given by

J(x,p) = ‖x× p‖.
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Refer to [1, 9] for computation of momentum maps. Notice that every
(nonzero) value of J on P is a regular value. From the vector identity
‖x×p‖2 = ‖x‖2‖p‖2−|〈x,p〉|2 and Lemma 3.4, it follows that each level set
J−1(µ) with µ ∈ (0,∞) = ImJ is diffeomorphic to SO(3). For our purpose of
solving the time-optimal control problem (1)–(3), it suffices to consider the
case µ = 1 since other cases are diffeomorphic to this case.

Lemma 3.5. In this symplectic reduction picture, the canonical projection
π : J−1(1) → J−1(1)/S1 is isomorphic to π : SO(3) ⊂ P → S2 ⊂ R

3 where

π : (x,p) 7→ L = x × p ∈ R
3.

The symplectic structure on S2 comes from the canonical Poisson structure
on R

3. Moreover, the Hamiltonian in (13) is invariant under the S1-action
in (21) and its reduced Hamiltonian on S2 × [−1, 1]2 is given by

H(L; ω1, ω3) = ω1L1 + ω3L3. (22)

In this symplectic reduction, we regard ω1 and ω3 as parameters.

Proof. It is easy to see that the image of π is S2. Hence, we have only to
show that the symplectic structure on S2 is the restriction of the canonical
Poisson structure on R

3. One can verify

{L1, L2}P = L3, {L2, L3}P = L1, {L3, L1}P = L2

where {, }P is the Poisson structure on P . This completes the proof on
the statement about the reduced symplectic structure. The proof on the
statement about H is left to readers.

Along each optimal trajectory, the function M in (16) and (17) satisfies

M(x(t), p(t)) = |L1(t)| + |L3(t)| = |L1(0)| + |L3(0)| = M(x(0), p(0)) (23)

for t ∈ [0, Tmin].
The reduced dynamics of the Hamiltonian H on S2 ⊂ R

3 is given by

L̇ = A(ω1, ω3)L (24)

where A(ω1, ω3) is given in (9). The dynamics in (24) can be derived by
L̇i = {Li, H}, i = 1, 2, 3. By the definition of L, we have

〈x(t),L(t)〉 = 0, ∀t. (25)

Notice that the optimal control in (15) depends on the reduced dynamics as
follows:

ω1(t) = sign(L1(t)), ω3(t) = sign(L3(t)). (26)
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Switching Law. We now study the switching law in (26). Recall that we
seek an optimal trajectory satisfying (12). For convenience, we visualize both
x and L in the same R

3-space. It is useful to notice from (8) and (24) that
if (ω1, ω3) is constant in a time interval [a, b], then for t ∈ [a, b]

x(t) = etA(ω1,ω3)x(a), L(t) = etA(ω1,ω3)L(a) (27)

where

etA(ω1,ω3) =







(ω1)
2+(ω3)

2 cos(ωt)
ω2 −ω3 sin(ωt)

ω

ω1ω3(1−cos(ωt))
ω2

ω3 sin(ωt)
ω

cos(ωt) −ω1 sin(ωt)
ω

ω1ω3(1−cos(ωt))
ω2

ω1 sin(ωt)
ω

(ω3)
2+(ω1)

2 cos(ωt)
ω2






(28)

with
ω =

√

(ω1)2 + (ω3)2.

From (25) and (2), it follows that L(0) lies on the unit circle in the x2-x3

plane and L(Tmin) lies on the unit circle in the x1-x2 plane. We now consider
the three cases:

L(0) ∈ R1, L(0) ∈ R2, and L(0) /∈ R1 ∪ R2,

where

R1 = {(0,±1, 0)}, R2 = {(0, 0,±1)}.
First, we consider the case of L(0) ∈ R1 = {(0,±1, 0)}. Suppose there exists
an optimal trajectory with L(0) = (0, 1, 0) (the case of L(0) = (0,−1, 0) can
be handled similarly). By (23), |L1(t)| + |L3(t)| = 0 for all t, so

L(t) = (0, 1, 0) ∀t. (29)

due to continuity of L(t) = x(t) × p(t) in t. As the x-trajectory moves
from (1, 0, 0) to (0, 0, 1), it is impossible to have (ω1(t), ω3(t)) = (0, 0) almost
everywhere. Hence, there exists t1 < Tmin such that

∫ t1

0

ω1(s)ds 6= 0 or

∫ t1

0

ω3(s)ds 6= 0.

Let us consider the former case since the latter can be handled similarly. We
have

L3(t1) =

∫ t1

0

ω1(s)L2(s)ds =

∫ t1

0

ω1(s)ds 6= 0

which is a contradiction to (29). Hence, L(0) ∈ R1 = {(0,±1, 0)} cannot
generate optimal trajectories.

We now consider the case where L(0) = (0, 0, 1). By (23),

|L1(t)| + |L3(t)| = 1 ∀t. (30)
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By (30) and the orthogonality of L(Tmin) to x(Tmin) = (0, 0, 1), it is necessary
that L(Tmin) = (1, 0, 0) or (−1, 0, 0). Take an arbitrary positive δ ≤ Tmin

such that
L3(t) > 0 ∀ t ∈ [0, δ], (31)

which is possible by the continuity of L3(t). If there is t̄ ∈ (0, δ] such that
L1(t̄) = 0, then L(t̄) = (0, 0, 1) by (30) and (31). This implies that point
(0, 0, 1) = L(t̄) is transfered to point ±(1, 0, 0) = L(Tmin) with time cost
(Tmin − t̄). It follows that the minimum time cost for x(t) should be at most
(Tmin− t̄) by Lemma 3.3, which contradicts the definition of Tmin. Therefore,
L1(t) never vanishes on (0, δ]. Hence, either L1(t) < 0 for all t ∈ (0, δ] or
L1(t) > 0 for all t ∈ (0, δ].

Suppose that L1(t) < 0 for all t ∈ (0, δ]. Then, (ω1(t), ω3(t)) = (−1, 1) on
(0, δ]. Using (27) and (28), we get x3(t) = − 1

2 (1−cos(
√

2t)) for t ∈ (0, δ]. For
a sufficiently small t, we get x3(t) < 0. Hence, x3([0, δ]) is not contained in
O1, which contradicts (12). Therefore, L1(t) > 0 for all t ∈ (0, δ] where δ is
an arbitrary positive number less than or equal to Tmin such that (31) holds.
Simple integration of (8) and (24) with (27) and (28) yields the following:
for all t ∈ (0, π√

2
)

ω1(t) = 1, ω3(t) = 1,

x(t) =

(

1 + cos(
√

2t)

2
,
sin(

√
2t)√

2
,
1 − cos(

√
2t)

2

)

∈ int(O1), (32)

L(t) =

(

1 − cos(
√

2t)

2
,− sin(

√
2t)√

2
,
1 + cos(

√
2t)

2

)

where in particular
L1(t) > 0, L3(t) > 0.

It is easy to see that

x

(

π√
2

)

= (0, 0, 1), L

(

π√
2

)

= (1, 0, 0).

Thus, the trajectory in (32) with time cost Tmin = π√
2

is a candidate for an

optimal trajectory.
Next, we consider the case L(0) = (0, 0,−1). By the continuity of

L(t), there is 0 < δ < min{Tmin,
1

100} such that L3(t) < 0 and ω3(t) =
sign(L3(t)) = −1 on [0, δ]. Using (27) and (28) , we get x2(t) = − 1

ω
sin(ωt) <

0 on (0, δ]. Hence, x((0, δ]) ∩ O1 = ∅, which contradicts the assumption in
(12). Thus, we exclude the case L(0) = (0, 0,−1).

Lastly, we consider the case where L(0) /∈ R1 ∪R2. The unit circle minus
R1∪R2 in the x2-x3 plane consists of four open arcs; see Figure 1.(b). It is not
hard to see that the initial value of optimal control (ω1, ω3) should be given
as in Figure 1.(b) depending on the initial value (L2(0), L3(0)). For example,
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A

B

C

D

E
F

G

H

x1, L1

x2, L2

x3, L3

(a)

x2, L2

x3, L3

(1, 1) (−1, 1)

(−1,−1) (1,-1)

(b)

Figure 1: (a) The initial value L(0) must lie on the unit circle on the x2 −x3

plane like the points A, C,E and G. The final value L(Tmin) must lie on the
unit circle on the x1 − x2 plane like B, D, F and H . (b) The initial value
of the control (ω1(0), ω3(0)) corresponding to L(0) on the unit circle on the
x2 − x3 plane minus {(0, 0,±1), (0,±1, 0)}.

suppose that (L2(0), L3(0)) = A in Figure 1.(a), i.e., L1(0) = 0, L2(0) <
0, L3(0) > 0. Then, there is t1 > 0 such that L2(t) < 0, L3(t) > 0 on [0, t1].

It follows that L1(t) =
∫ t

0 −ω3(s)L2(s)ds =
∫ t

0 −L2(s)ds > 0 for all t ∈ (0, t1].
Hence, ω1(t) = 1 for all t ∈ (0, t1]. Hence, we may set ω1(0) = 1 since t = 0
is a measure-zero set. This explains the choice (ω1(0), ω3(0)) = (1, 1) in
Figure 1.(b). The argument made so far also implies that L(t) starts to enter
the first octant in R

3 and remains there with (ω1(t), ω3(t)) = (1, 1) until
it hits the switching plane L3 = 0. The switching order is summarized in
Figure 2. Recall from (23) that L(t) on the unit sphere satisfies

|L1(t)| + |L3(t)| = |L1(0)| + |L3(0)| > 0.

It is straightforward to check that switching is periodic by symmetry, which
also can be seen directly from the dotted line in Figure 1.(a).

We claim that L(0) lies on the open arc in the second quadrant in the x2-
x3 plane. Suppose that L(0) lies on the open arc in the first quadrant of the
x2-x3 plane such as point E in Figure 1.(a). Then, there is a sufficiently small
positive ǫ < min{Tmin,

1
100} such that (ω1(t), ω3(t)) = (−1, 1) for t ∈ [0, ǫ],

which by (28) implies x3(t) = − (1−cos(
√

2t))
2 < 0 on (0, ǫ]. Thus, x((0, ǫ]) ∩

O1 = ∅, which contradicts the assumption in (12). Hence, we exclude this
case. In the similar manner, we can exclude the case of L(0) being contained
in the other two open arcs in the third and fourth quadrants of the x2-x3

plane. Therefore, L(0) must lie in the open arc in the second quadrant in
the x2-x3 plane.

Let A = L(0) as in Figure 1.(a). Since L(Tmin) should be orthogonal to
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A

B

C

D

E

F

G

H

(1, 1)(1, 1)

(1,−1)(1,−1) (−1,−1)(−1,−1)

(−1, 1)(−1, 1)

Figure 2: The switching scheme of the extremal control (ω1(t), ω3(t)) where
the points A,B,C,D,E,F ,G and H correspond to those in Figure 1.(a).

x(Tmin) = (0, 0, 1), L(Tmin) must lie in the plane L3 = 0. Hence, L(Tmin)
should be either point B or point D in Figures 1.(a) and 2. We claim that
L(Tmin) = B, that is, L(Tmin) 6= D. Suppose that L(Tmin) = D. Then,
according to the scheme in Figure 2, the middle part of the corresponding
trajectory x(t) is in the middle of the time interval on which (ω1, ω3) =
±(1,−1), so the trajectory remians on the plane Π = {x1 = x3} for a time
interval of non-zero length since x(Tmin

2 ) ∈ Π, which can be easily checked
using (27) and (28). Hence, by the third statement in Lemma 3.2, it cannot
be an optimal trajectory. From this observation, we arrive at:

Lemma 3.6. If there is an optimal trajectory with L(0) = A in the open arc
in the second quadrant of the x2-x3 plane, then L(Tmin) = B. In consequence,
the number of switchings is 0, 4, 8, . . ..

We now claim that the number of switchings is 0. Suppose that there is
an optimal trajectory with L(0) = A with the number of switchings greater
than or equal to 4. Let Ts be the switching period. It follows that Tmin >
2Ts. Since we have found a trajectory in (32) with time cost π√

2
, we have

2Ts < Tmin ≤ π√
2
. On [0, 2Ts] the control law is given by

(ω1(t), ω3(t)) =

{

(1, 1) for 0 ≤ t ≤ Ts

(1,−1) for Ts < t ≤ 2Ts

By (27) and (28), we get

x(2Ts) = eTsA(1,−1) · eTsA(1,1)x(0)

which implies x2(2Ts) = 1√
2

sin(
√

2Ts)(cos(
√

2Ts)− 1) < 0 since 0 <
√

2Ts <
π
2 . We exclude this trajectory since it is not contained in O1 as assumed
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in (12). Hence, the only possible optimal control would be (ω1, ω3) = (1, 1)
without switchings, which we have already studied and have found the tra-
jectory in (32). We have proved the following:

Claim 3.7. There is only one optimal trajectory contained in the first closed
octant O1. It is given by

x(t) =

(

1 + cos(
√

2t)

2
,

sin(
√

2t)√
2

,
1 − cos(

√
2t)

2

)

(33)

with the control (ω1(t), ω3(t)) = (1, 1) and the time cost Tmin = π√
2
. More-

over, it is g4-invariant.

Theorem 3.8. There are only two optimal trajectories, and the minimum
time cost is π√

2
. One is given in (33) with the control (ω1, ω3) = (1, 1) and

the other is given by

g2(x(t)) =

(

1 + cos(
√

2t)

2
, − sin(

√
2t)√

2
,

1 − cos(
√

2t)

2

)

with the control (ω1, ω3) = (−1,−1).

Proof. Let x(t) be the optimal trajectory in (33) with control (ω1, ω3) =
(1, 1). Since x((0, Tmin)) is contained in the first (open) octant O1, there
can be at most three additional optimal trajectories by symmetry: g1(x(t)),
g2(x(t)) and g3(x(t)). Among the three, only g2(x(t)) connects the initial
point (1, 0, 0) to the final point (0, 0, 1), and it is generated by (ω1, ω3) =
(−1,−1).

4 Generalization

We now show to what extent the techniques used for the 3-level system
can be applied to the general n-level system, and leave some comments for
the readers who are interested in the time-optimal control of the general
n-system.

Problem Statement. Consider the time-optimal control problem for the
following n-level system:



























ẋ1 = −u1x2

ẋ2 = u1x1 − u2x3

...
ẋn−1 = un−2xn−2 − un−1xn

ẋn = un−1xn−1

(34)
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with the initial and final conditions

x(0) = (1, 0, · · · , 0), x(Tmin) = (0, · · · , 0, 1)

and the control constraints

|ui| ≤ 1, i = 1, . . . , n − 1.

Discrete Symmetry. The dynamics have a symmetry G = 〈gi | i =
1, . . . , n〉 where each gi is the reflection in the plane {xi = 0}. As a result,
there is an optimal trajectory in the set {xi ≥ 0, i = 1, . . . , n}.

It is not difficult to show that there is an additional discrete symmetry.
For n = 2k, if there is a trajectory x(t), 0 ≤ t ≤ T , connecting the initial
point to the final point, then one can construct a trajectory y(t), 0 ≤ t ≤ T ,
connecting the initial point to the final point such that

y(t) = S(x(T − t))

where S = (1, 2k)(2, 2k − 1) · · · (k, k + 1) is a permutation on the index
set {1, 2, . . . , 2k}. For n = 2k + 1, the same holds with the permutation
S = (1, 2k + 1)(2, 2k) · · · (k − 1, k + 1). However, the existence of an optimal
trajectory which is invariant under S is unknown for n > 3.

Maximum Principle. Following the Pontryagin Maximum Principle, we
first set up the Hamiltonian

H(x,p; u) = u1(x1p2 − x2p1) + · · · + un−1(xn−1pn − xnpn−1) (35)

where the covector p obeys the same dynamics as those in (34). The optimal
control satisfies

ui(t) = sign(xi(t)pi+1(t) − xi+1(t)pi(t)), (36)

and along each optimal trajectory

M(t) =

n−1
∑

i=1

|xi(t)pi+1(t) − xi+1(t)pi(t)| = constant.

By Corollary 2.2 and the fact that ‖x(t)‖ = 1, we have the transversality
condition

p1(0) = 0.

Since x(t) is perpendicular to p(t) for all t, we may regard the Hamiltonian
in (35) as a function defined on

P = {(x,p) ∈ R
n × R

n | ‖x‖ = 1, 〈x,p〉 = 0,p 6= 0} (37)

where p 6= 0 comes from the Pontryagin Maximum Principle. Here, the
manifold P has the symplec structure induced from the canonical form Ω =
∑n

i=1 dxi ∧ dpi. It is easy to see that P is diffeomorphic to T1S
n−1 × (0,∞)

where T1S
n−1 is the unit tangent space of the (n − 1)-sphere.
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Continuous Symmetry and Symplectic Reduction. Consider the func-
tion

J(x,p) = ‖x‖2‖p‖2 − |〈x,p〉|2.
We denote the Hamiltonian vector field of J by XJ . On the manifold P in
(37), the vector field XJ is given by

XJ |P = (2‖x‖2p + 2〈x,p〉x,−2‖p‖2x− 2〈x,p〉p)|P
= (2p,−2‖p‖2x).

One can verify that XJ is tangent to P at each point of P , so P is an invariant
manifold of XJ . The flow ϕJ

t of XJ on P is given by

ϕJ
t (x,p) =

[

cos(2µt)In
1
µ

sin(2µt)In

−µ sin(2µt)In cos(2µt)In

]

·
[

x

p

]

where In is the n × n identity matrix and µ = ‖p‖. Here, it is understood
that ‖p‖ is constant along the flow of XJ on P , which can be easily verified
by computing XJ · ‖p‖ = 0 on P . Since each flow ϕJ

t (x,p) is periodic with
period π

‖p‖ , we can define a S1-action on P by

eiθ · (x,p) = ϕJ
θ

2‖p‖
(x,p), θ ∈ [0, 2π].

This action is symplectic since it comes from the Hamiltonian flow ϕJ
t . Notice

that H is constant under this action since XJ · H = 0.
For the purpose of finding optimal trajectories, we fix the level of the

momentum map J at µ = 1 since other level sets of J on P are diffeomorphic
to J−1(1). We note that

J−1(1) = {(x,p) ∈ R
n × R

n | ‖x‖ = 1, ‖p‖ = 1, 〈x,p〉 = 0} = T1S
n−1.

By the symplectic reduction theory, there is a projection π : J−1(1) →
J−1(1)/S1 and a reduced Hamiltonian h(r; u) on J−1(1)/S1 such that

H(x,p; u) = h(r; u), r = π(x,p)

where the control u = (u1, · · · , un−1) is regarded as a parameter in this
reduction process. Moreover, there is a symplectic form ω on J−1(1)/S1

such that Ω |J−1(1)= π∗ω.
By the Pontryagin Maximum Principle, optimal control maximizes the

Hamiltonian H(x,p, u), but through the symplectic reduction it is equivalent
to maximizing the reduced Hamiltonian h(r, u) for r ∈ J−1(1)/S1. Thus, the
switching of ui in (36) depends on the Hamiltonian dynamics of h(r; u) on the
(2n−4) dimensional space J−1(1)/S1, rather than on the (2n−3) dimensional
space J−1(1), which would be hard to detect without the symplectic reduction
theory.
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The 4-level system: an Illustration. We now illustrate the symplectic
reduction process for the 4-level system although the 3-level system studied
in this paper has already made an excellent illustration. Since the topology
of the spaces involved in the 4-level system also appear in other contexts, we
will make succinct presentations, referring the readers to [5] or Chapter 4 of
[11].

The reduced space J−1(1)/S1 = (T1S
3)/S1 is diffeomorphic to S2 × S2,

but it is convenient to embed T1S
3/S1 into R

6 using the Plücker coordinates

L := (L12, L13, L14, L23, L24, L34) ∈ R
6

defined by

Lij = xipj − xjpj, 1 ≤ i < j ≤ 4

for (x,p) ∈ T1S
3 ⊂ R

4 × R
4. The Plücker coordinates satisfy

L12L34 − L13L24 + L14L23 = 0 (38)

and
∑

1≤i<j≤4

(Lij)
2 = ‖x‖2‖p‖2 − |〈x,p〉|2 = 1 (39)

on P . The reduced space T1S
3/S1 is diffeomorphic to the submanifold of R

6

defined by the two equations in (38) and (39), which is also diffeomorphic to
S2 × S2 via the following coordinate change:

y1 = L12 + L34, z1 = L12 − L34,

y2 = L13 − L24, z2 = L13 + L24,

y3 = L23 + L14, z3 = L23 − L14

where y = (y1, y2, y3) and z = (z1, z2, z3) satisfy ‖y‖ = 1 and ‖z‖ = 1. The
Poisson structure satisfied by the Plücker coordinates is given in Table 1 in
[5], and both coordinates y and z have the canonical Poisson structure on
R

3.

In terms of the Plücker coordinates, the Hamiltonian in (35) is given by

H(L; u) = u1L12 + u2L23 + u3L34

and optimal control satisfies

u1(t) = sign(L12(t)), u2(t) = sign(L23(t)), u3(t) = sign(L34(t)).

By the Pontryagin Maximum Principle, along each optimal trajectory

M(t) = |L12(t)| + |L23(t)| + |L34(t)| = M(0)
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and the (reduced) Hamiltonian dynamics of H are given by

L̇12 = −u2L13

L̇13 = −u1L23 + u2L12 − u3L14

L̇14 = −u1L24 + u3L13

L̇23 = u1L13 − u3L24

L̇24 = u1L14 − u2L34 + u3L23

L̇34 = u2L24

with the two constraints in (38) and (39). This dynamics can be computed
using Table 1 in [5] or equation (4.14) in [11]. The same dynamics can be
equivalently written as







ẏ1 = −u2y2

ẏ2 = u2y1 − (u1 + u3)y3

ẏ3 = (u1 + u3)y2







ż1 = −u2z2

ż2 = u2z1 − (u1 − u3)z3

ż3 = (u1 − u3)z2

in (y, z) with

u1(t) = sign(y1(t) + z1(t)),

u2(t) = sign(y3(t) + z3(t)),

u3(t) = sign(y1(t) − z1(t)).

The initial condition on x and the transversality condition on p imply

L23(0) = 0, L24(0) = 0, L34(0) = 0,

or
y1(0) = z1(0), y2(0) = z2(0), y3(0) = −z3(0).

We remark that we have set up all the equations required to embark on
finding optimal trajectories. Finding such trajectories is the most difficult
part and is left as an open problem.
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