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ABSTRACT

It is known that the mixing-length approach gives a
very crude description of convection. First it is local
and second it neglects the spectral nature of turbulence.
However, it is still widely used in stellar evolutionary
codes. Moreover, perturbative theories of the MLT can
be derived, allowing a non-adiabatic modelling of the
convection-oscillations interaction. We propose here a
generalization of the mixing-length theory to the non-
local case, introducing 2 non-local parameters and 2 free
functions associated with the closure of the problem.
The description of the convective envelope (including the
overshooting region) as predicted by 3D hydrodynamic
simulations (horizontal and time averages) can be repro-
duced with our treatment by adjusting these free parame-
ters and functions. A perturbative theory can be derived
with our new treatment, as in the MLT, allowing the the-
oretical determination of the modes damping rates for
structure models with 3D description of the convective
zone top.
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1. INTRODUCTION

This paper deals with the derivation of convection models
that can be implemented both in stellar evolution codes
for the stationary case, and in non-adiabatic pulsation
codes for the time-dependent case. At present, only an-
alytical approaches can be followed in this context, most
of the time following the mixing-length phenomenology,
or more sophisticated semi-analytical approaches (e.g.
Canuto et al. 1996). But it is known that the Mixing-
Length Theory (MLT) gives a very crude description of
the non-adiabatic part of convective envelopes. To de-
scribe correctly these layers, 3D hydrodynamic simula-
tions are required (e.g. Stein & Nordlund). Taking ap-
propriate horizontal and time averages of these 3D re-
sults, we get a 1D description of the convective envelope.
Our goal is to reproduce this 1D stratification with sim-
ple semi-analytical models. We wish also that our mod-

*Chargé de Recherche de 1ere classe at the CNRS

els could be “easily” perturbed, allowing a linear study of
the interaction between convection and oscillations. Such
formalism would have two big advantages: first it could
be easy to implement in stellar evolution codes; and sec-
ond its perturbation could allow the determination of the
damping rate of oscillation modes for more realistic mod-
els.

We propose here a formalism reaching these two goals. In
the first part of this paper, we recall the main lines of the
old MLT model: Sect. 2 summarizes the phenomenolog-
ical description of convection proposed by Unno (1967),
and Sect. 3 summarizes some important aspects of a per-
turbative theory following the Unno approach, as derived
by Gabriel (1996) and Grigahcene et al. (2005). In the
second part, we present our new models. In Sect. 4 we
present our generalization of the Unno approach allow-
ing to reproduce the stratification of 3D simulations. The
perturbation of this formalism is considered in Sect. 5.
It can be implemented in non-adiabatic pulsation codes,
allowing the determination of the damping rate of the os-
cillation modes for models including the more realistic
stratification coming from 3D hydrodynamic simulations.
The results obtained (damping rates, ...) are presented in
Dupret et al. (these proceedings, paper I1I).

2. A MIXING-LENGTH THEORY

Unno (1967) proposed a new phenomenological descrip-
tion of convection, compared to the classical MLT of
Bom-Vitense (1958), but leading to the same results in
the stationary case. As usual in turbulence, equations and
variables are splitted in average values (horizontal av-
erage on a scale smaller than the horizontal wavelength
of the considered acoustic mode) and convective fluctu-
ations: the corresponding notations are y = g + Ay for
scalars and @ = @ + V for the velocity. In the Unno for-
malism, the continuity, movement and energy equations
describing the convective fluctuations are respectively:

V-V =0, (1)

s _2Pgs gap— 7 ViAo
dt p Tc
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A(pT)ds dAs o __ wWrTe + 1
- — Vs=——7—7""A 3
pT dt dt +V.Vs Te s

where wy, 1s the characteristic frequency of radiative en-
ergy lost by turbulent eddies, 7. is the characteristic life

time of the convective elements, pW’ =p,1— B, is the
Reynolds stress tensor, pes = (8 + Br) ® VV is the
rate of dissipation of turbulent kinetic energy into heat
per unit volume, ® stands for the tensorial product, 3,
and Sy are the non-diagonal components of the gas and
radiation stress tensors.

To obtain these equations, crude approximations have
been made for the closure of the movement and energy
fluctuation equations:

v A —
A = 2P B+ B+ B
Te P
=V (ABy + ABr + AB), D
_A o
pTT—S = —pTV-V3— pes + 76
C
+(pTVs)-V=(pTVs)-V, (5
V-AF, = —wgAspT, (6)

| = aH,=coldr/dInP|=|V|r. (1)

Eq. (7) is the usual closure equation of the MLT. Station-
ary solutions of the above equations, assuming constant
coefficients and A = 8/3, lead to the classical solutions
of the MLT:

IT+1) = A(V —Va), ®
9

er + F2 + T = A(Vrad_vad)7 )

_ &®cppT [ PrP [F(V - Vad)r/z, (10)

F
© 4 \[2Pp| T+1

p _o* PP T
b T g 9P, T+ 1

where A = PrP/(2P,p)[kcpp®gl?/(12acT3®P)]? and
= (wa7e)™ L.

(V= Vad), an

3. A MIXING-LENGTH PERTURBATIVE THE-
ORY

A perturbation of the above formalism was proposed by
Gabriel (1996) and improved by Grigahcene et al. (2005),
allowing the study of the coherent interaction between
convection and oscillations. The goal here is to obtain
a set of differential equations relating the perturbation
of correlated quantities such as the convective flux and

the turbulent pressure to the usual eigenfunctions. These
equations could then be implemented in a non-adiabatic
pulsation code.

In a very short summary, the procedure to obtain this per-
turbative theory is the following. We begin by perturbing
Egs. (1)-(3). The closure of the problem is crude in the
MLT approach and many complex physical processes, in-
cluding the whole cascade of energy are extremely sim-
plified compared to reality. Therefore, it is clear that
much uncertainty is associated to the perturbation of the
closure terms of these equations (Eqs. (4)-(7)). Be-
cause of these uncertainties and problems of short wave-
length oscillations of the eigenfunctions, Grigahcene et
al. (2005) proposed to introduce a free complex parame-
ter B in the perturbation of the thermal closure equations:

1) (E) = E ((1 —l-ﬂm'c)% - %) . (12)

Te Te As Te

With this free parameter 3, phase lags are allowed to oc-
cur between the oscillations and the way the turbulence
cascade adapts to them.

We search then for solutions of the perturbed con-
vective fluctuation equations of the form ¢ (AX) =

6 (AX); e'kTelot  assuming constant coefficients.
Then we integrate these particular solutions over all val-
ues of kg and kg such that kj + k3 = Ak7, assum-
ing A constant and that every direction of the horizontal
component of k has the same probability. A defines the
anisotropy of turbulence: A = 0.5pV?/pVZ (A=1/2in
the isotropic case). We have to introduce this distribution
of k values to obtain an expression for the perturbation
of the Reynolds tensor which allows the proper separa-
tion of the variables in term of spherical harmonics in the
equation of motion (Gabriel 1987). Finally, taking ap-
propriate correlations of the solutions gives differential
equations for the different perturbed convective quanti-
ties (Grigahcene et al. 2005).

The theory presented here is local, but it can easily be
generalized to the non-local case as detailed in the next
sections and in Dupret et al. (2006).

4. FITTING 3D HYDRODYNAMIC RESULTS

3D hydrodynamic simulations (e.g. Stein & Nordlund
1998) give a much better description of the non-adiabatic
part of the convective envelope than the MLT. We propose
here an improvement of the MLT approach fitting the
mean stratification predicted by 3D hydrodynamic sim-
ulations.

The idea is simple and consists in introducing appropri-
ate free functions and parameters in the theory. As most
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Figure 1. Turbulent pressure obtained as averages of
3D hydrodynamic models by Stein & Nordlund (1998)
(P;.n1,3d, solid line), local counterpart of these 3D val-
ues (P; 1,34, dotted line) and local MLT result (P, 1 mit,
dashed line) for the Sun.
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Figure 2. Convective to total flux ratio obtained as av-
erages of 3D hydrodynamic models (solid line) and local
MLT result (dashed line) for the Sun.

of the uncertainties are in the closure terms (Eqs. (4)-
(7)), we introduce at this level two free functions varying
with depths: © and «. 2 has the same meaning as in the
formalism of Canuto & Mazzitelli (1991); and we can as-
sume as proposed by these authors that it is a function of
the convective efficiency I'. « is the usual ML parameter
varying now with depth. More precisely, we multiply the
left hand side of Eq. (4) by Q(T') and the left hand side of
Egs. (5) and (6) by 1/Q(T). Hence, Egs. (2) and (3) are
replaced by the following equations:

— —

A - P
WV APys_vap— 7 -vi—omalL, a3
dt P Tc
A(pT)ds dAs 5 __  wpTe+1
ds V= —RCT - Ag (14
Fat @tV s Tame A (9

log(P)

Figure 3. Superadiabatic gradient V — V yq obtained as
averages of 3D hydrodynamic models by (solid line) and
local MLT result (dashed line) for the Sun.

In the stationary case and assuming constant coefficients,
the plane wave solutions of these new equations have a
form similar to the old ones. Eq. (8) remains unchanged,
giving the same meaning to I' as in the previous case.
Eq. (11) is still verified (with varying «), but Egs. (9) and
(10) are slightly modified and are now:

Q)T + T2 + T = A (Viag — Vad), (15

. _ QDa2cpT [PrP [D(V - Vaa) 3/2 6
- 4 2Pp| T+1 '

By adjusting the free functions 2 and «, we can repro-
duce exactly the 3D results.

B ©

Fe, Poyrb, (V—Vaq) and the other thermodynamic quan-
tities are directly deduced from the 3D simulations by
taking appropriate horizontal and time averages. Their
values are very different from those of MLT models, as
can be seen in Figs. 1, 2 and 3 where we compare MLT
and 3D results for a Solar model. In the present applica-
tion, we obtained the 3D results using the hydrodynamic
code of Stein & Nordlund (1998) with a resolution of
125 x 125 x 82 over the span of 1 hr.

In the local approach, these quantities are directly in-
jected in Eqgs. (8), (11) and (16), which are solved for
Q,aandT.

But a non-local approach can also be followed, it better
fits the 3D results and is more appropriate for the pertur-
bative theory proposed in next section. The basic ideas of
this non-local treatment are due to Spiegel (1963) and can
be understood doing an analogy with radiative transfer.
The local solutions obtained for example using the MLT
are considered as a source term (as the Planck function
for radiative transfer with Local Thermodynamic Equi-
librium), and then the non-local solutions are obtained by
letting diffuse these local solutions. More precisely, the

© European Space Agency ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/2006ESASP.624E..78D

WSP_6Z4E_ 78D

JUBES

rz

2.4 . T . .
22 1

1.8 .
1.6 1 .
14 ¢ ]
12 ¢ ]

0.8 ]
0.6 r ]
0.4

7 6.5 6 5.5 5
log(P)

Figure 4. Values of the free function §) obtained to fit
the mean stratification of 3D hydrodynamic models of the
Sun (solid line) and Q0 = 1 MLT value.
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Figure 5. Non-constant values of the Mixing-Length pa-
rameter « obtained to fit the mean stratification of 3D
hydrodynamic models (solid line) and constant solar cal-
ibrated value (dotted line).

non-local solutions are an average of the local ones, ac-
cording to the following equations:

400
Pml(G) = / Puet-Glde, (7

Fc,nl(CO)

+oo
/ Foe ¢ %lac.  18)

The free non-local parameters a and b appearing in these
equations were introduced by Balmforth (1992) and d¢ =
dr/l. Taking the second order derivative gives the two
very simple differential equations:
APyt /d¢? = 0 (P — Pry), 19)
2Pt /dC? = @2 (Fep — Fey) - (20)

In the case of our new theory, F and Pjy,p, are deduced
from the 3D stratification and are interpreted as non-local
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Figure 6. Convective efficiency I' obtained to fit the mean
stratification of 3D hydrodynamic models (solid line) and
values obtained with local MLT models (dotted line).

quantities. The non-local parameters ¢ and b are ob-
tained by fitting £z and P,,yp in the overshooting region
(Dupret et al. 2006), which gives: a = 10, b = 3. The lo-
cal counterparts of these non-local quantities are deduced
from Eqgs. (19) and (20). Then these local solutions are
injected in Egs. (8), (11) and (16), which are solved for
Q,aandT.

As an example, we illustrate the case of the turbulent
pressure in Fig. 1. The solid line is the turbulent pres-
sure as deduced from the 3D hydrodynamic simula-
tions (P n1,3p); we can note the exponential decrease
in the overshooting region, which justifies our non-local
formalism. The dotted line gives its local counterpart
(P;,1,3p) according to Eq. (19), and the dashed line gives
the local MLT values (P mrT)-

We illustrate in Figs. 4, 5 and 6 the functions 2, & and I’
obtained for our Solar model and compare them with the
MLT case. We see in Fig. 4 that the values obtained for
a are higher than the MLT constant value and decreases
towards the surface. {2 is below 1 in most of the convec-
tive envelope, and then it increases quickly towards the
top. The 3D stratification corresponds to a more efficient
convection (higher I') than MLT.

In this paper we considered only one model. By consider-
ing a grid of 3D hydrodynamic simulations, it would be
possible to determine the functions Q(I") and «(T') and
the non-local parameters a and b for different Teg and
log g. Then, in a way similar to the semi-analytical treat-
ment of Canuto et al. (1996), these functions could be
fitted by polynomials. By this way, our new treatment
could be easily implemented in a stellar evolution code.
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5. A PERTURBATIVE THEORY FOR MODELS
FITTING THE 3D STRATIFICATIONS

It is easy to generalize the perturbative theory presented
in Sect. 3 to the case where the structure models fit the
stratification of 3D hydrodynamic results (Sect. 4). We
follow exactly the same procedure as in Sect. 3, but per-
turbing Eqs. (13) and (14) instead of Eqgs. (2) and (3). As-
suming again constant coefficient and searching for so-
lutions in the form of plane waves, we obtain then new
expressions for the perturbed convective flux, turbulent
pressure, ...

The main uncertainties in this approach appear in the way
to perturb £ and . The free parameter 8 introduced in
Eq. (12) is somehow related to these uncertainties. At
present, we have no theoretical prescriptions for §{2 and
da and we neglect these perturbations. But we have no
reasons to expect them to be small, and for this reason we
have not to be too optimistic when using this new pertur-
bative treatment in a predictive way.

We do not give here the details of the derivations which
are very similar to those of Grigahcene et al. (2005). The
final results for the variations of the radial components
of the local convective velocities and convective flux ob-
tained with our new treatment (02 and do neglected) are
given in Egs. (21) and (22). They are similar to the old ex-
pressions (Grigahcene et al. 2005, Eqgs. (12), (18), (21)).

VedVe 1
7z B+ ((iQ + B)ote + 1)D
.{_%_5_43_@+@_d&
Cp Q p dp dr
@1)is e _ e
Q@ o

—iQot.D P I

__A ore (d§ 16 L(E+D) &
A+1QA \dr  Ar 24 r
e (320 B0
T Cp K p

+ ((iQ + B)oTe + 3waTe +2)D %} , 2D

0F., _ dp  oT (@+1)ds
Fo. = + T Qo1 D 0 o
dés  dé,
+4a‘m]
SRy L
T ¢ K p
. oV,
+((iQ2 + B)oTe + 2wrTe + 1)D v
ol
+(2wgTe + 1)D (22)

77

)

where
ioTe + QA
p = Wreri4
97,
c = wWrTe +1
(iQ+ B)oTe + wrTe +17
1
D =

(iQ+ B)ore + wrTe +1°

_ 8InT
and Q = 81?1'0 .
p

We recall that the turbulent pressure perturbation is:

ope _ 0p 5 VidVe 23)
Pt p V2

We have implemented these new expressions for the per-
turbed convective flux and turbulent pressure in our non-
radial non-adiabatic pulsation code. The results obtained
for the solar case are presented in paper III.

6. CONCLUSIONS

We have presented a new non-local treatment of convec-
tion, which is a generalization of the MLT. Thanks to
the introduction of free fitting parameters and functions,
this treatment can reproduce more realistic descriptions
of stellar convective envelopes. For example, it is able
to reproduce the mean stratification coming from 3D hy-
drodynamic models (Stein & Nordlund 1998). Our for-
malism has two big qualities. First it could easily be im-
plemented in stellar evolution codes. And second it can
be perturbed, allowing the study of the coherent interac-
tion between convection and oscillations. By implement-
ing this perturbed treatment in a non-adiabatic pulsation
code, we can compute the modes damping rates for mod-
els with a more realistic description of the convective en-
velope; the results obtained are presented in paper III.
However, we must admit that the the perturbation of the
closure terms appearing in our treatment are still subject
to large uncertainties, which limits its predictive capacity.
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