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Abstract
Thermoconvective instabilities are studied when the Fourier law for heat conduction is replaced
by the Maxwell-Cattaneo or the Guyer-Krumhansl constitutive equation. For both the gravity-
driven and thermocapillary problem, the convective treshold is determined in terms of the different
parameters of the system. Depending on the value of these parameters, the instability can be

stationary or oscillatory.
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I. INTRODUCTION

The Fourier law of heat conduction expresses that the heat flux within a medium is
proportional to the local temperature gradient in the system. A well known consequence of
this law is that heat perturbations propagate with an infinite velocity. It is possible to get
rid of this unphysical result by replacing the Fourier law by the so-called Maxwell-Cattaneo
law [1, 2]. This equation contains an extra “inertial” term with respect to the Fourier law
and writes as

dq

Tdt+q qu ()

In this equation, q is the heat flux, 7 is a relaxation time and A, is the heat conductivity of
the liquid. When Maxwell- Cattaneo relation is combined with the energy balance equation,

a finite phase velocity v is found for the temperature perturbations which is given by
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where p is the mass density of the fluid and ¢ the heat capacity. A still more general

constitutive equation for the heat flux was also proposed by Guyer and Krumhansl [3-5]
for heat transport at low temperatures. Heat propagation at low temperatures has received
much attention recently and interesting references on this problem can be found for instance
in [6, 7].

The analysis of Guyer and Krumhansl is based on a microscopic approach and results in

the following “Guyer-Krumhansl” constitutive equation for the heat flux:

oqg 1 , 1,
5 T3eavVI+ —a=mv (VZq+2VV-q). (3)

In this equation, ¢, is the mean speed of the phonons, 7 a relaxation time for the momentum
nonconserving resistive processes and 7y the relaxation time associated with the momentum
preserving processes. Equation (3) can be rewritten under the more convenient form
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with 7 = 75. The heat conductivity A, is defined by A = s7grec? and | = try7re?. Tt is
then clear that this consitutive equation reduces to the Maxwell- Cattaneo law when [ tends

to zero and to the Fourier law if both [ and 7 go to zero.



From a physical point of view, it is well known that the Fourier law appears naturally
within the framework of the classical theory of thermodynamics [8]. On the other hand,
it was shown that the “generalized Fourier equations” (1) and more particularly (4) are
appropriately described in the context of EIT (Extended Irreversible Thermodynamics) [9,
10]. EIT received a great attention in the Mexican Scientific community thanks to the
impetus and the contributions of L. Garcia-Colin and collaborators (see for instance [11-
13]).

When the constitutive equations (1) or (4) are used to describe heat transfer in a moving
fluid as in the present work, it is important to recall that objective time derivatives [9] must
be introduced instead of the partial time derivatives. In this work, we introduce the so-called
Jaumann, or corotational, derivative which is defined by

diq _dq
dt dt

where d/dt is the material time derivative and €2 is the skew- symmetric rotation tensor,

Q-q, (5)

whose components are given in terms of the components v, of the velocity field by

1 81}2‘ 8vj

Our objective in this paper is to examine the influence of using generalized Fourier equa-

tions instead of Fourier’s law in the analysis of thermoconvective instabilities. Let us recall
that these instabilities take place in horizontal thin liquid layers which are heated from be-
low. When the temperature difference between the bottom and the top of the fluid is rather
small, heat is transported vertically across the layer by conduction only. On the contrary,
when the temperature difference across the system exceeds a critical value, the conductive
solution becomes unstable and convection sets in in the fluid. Beyond the critical thresh-
old, one observes the occurence of nice regular patterns taking generally the form of rolls
or hexagonal convective cells. Two different physical mechanisms can be responsible for
this instability. In “Rayleigh- Bénard” convection, the motor of the motion is gravity while
thermocapillarity is the origin of the instability in the “Bénard-Marangoni” problem. In
this latter case the upper surface of the liquid is free, with a temperature dependent surface
tension. When both mechanisms cooperate to give rise to instability, the situation is usually
referred to as the “Rayleigh-Bénard- Marangoni” problem [14, 15].

Generalized Fourier equations have already been used in the past to study thermocon-

vective instabilities. For example, in [16], the pure gravity- driven instability is investigated
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with the Maxwell-Cattaneo constitutive equation (1) for the heat flux, while the thermo-
capillary instability is analysed in [17] with the same constitutive equation. However in this
latter work, the boundary condition used for the heat flux at the top surface is question-
able. In a more recent paper [18], an interesting analysis of the Rayleigh-Bénard problem is
developed by making use of the Guyer-Krumhansl model (4) .

In the present work, the general Rayleigh-Bénard-Marangoni problem is investigated
when Fourier’s law is replaced by the Maxwell-Cattaneo and the Guyer-Krumhansl models.
The mathematical model is presented in Section II and the general equations are formulated.
The results of the linear stability analysis are presented in Section III and the influence of the
different physical parameters is carefully examined for both the stationary and oscillatory

instabilities. Conclusions are drawn in the last section.

II. MATHEMATICAL MODEL

Let us consider a liquid layer, heated from below, whose horizontal dimensions are much
larger than its thickness. Under these conditions, the system can be considered as infinite
in the horizontal directions. As long as the temperature difference between the bottom and
the top is sufficiently small, heat transport is purely conductive and the velocity of the fluid
vanishes. The temperature is then a linear function of the vertical coordinate z and the
heat flux vector is vertical and constant. The general balance equations which govern the
evolution of the perturbations with respect to this basic conductive solution are well known
(see for instance [14] or [15]) and will be recalled only very briefly. When the Boussinesq
hypotheses are taken for granted, the infinitesimal perturbations with respect to the basic

state obey the following set of linear partial differential equations:

V-u=0, (7)
_10u 2
Pr E:—VpﬂLV u+ Ra Te,, (8)
oT
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We have chosen the vertical z-axis in the direction opposite to gravity. The equations are
written in a non-dimensional form with distances scaled by d, the thickness of the liquid
layer. The time scale is given by d?/k, with s the heat diffusivity of the liquid. The

velocity is scaled by x/d and the temperature scale is chosen as fd, where 3 is the vertical
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temperature gradient which would exist in a purely conductive state. The heat flux is scaled
with k8. Symbols u = (u,v,w), p, q and T represent the non- dimensional perturbations
of the velocity, pressure, heat flux and temperature fields respectively. The Rayleigh and

Prandtl numbers Ra and Pr are defined as

a4
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where v and oy, are the liquid kinematic viscosity and coefficient of thermal expansion. The
non-dimensional linearized constitutive equation for the perturbations q is easily deduced

from the form of the basic conductive solution and from egs.(4) and (5):
oq 1 [ov
~VT+L(V?q+2VV - q). (12)

In this equation C'a and L are the so-called Cattaneo and Guyer- Krumhansl non-dimensional

numbers, defined by

RT
Ca= P¥7L (13)
l

Equations (7,8,9,12) are then modified in a standard way to eliminate the pressure and
to obtain 3 scalar equations for the vertical component of the velocity field w, the temper-
ature perturbations # and the vertical component ¢, of the heat flux perturbations. These

equations are given by
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where V), = e,(0/0z) + e,(0/0y) is the horizontal nabla operator. Following the normal

mode technique, one seeks solutions of the form

w =W (Z)expi(kyx + kyy) exp ot, (18)
0 = O (Z)expi(ky,x + kyy) exp ot, (19)
¢ = Q (Z) expi(kyx + kyy) exp ot, (20)

where o is the growth rate of the perturbations while (k, k,) is their horizontal wave vector.
When these relations are introduced in equations (15-17), the following differential equations

for the amplitudes W, © and () are obtained:

2
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+(1+3Lo) (D* - k*) ©
— (3L — Ca) (D* - K*) W, (22)

~Q-DO+L(D*~k*)Q+2LDW =
20 (CaQ + L DO), (23)

where k is the modulus of the horizontal wave vector and D = d/dz denotes the derivative
with respect to the vertical coordinate z.

Let us now describe the boundary conditions needed to solve these equations. The bottom
of the fluid layer is assumed in contact with a rigid plate so that the velocity vanishes at
z = 0. Moreover, the temperature is fixed. In terms of W and ©, the corresponding

conditions write

W=DW=0=0 at z=0. (24)

The upper free surface of the liquid is assumed to remain undeformed and a balance is
assumed between the viscous stress and the Marangoni stress due to the variations of surface

tension with temperature. The mathematical expression for these conditions is

W =DW+ Mak’©0 =0 at z =1, (25)



where the Marangoni number Ma is defined as

v B d?
pkE

Ma =

(26)

In this definition, y is the dynamic viscosity of the liquid and -y is the sign-changed derivative
of the surface tension with respect to the temperature.

The thermal boundary condition at the free surface is a bit more delicate to derive when
generalized Fourier equations are used. It is assumed first that the temperature and vertical
component of the heat flux are continuous across the surface. One also takes for granted
Newton’s law of cooling, which expresses that the vertical flux in the gas is proportional
to the temperature difference between the gas at the interface and the gas far from this

interface. In dimensional variables, this condition writes as:
@G z=0))=h(T'"(z=0) - Ty), (27)

where h is the heat transfer coefficient. The upper index “gas” means that the corresponding
quantities are considered in the gas and T, is the temperature of the gas far from the
interface with the liquid. When the continuity of ¢, and T across the interface is used with

the normal mode decomposition, eq. (27) reads, in non-dimensional form:
Q=Bio, (28)

with Bi = hd /k the Biot number.
To proceed further with this boundary condition, it is necessary to consider separately
the Cattaneo equation (1) and the Guyer-Krumhansl model (4). In terms of ) and ©, the

Cattaneo constitutive equation is deduced from (23) by taking L = 0. This results in:
—Q — DO =20CaQ. (29)

When this relation is combined with (28), @) disappears from the boundary condition which

eventually takes the form:
DO+ Bi©=-20CaBi© at z=1. (30)

It is important to notice that this relation is not exactly the same as the boundary condition

used by Lebon and Cloot in [17]. The term proportional to o is indeed missing in the latter



work and it is thus important to revisit here the analysis by using the more correct relation
(30).

Since @ is absent not only in the boundary conditions, but also in the field equation for
W and O, the stability problem for the Cattaneo model reduces to the eigenvalue problem
defined by equations (21)- (22) (with L = 0) and the boundary conditions (24)- (25),(30).

When the more complicated Guyer-Krumhansl model is used, it is not easy to deduce
exact boundary conditions as in the case of the Cattaneo relation. Eq. (23) is indeed of
second order with respect to Q and two additional boundary conditions would be needed
for this unknown. Since no experimental or theoretical informations about these additional
boundary conditions are available, we assume in a heuristic way that the traditional Fourier
law remains valid at the fluid boundary z = 1, even if the Guyer-Krumhansl model is used
in the bulk of the system. As a consequence of this hypothesis, the heat flux amplitude )
in eq. (28) can be directly replaced by —D®. The boundary condition (28) can thus be
rewritten as

DO+ Bi©=0 at z=1. (31)

Within the simplifying assumption of a Fourier law valid at the upper surface, the unknown
@ disappears from the boundary conditions as in the Cattaneo model. The complete stability
eigenvalue problem corresponding to the Guyer- Krumhansl constitutive equation is then

formed by equations (21)- (22), coupled with the boundary conditions (24)- (25),(31).

III. RESULTS

For both the Cattaneo and the Guyer-Krumhansl constitutive equations, we use a Cheby-
shev spectral-tau method to solve the stability problem. To implement this thechnique
[19, 20], the unknown amplitudes W and © are expanded in series of Chebyshev poly-
nomials and the resulting expressions are introduced in the bulk equations and boundary
conditions. These relations are then projected on the same Chebyshev polynomials in order
to transform the differential equations in an algebraic eigenvalue problem, which is solved
by using standard software.

The critical temperature difference above which convection starts depends on several
parameters. First of all, it is important to note that both the Rayleigh and Marangoni

numbers are proportional to the temperature difference AT = [d. In fact, it is often



2&n —
330 T -

300

2501

g

150

v

&b

FIG. 1: Marginal stability curves for different values of the Cattaneo number Ca and for L = 0,
Ra=0,Bi=1and Pr=1

interesting to replace these two non- dimensional groups by two other non-dimensional
numbers chosen in such a way that only one of them depends on AT. In this work we

introduce two dimensionless quantities  and A defined by:

(1 ) Ra Ma Ra n Ma (32)
—Q)—— =a——o = — .
Rag Mao ’ Ray Mayg
The classical Ra and Ma numbers are then related to these numbers through
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FIG. 2: Marginal stability curves for different values of the Prandtl number Pr and for Ca = 0.07,
L =0.02, Ra=0,and Bi =1
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FIG. 3: Marginal stability curves for different values of the Guyer-Krumhansl number L and for

Ca=0.06,a=0.1,Bi=1and Pr=1

In these relations Ray and Mao are two arbitrary constants which are fixed in the fol-
lowing to 669 and 79.6 respectively.
the temperature difference across the liquid layer while «, which can be expressed as
(1 + RaoMagly(aliquQp)*lyl, is the only parameter depending on d. In the analysis of
the results, we shall determine the convective threshold for a fixed value of this parameter «.
For a given liquid, this procedure amounts to determine the stability threshold as a function

of the thickness of the layer. Let us also mention that for o = 0, the instability is purely
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It is then easily seen that only A depends on

FIG. 4: Marginal stability curves for different values of the Biot number B¢ and for Ca = 0.06,

L=0.02, a=0.1, and Pr=5
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thermocapillary (Ra = 0) while it is purely gravitational (Ma = 0) when a = 1.

Besides this “thickness parameter” «, the problem depends also on the Biot, Prandtl,
Cattaneo and Guyer-Krumhansl numbers. The parameter space is thus rather large and only
the most significant results will be reported. In Fig. 1, the Bénard-Marangoni instability
(aw = 0) is considered for the Cattaneo constitutive equation (L = 0). The Biot and Prandtl
numbers are fixed and the marginal stability curves are represented for different values
of the Cattaneo number Ca. In all the figures, the solid curves correspond to stationary
instabilities (o = 0) while oscillatory thresholds (Re (¢) = 0, Im (o) # 0) are represented
with dashed lines. It is clear from Fig. 1 that oscillatory instabilities are favoured when the
Cattaneo number is progressively increased. For large values of Ca, the stationary curve
even disappears completely.

The influence of the variations of the Prandtl number are examined in Fig. 2. In this fig-
ure, the Bénard-Marangoni instability (o = 0) is considered again and the Guyer-Krumhansl
model is used (Ca = 0.07, L = 0.02). As expected the stationary instability does not depend
on the value of Pr but the dashed lines move downwards as Pr is progressively increased.
For small Prandtl numbers, the instability is thus stationary while oscillations are expected
for large Pr only. For some “critical” value between 1 and 1.5 of the Prandtl number, both
the stationary and oscillatory modes are simultaneously unstable. In this case, a non-linear
analysis of the interactions between the two modes would be interesting in order to study
the behaviour of the system.

The influence of the Guyer-Krumhansl number is reported on Fig. 3, in which the
coupled Rayleigh-Bénard-Marangoni problem is considered (o = 0.1) for different values
of parameter L. An interesting point is that the oscillatory instabilities tend to disappear
when L is increased. We can also note that the stable curves are shifted downwards when
L becomes larger, which means that the system becomes more unstable.

Eventually, we have analysed the effect of changing the Biot number. The general be-
haviour is depicted in Fig. 4. As expected, the decrease of the Biot number makes the
system more unstable since the temperature perturbations arriving at the upper surface
are more easily “reflected” in the bulk. It is also very important to stress that oscillatory

instabilities are favoured by large values of the Biot number.
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IV. CONCLUSION

In this paper, we have analysed how thermoconvective instabilities in fluid layers heated
from below are modified when heat transfer is modelled with generalized Fourier laws,
namely Cattaneo and Guyer-Krumhansl equations. Both gravity-driven and thermocap-
illary instabilities are considered.

An important conclusion of our analysis is that oscillatory instabilities are predicted when
the Cattaneo number (i.e. the relaxation time) becomes large enough. The origin of these
oscillations is the inertial term in the constitutive equations which delays the response of the
heat flux to the variations of the temperature field. We have also shown that the oscillatory
solutions are more and more favoured when the Prandtl or the Biot number at the top
surface are increased. On the contrary, when the Guyer-Krumhansl number L is increased,
the instability becomes stationary again.

It should finally be stressed that in the case of the Guyer-Krumhansl model, only an
approximate thermal boundary condition at the top surface was used because no other
precise condition exists to our knowledge. Of course, it would be interesting to have a

definite expression for this condition and to introduce it in the stability analysis.
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