
A&A 414, 1081–1090 (2004)
DOI: 10.1051/0004-6361:20034037
c© ESO 2004

Astronomy
&

Astrophysics

Non-adiabatic theoretical observables in δ Scuti stars

A. Moya1, R. Garrido1, and M. A. Dupret1,2,�

1 Instituto de Astrofı́sica de Andalucı́a-CSIC, Granada, Spain
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Abstract. Phase differences and amplitude ratios at different colour photometric bands are currently being used to discriminate
pulsation modes to facilitate mode identification of κ-driven non-radial pulsating stars. In addition to physical inputs (e.g.,
mass, Teff , etc.), these quantities depend on the non-adiabatic treatment of the atmosphere. This paper presents theoretical
results concerning δ Scuti pulsating stars. The envelope of each of these stellar structures possesses a convection zone whose
development is determined by various factors. An interacting pulsation-atmosphere physical treatment is introduced which
supplies two basic non-adiabatic physical quantities: the relative effective temperature variation and the phase lag φT, defined
as the angle between effective temperature variation and radial displacement. These quantities can be used to derive the phase
differences and amplitude ratios. Numerical values for these quantities depend critically on the α MLT parameter used to
calculate the convection in the envelope. The dependence on αwas analyzed and it was found that the use of colour observations
may be of considerable importance in testing the MLT. Finally, examples are given of how α introduces uncertainties in the
theoretical predictions regarding phases and amplitudes of photometric variations in δ Scuti pulsating stars.
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1. Introduction

Asteroseismology is presently being developed as an effi-
cient instrument in the study of stellar interiors and evolution.
Pulsational periods are the most important asteroseismological
observational inputs. However, for non-solar like oscillations,
such as those characterizing δ Scuti stars, the information con-
tained in these periods is not sufficient to adequately constrain
theoretical predictions. Without additional observational data,
mode identification is, therefore, not feasible in non-solar like
contexts. The primary obstacles are that the pulsation modes
of δ Scuti stars: 1) do not lie within the asymptotic regime
and 2) may be affected by the “avoided crossing” phenomenon.
Furthermore, rotation and eventual coupling also destroy any
possible regular pattern.

One way to obtain more information on the basis of photo-
metric observations is to study the multicolor flux variations.
The linear approximation to non-radial flux variations of a
pulsating star was first derived by Dziembowski (1977b), and
later reformulated by Balona & Stobie (1979a, 1979b) and by
Watson (1988). In Garrido et al. (1990), the linear approxima-
tion was successfully used to discriminate the spherical orders l
of these pulsating star modes. Several attempts to fit observa-
tions have shown that the method can be applied, at least to low
rotational velocities (e.g., FG Vir in Breger et al. 1999; BI CMi
in Breger et al. 2002; 4 CVn in Breger et al. 1999; V1162 in
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Arentoft et al. 2001 and some other stars in Garrido 2000; for
fast rotators, see Daszyńska et al. 2002).

Most theoretical and numerical pulsation models
have been developed using the adiabatic approximation
(Christensen-Dalsgaard 1982; Tran & Leon 1995). However,
pulsation is highly non-adiabatic in stellar surface layers, in
which thermal relaxation time is either of the same order or
even lower than the pulsation period. The accurate determina-
tion of the eigenfunctions in these layers will therefore require
the use of a non-adiabatic description which includes the entire
atmosphere. This procedure then makes it possible to relate
multicolor photometric observables with such eigenfunctions.

A number of authors (e.g., Dziembowski 1977a; Saio &
Cox 1980; Pesnell 1990; Townsend 2002) have developed non-
adiabatic codes and performed stellar pulsation calculations.
However, these works have been carried out without a com-
plete description of pulsation-atmosphere interaction.

In this paper two approaches are compared. The first fol-
lows Unno et al. (1989) for the equations and the numerical
method used to solve them. Outer boundary conditions are im-
posed at the level of the photosphere. This approximation will
be referred to below as “without atmosphere”. The second ap-
plies a non-adiabatic pulsational treatment to the atmosphere
derived by Dupret et al. (2002). This treatment has made it
possible to obtain photometric observable values that are more
realistic when compared with those generated by the “without”
atmosphere approximation (referred to below as “with atmo-
sphere”). The latter approach allows theoretical predictions to
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be more directly connected with photometric observations than
they previously had been by using only period comparisons.

Theoretical and observed amplitude ratios and phase dif-
ferences can be compared as observed in different color pho-
tometric bands. Garrido et al. (1990) showed that the wave-
length dependence of the limb darkening integrals is very weak
for low l values. Thus, at least three color combinations, dis-
tributed in the widest possible range of wavelengths, give con-
sistent values for phase lag φT and R. The latter parameter
was defined by Watson (1988) and designed to measure de-
partures from adiabatic conditions. Comparisons between non-
adiabatic predictions and multicolor photometric observations
have been made by Cugier et al. (1994) for β Cephei stars,
Balona & Evers (1999) for δ Scuti stars and Townsend (2002)
for Slowly Pulsating B stars. However, such comparisons were
made without carrying out a detailed non-adiabatic pulsation
treatment for the atmosphere. Photometric magnitude varia-
tions have been reformulated by Dupret et al. (2003), thus mak-
ing it possible to obtain theoretical non-adiabatic quantities
which explicitly include the atmosphere (Dupret et al. 2002).
This reformulation has been employed in the study of β Cephei
and Slowly Pulsating B stars.

In the present paper the approach of Dupret et al. (2002,
2003) is applied to δ Scuti stars. Non-adiabatic theoretical mod-
els “with” and “without” atmosphere, as well as their reso-
lution algorithms, are presented. Solutions are compared in
order to show the improvement introduced by including the
pulsation-atmosphere interaction. One possible procedure for
mode identifications using multicolor photometric diagrams is
also suggested. For δ Scuti stars, the non-adiabatic observables
with which we are working can be directly related with the
characteristics of their thin convective envelopes. These en-
velopes are described by the Mixing Length Theory (MLT) and
parametrized by α, which is defined as the proportionality con-
stant relating the mean path of a convective element with local
pressure scale height. The α parameter can be constrained by
searching for the best fit between theoretical and observed pho-
tometric amplitude ratios and phase differences in color pho-
tometric bands. Such observables also depend on the opacity
variation in the HeII, HeI and HI ionization zones.

2. Theoretical models

Equilibrium stellar models have been computed using the
CESAM code (Morel 1997). In this code, the stellar atmo-
sphere is described: 1) as a single layer (i.e., the photosphere)
calculated in the Eddington approximation, or 2) using the
Kurucz equilibrium atmospheric models (Kurucz 1993) to re-
construct the atmosphere from a specific Rosseland optical
depth until reaching the last edge of the star. Table 1 shows the
global characteristics of the equilibrium models. In the convec-
tive core of these models, overshooting has been set to 0.2 times
the local pressure scale height.

The pulsational code begins by computing the adiabatic so-
lution for fixed values of n and l, and this computation is used as
trial input for the non-adiabatic computations “with” or “with-
out” atmosphere. These calculations then make it possible to

Table 1. Global characteristics of the equilibrium models.

M
M� log Teff log g log L

L� log R
R� Xc

2.0 3.941 4.181 1.273 1.900 0.55

2.0 3.879 3.845 1.367 2.799 0.25

1.8 3.889 4.064 1.138 2.063 0.44

derive φT, |δTeff/Teff | and δge/ge, which are directly related to
the photometric color variations.

2.1. Non-adiabatic models “without” atmosphere

Here the adiabatic and non-adiabatic equations have been de-
rived following Unno et al. (1989). However, two variables
regarding the stellar interior have been modified in order to
directly link the interior and atmosphere pulsation equations.
These variables are

y1 =
ξr
r

y2 =
δPg

Pg
y3 =

Φ′

gr

y4 =
dΦ′

g dr
y5 =

δT
T

y6 =
δLR

LR
(1)

where ξr is the radial displacement, Pg, the gas pressure, Φ,
the gravitational potential, LR, the radiative luminosity and δX
(resp. X′), the Lagrangian (resp. Eulerian) perturbation of
the X variable. The other symbols bear their usual meaning.

The linear non-adiabatic pulsation equations correspond-
ing to these variables are described in Appendix A (Eqs. (A.1)
to (A.6)), and are obtained by neglecting the effects of rotation
and the magnetic field. The “frozen” convection flux approxi-
mation, δLC = 0 and F′C⊥ = 0, has been chosen by following
Unno et al. (1989). Boundary conditions are also taken from the
same source. Internal conditions are described by Eqs. (A.9)
to (A.11) in Appendix A. Surface conditions are given here be-
cause they are particularly relevant to the comparison of the
“with atmosphere” (Sect. 2.2) and “without atmosphere” treat-
ment results:

1. The mechanical boundary condition
( l(l + 1)
ω2

− 4 − ω2
)
y1 − β y2

+

( l(l + 1)
ω2

− 1 − l
)
y3 − 4

3
aT 4

P
y5 = 0. (2)

2. The potential boundary condition

(l + 1) y3 + y4 = 0. (3)

3. The thermal boundary condition

2 y1 + 4 y5 − y6 = 0. (4)

Note that Eq. (4) is obtained by perturbing the equation which
defines the effective temperature (LR = 4πR2σrad T 4

eff), as well
as by assuming that in the photosphere:

δT
T
=
δTeff

Teff
· (5)
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2.2. Non-adiabatic models “with” atmosphere

Equations (A.1)–(A.6) are also used to describe the pulsation
inside the star, whereas Eqs. (A.9)–(A.11) describe the inter-
nal boundary conditions. However, the complete atmosphere
pulsation equations are solved following Dupret et al. (2002).
The latter equations have been derived by taking into account
that: 1) the radiation field is not isotropic in the atmosphere and
the diffusion approximation is therefore not valid in this case;
and 2) the radiation stress tensor cannot be represented by a
diagonal matrix with a constant element: PR = (1/3)aT 4.

For these reasons, new approximations have been used with
respect to those solved for the interior in order to obtain an im-
proved description of the atmosphere. This new approach is
based on the fact that the atmosperic thermal relaxation time
is very short as compared to pulsation periods. Consequently,
it can be assumed that during each pulsation period, the atmo-
sphere remains in thermal equilibrium. Rewriting the equations
given in Dupret et al. (2002), those corresponding to the atmo-
sphere are:

x
dy1

dx
=

( l(l + 1)
c1ω2

− 3
)
y1 +

( l(l + 1)
c1ω2

Pg

ρgr
− 1

Pgρ

)
y2

+
l(l + 1)
c1ω2

y3 +

(PgT

Pgρ
+

l(l + 1)
c1ω2

aR

∇gV
)
y5 (6)

x
dy2

dx
=
ρgr
Pg

c1ω
2 − U + 2 +

(aR

g
− 1

)( l(l + 1)
c1ω2

− 2
) y1

+
ρgr
Pg


(aR

g
− 1

)( l(l + 1)
c1ω2

Pg

ρgr
− 1

)
+

aR

g

κρ

Pgρ

 y2

+

(aR

g
− 1

) l(l + 1)
c1ω2

ρgr
Pg
y3 − ρgrPg

y4 +
ρgr
Pg


(aR

g
− 1

)

× l(l + 1)
c1ω2

aR

∇gV +
aR

g

(
κT − κρ PgT

Pgρ

) y5 + 4
ρraR

Pg

δTeff

Teff
(7)

x
dy3

dx
=

(
1 − U

)
y3 + y4 (8)

x
dy4

dx
= −U

d lnρ
d ln r

y1 +
U

Pgρ
y2 + l(l + 1) y3

−U y4 − U
PgT

Pgρ
y5 (9)

x
dy5

dx
= −κρr

τ

∂ ln T
∂ ln τ

( l(l + 1)
c1ω2

− 2
)
y1 − κρr

τ

∂ ln T
∂ ln τ

( κρ
Pgρ

+
l(l + 1)
c1ω2

Pg

ρgr

)
y2 − κρr

τ

∂ ln T
∂ ln τ

l(l + 1)
c1ω2

y3

−κρr
τ

∂ ln T
∂ ln τ

(
κT − κρ PgT

Pgρ

l(l + 1)
c1ω2

aR

∇gV
)
− 1

+

(
∂2 ln T
∂ ln τ2

) / (
∂ ln T
∂ ln τ

) y5 − κρr
τ


(
1 −

(
∂2 ln T
∂ ln τ2

) / (
∂ ln T
∂ ln τ

))

×
(
∂ ln T
∂ ln Teff

δTeff

Teff
+
∂ ln T
∂ ln ge

δge

ge

)

+
∂2 ln T

∂ ln τ∂ ln Teff

δTeff

Teff
+
∂2 ln T
∂ ln τ∂ ln ge

δge

ge

 (10)

x
dy6

dx
= 0 (11)

where the new variables are defined as:

Pg(or κ)ρ =
∂ ln Pg (or κ)

∂ ln ρ

∣∣∣∣∣∣
T

Pg (or κ)T =
∂ ln Pg(or κ)

∂ ln T

∣∣∣∣∣∣
ρ

(12)

and where aR is the radiative acceleration and τ the Rosseland
optical depth. The atmospheric equilibrium quantities for these
equations have been obtained from the Kurucz model atmo-
spheres (Kurucz 1993).

In comparison to those used for the “without” atmosphere
treatment, the boundary conditions for these equations are:

1. The mechanical boundary condition is obtained by neglect-
ing the derivative of the gas pressure perturbation at the
stellar surface:

x
d y2

dx
= 0. (13)

Inserting Eq. (13) in Eq. (7):
c1ω

2 − U + 2 +
(aR

g
− 1

)( l(l + 1)
c1ω2

− 2
) y1

+


(aR

g
− 1

)( l(l + 1)
c1ω2

Pg

ρgr
− 1

)
+

aR

g

κρ

Pgρ

 y2

+

(aR

g
− 1

) l(l + 1)
c1ω2

y3 − y4

+


(aR

g
− 1

) l(l + 1)
c1ω2

aR

∇gV +
aR

g

(
κT − κρ PgT

Pgρ

) y5

+4
aR

g

δTeff

Teff
= 0. (14)

2. The potential boundary condition remains the same:

(l + 1) y3 + y4 = 0. (15)

3. The thermal boundary condition, following Dupret et al.
(2002):

∂ ln T
∂ ln Teff

δTeff

Teff
+
∂ ln T
∂ ln ge

δge

ge
+
∂ ln T
∂ ln τ

( l(l + 1)
c1ω2

− 2
)
y1

+
∂ ln T
∂ ln τ

( κρ
Pgρ
+

l(l + 1)
c1ω2

Pg

ρgr

)
y2 +

∂ ln T
∂ ln τ

l(l + 1)
c1ω2

y3

+

∂ ln T
∂ ln τ

(
κT − κρ PgT

Pgρ
+

l(l + 1)
c1ω2

aR

∇gV
)
− 1

 y5 = 0. (16)

A connecting layer is required which marks the border between
the interior (Eqs. (A.1) to (A.6)) and atmosphere treatments
(Eqs. (6) to (11)). The boundary conditions for the equilibrium
models are calculated at the same connecting layer by imposing
an adequate match with the Kurucz model atmosphere (Kurucz
1993). Two restrictions are imposed in order to choose the loca-
tion of this layer: 1) the diffusion approximation must be valid
and 2) the layer must be located outside the convective enve-
lope, since the atmospheric non-adiabatic treatment is not justi-
fied inside a convection zone, and because consistency require-
ments exist between the interior and atmosphere treatments.
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Fig. 1. Non-adiabatic quantities |δTeff/Teff | (top) and φT (bottom), as
a function of the pulsation constant Q (in days) for different modes
with spherical degrees l = 0, 1, 2, 3. Two 2.0 M� models are solved
at different evolutionary phases, with a MLT parameter α = 1 and
the CEFF equation of state. Different values correspond to different
locations of the connecting layer: τ = 1, 1.1, 1.2, 1.3. “+” are for the
model with Xc = 0.25 and “×” for Xc = 0.55.

One of the uncertainties of the “with” atmosphere global
algorithm is the location of the optical depth in which this
connecting layer is defined, being that, despite the above-
mentioned constraints, a small set of possible locations still
exists. Figure 1 shows the non-adiabatic results for two 2 M�
stellar models at different evolutionary stages, locating the con-
necting layer at τ = 1, 1.1, 1.2 and 1.3. Note that these results
are not significantly affected by this choice. The connecting
layer is selected at τ = 1.

The two additional variables δTeff and δge can be derived
from:

4
δTeff

Teff
= y6 − 2 y1 (17)

δge

ge
= y4 +

(
U − 2 − c1ω

2
)
y1. (18)

These quantities are determined at the photosphere (log T =
log Teff). The results are not significantly sensitive to the choice
of this layer: a slight change of location implies changes
which are always smaller than 5 percent for |δTeff/Teff |, smaller

than 1 degree for the phase-lag φT and which are negligible
for δge/ge.

3. Multicolor photometry

An important application of our non-adiabatic code is that its
theoretical predictions can be tested against multicolor photo-
metric observations. The non-adiabatic quantities |δTeff/Teff |,
δge/ge and φT can be related to the photometric observables:
amplitude ratios and phase differences between filters. In a
one-layer linear approximation, the monochromatic magnitude
variation of a non-radially pulsating star is given by:

δmλ = − 2.5
ln 10

a Pm
l (cos i) blλ

[
− (l − 1) (l + 2) cos (σt)

+ fT cos (σt + φT) (αTλ + βTλ)

− fg cos (σt) (αgλ + βgλ)
]

(19)

where

blλ =

∫ 1

0
hλ µPl dµ (20)

αTλ =
∂ ln F+λ
∂ ln Teff

; αgλ =
∂ ln F+λ
∂ ln ge

(21)

βTλ =
∂ ln blλ

∂ ln Teff
; βgλ =

∂ ln blλ

∂ ln ge
(22)

fT =

∣∣∣∣∣∣∣
δTeff

Teff

∣∣∣∣∣∣∣; fg =

∣∣∣∣∣∣∣
δge

ge

∣∣∣∣∣∣∣ (23)

fT and fg are the relative amplitudes of local effective temper-
ature and gravity variations for a normalized radial displace-
ment at the photosphere, φT is the phase difference between the
relative effective temperature variation and the relative radial
displacement and σ is the pulsation frequency. a corresponds
to the real amplitude of the relative radial displacement, Pm

l is
the associated Legendre function and i the inclination angle be-
tween the stellar rotation axis and the observer line of sight.

One appropriate way to test multicolor theoretical predic-
tions is to construct phase-amplitude diagrams corresponding
to well-chosen combinations of photometric bands. In these di-
agrams the theoretical results corresponding to modes of dif-
ferent spherical degrees � occupy well differentiated regions.
This enables the identification of � by searching for the best
fit between theory and observations. As is shown in Sect. 4,
the non-adiabatic quantities fT, fg and φT, which play a major
role in Eq. (19), are highly sensitive to the characteristics of the
convective envelope. The confrontation between the theoretical
and observed amplitude ratios and phase differences can thus
be used to constrain the physical conditions of this convection
zone.

4. Applications to δ Scuti stars

As a prerequisite to the presentation of the “with” atmosphere
treatment results, of particular interest is that the differences
be analized between the non-adiabatic observables appearing
as a consequence of “with” and “without” atmosphere descrip-
tions. In Fig. 2 these differences are displayed for a 1.8 M�
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Fig. 2. Non-adiabatic quantities |δTeff/Teff | (top) and φT (bottom), as
a function of the pulsation constant Q (in days) for different modes
with spherical degrees l = 0, 1, 2, 3. A model of a 1.8 M� is solved
with Xc = 0.44, a MLT parameter α = 1 and the CEFF equation of
state. Results obtained “with” (+) and “without” atmosphere (×) in the
non-adiabatic treatment are compared.

model in the middle of the evolutionary phase (Xc = 0.44)
towards the exhaustion hydrogen in the core. For the relative
amplitude of the local effective temperature variation, the ef-
fect of introducing the atmospheric treatment is slight, though
significant, especially around the overstable modes (between
Q = 0.02 and Q = 0.012 days in this model). However, the
phase lag φT is more sensitive to this treatment for all frequen-
cies and displays a mean difference of 30◦ for the overstable
modes. As of the latter modes, these quantities increase with
the frequency. It should be noted that the differences in | δge

ge
| be-

tween the “with” and “without” atmosphere models are negligi-
ble. Furthermore, it should be stressed that the frequencies ob-
tained using both treatments are almost identical, i.e., the only
difference between the two treatments appears in the outermost
layers, and this has no effect on the frequency results. In Fig. 2
it can be seen that the non-adiabatic results for a fixed model
are independent of the spherical degree l for p-modes.

Only pulsation models “with” atmosphere will be consid-
ered in what follows. In Fig. 3 non-adiabatic results are com-
pared as obtained for models of 1.8 M� and Xc = 0.44, and
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Fig. 3. Non-adiabatic quantities |δTeff/Teff | (top) and φT (bottom), as a
function of the pulsation constant Q (in days) for different modes with
spherical degrees l = 0, 1, 2, 3. Models of 1.8 M� are solved with Xc =

0.44 and with different values for the MLT parameter: α = 0.5, 1, 1.5.
Note the sensitivity of the non-adiabatic results with respect to α.

with different values for the MLT parameter (α = 0.5, 1, 1.5).
The non-adiabatic quantities |δTeff/Teff | and φT are significantly
affected by the value of α, especially the phase lag. A more de-
tailed description of the sensitivity of the non-adiabatic results
to α is given in Fig. 4. This figure displays the ratio between
radiative and total luminosity (top), the convective efficiency
(middle) and the luminosity phase lag φL = φ

(
δL
L

)
− φ

(
ξr
r

)
(bot-

tom panel), all three as a function of the logarithm of tem-
perature. Note that φL closely follows φT at the photosphere
throughout Eq. (17).

The bottom panel of Fig. 4 shows that along the radius of
the star there are two zones in which a phase lag is introduced:
the first located in the partial ionization zone of HeII and the
second, in the surface convection zone (partial HI and HeI ion-
ization). In this panel it can also be seen that the the phase lag
sensitivity to α appears in the surface convection zone.

The convective efficiency in MLT, defined as

Γ =

4
9

(
cpκpρcsα

2

9σsteffT 3g
√

2Γ1

)2

(∇rad − ∇)


1
3

(24)
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Fig. 4. Radiative luminosity over total luminosity (top panel), con-
vective efficiency (middle panel) and the luminosity phase lag φL =

φ
(
δL
L

)
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ξr
r

)
(bottom panel) as a function of the logarithm of tem-

perature, for the fundamental radial mode. 1.8 M� models are solved
with Xc = 0.44, and three different values of the MLT parameter:
α = 0.5, 1, 1.5. Note the differences appearing in the superficial con-
vection zone as α values rise.

(Cox 1980), and the convection zone temperature gradient
are both directly linked to α. Phase-lags originate in the en-
ergy conservation equation due to the introduction of explicitly
imaginary parts. For a radial mode, and freezing the convective
luminosity, the equations are:

iσTδS = δεN − dδLR

dMr
(25)

where Mr is the mass enclosed in a sphere of radius r, and

δLR

LR
= −δκ
κ
+ 4
ξr
r
+ 4
δT
T
+

d δTT /d ln r

d ln T/d ln r
· (26)

Phase-lags originate mainly through the interplay between the
different terms of Eq. (26), which affect the right hand side of
Eq. (25) only when the thermal relaxation time is sufficiently
small. A first phase-lag is introduced in the partial ionization
zone of HeII (bottom panel of Fig. 4). The partial ionization
produces an opacity bump and a considerable decrease in the
adiabatic exponents. This significantly affects δκ/κ. A second
source of phase lag occurs in the surface convective zone (par-
tial ionization zone of HI and HeI). In this case variations in α
primarily influence the temperature gradient and the size of
the convective zone. The latter two then affect the phase-lag
throughout the above equations.

As is shown in Fig. 1, the non-adiabatic results are highly
sensitive to the evolutionary phase of the star. As the star
evolves in the HR diagram, changes in these quantities are
larger for the relative variations of the effective temperature
than for the phase lags. Changes in the evolution phase do not
qualitatively affect the non-adiabatic results in the same manner
as do changes in α. In the latter case, only the characteristics of
the convective zone are influenced. In contrast, changes in the
evolution phase have an effect on both the characteristics of the
superficial convective zone and the position of the HeII partial
ionization zone.

Figure 5 is obtained by plotting the phase lag and |δTeff/Teff |
versus log Teff for the fundamental radial mode of two com-
plete tracks of 2.0 M� and 1.8 M� stars. Three values of the
MLT parameter α (1.5, 1.0 and 0.5) have been used. When
stellar temperatures are high enough to originate a negligible
external convective zone, the values are independent of α; this
only occurs for the 2.0 M� models presented. For cooler mod-
els, however, convection becomes more efficient, thus produc-
ing different phase lags and relative effective temperature varia-
tions for similar effective temperatures (Balona & Evers 1999).

Figure 4 refers to the behaviour of these phase lags. Each
step in the figure makes it possible to view the phase lag, φT,
as the sum of two phases (φL = φκ + φconv). The latter can be
referred to as the κ-phase (φκ ≡ phase difference between 180◦
and φL (at log T = 4.5)) and the convective-phase (φconv ≡
phase difference between φL (at log T = 4.5) and φL (at log T =
log Teff)). Figure 6 is obtained by plotting both versus log Teff.

The κ-phase lag φκ displays a behaviour which is directly
related to the position of the model in the HR diagram and
which is independent of the α parameter. Therefore, φκ shows
the contribution of only one of the phase sources, the opacity
variation, since convection is not efficient in this part of the star.

The contribution to the convection zone phase, in this
case φconv, is in turn a sum of two phase sources. For hot mod-
els the κ driving mechanism is not yet efficient enough to in-
troduce a phase lag, and the behaviour of φconv depends mainly
on the convection treatment. When the convective layers are
not efficient, models with different values of α produce the
same values of φconv. At log Teff ≈ 3.91 the convective lay-
ers become sufficiently efficient to distinguish between models
using different values of α, independently of the mass. From
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Fig. 5. Non-adiabatic quantities |δTeff/Teff | (top) and φT (bottom) as a
function of log Teff for the fundamental radial mode in two complete
tracks of 2.0 M� and 1.8 M� stars for three different values of the
MLT parameter α =1.5,1 and 0.5.

log Teff = 3.88 to cooler models, an increase is observed in the
value of this phase lag, again displaying different behaviours
for different masses and values of α. This is accounted for by
the fact that, within this range of temperature, the κ driving
mechanism in the HI and HeI ionization zone becomes efficient
enough to make a significant contribution to φconv.

Figure 7 is obtained by displaying |δTeff/Teff | versus the in-
tegral of the convective efficiency, as defined in Eq. (24) for all
models. The behaviour of these quantities can be distinguished
independently of the mass of the model, which in this case is
exclusively a function of the evolution phase and α.

5. Applications to multicolor photometry

All of the above-mentioned calculations have a direct influence
on the phase difference – amplitude ratio diagrams. Now phase
lags, as well as relative variations in |δTeff/Teff | and δge/ge,
can be used to overcome the uncertainties in previous phase-
ratio color diagrams. In Garrido (2000) these discrimination
diagrams were made using parametrized values for departures
from adiabaticity and phase lags. The only remaining degree
of freedom is now the choice of the MLT α parameter in order

16

18

20

22

24

26

28

30

32

34

36

3.84 3.86 3.88 3.9 3.92 3.94 3.96

φ κ

log Teff

2.0 and 1.8 M0, CEFF, α=0.5,1,1.5

2.0M0, α=1.5

2.0M0, α=1.0

2.0M0, α=0.5

1.8M0, α=1.5

1.8M0, α=1.0

1.8M0, α=0.5

0

10

20

30

40

50

60

70

80

90

3.84 3.86 3.88 3.9 3.92 3.94 3.96

φ c
on

v

log Teff

2.0 and 1.8 M0, CEFF, α=0.5,1,1.5

2.0M0, α=1.5

2.0M0, α=1.0

2.0M0, α=0.5

1.8M0, α=1.5

1.8M0, α=1.0

1.8M0, α=0.5

Fig. 6. κ-phase φκ (top) and convective-phase φconv (bottom) as a func-
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to describe the convection. Therefore, discrimination diagrams
depend only on this parameter, as is shown in Fig. 8 where
theoretical predictions are plotted for two specific Strömgren
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Fig. 8. The top panel shows theoretical predictions for two specific
Strömgren photometric bands ((b − y) and y) for a given theoretical
model using three MLT α parameters in the fundamental radial mode
regime (pulsation constant near 0.033 days). The 3rd overtone regime
(pulsation constant near 0.017 days) is shown in the bottom panel.

photometric bands ((b−y) and y) with a given theoretical model
using three different MLT α parameters in the fundamental ra-
dial mode regime (pulsation constant near 0.033 days) and in
the 3rd overtone regime (near 0.017 days).

A clear separation between the l-values exists for periods
around the fundamental radial. Similar behaviour is found for
other modes in the proximity of the 3rd radial overtone, al-
though for these shorter periods some overlappings start to ap-
pear at the lowest l-values. They also show the same trend as
in the fundamental radial mode: high amplitude ratios for low
MLT α and the spherical harmonic l = 3. A more detailed de-
scription of these diagrams using different models and photo-
metric bands will be given in a forthcoming paper.

6. Conclusions

This paper uses the CESAM package to generate equilibrium
models. A new non-adiabatic pulsation code has been devel-
oped and applied to the study of δ Scuti stars. This code
takes into account the stellar atmosphere in two ways: 1) as
the boundary layer of the star (“without” atmosphere); in this
case photospheric observables such as amplitudes and phases
of both Teff and gravity, reflect the boundary conditions we
impose; and 2) particular consideration is given to pulsation
treatment (“with” atmosphere), thus extending the star beyond
the photosphere. As a consequence of applying the “with” at-
mosphere treatment, photospheric observables become deter-
minable as a solution to a set of differential equations. These
equations have been described by Dupret et al. (2002).

The non-adiabatic code presented in this paper enables
the determination of the photometric observables |δTeff/Teff |,
|δge/ge| and φT. The results of the “without” atmosphere
approach strongly depend on the choice of external boundary
conditions. In contrast, the “with” atmosphere approach only
implies those uncertainties brought about by the physical as-
sumptions imposed in order to obtain the differential equations.

The comparison of the results generated by both treatments
shows that the values for |δTeff/Teff | are relatively similar in
most of the spectrum. However, differences become notable
for shorter periods, in which “without” atmosphere solutions
are larger than those of the “with” atmosphere treatment.
Differences in φT are significant and have a mean value of ap-
proximately 30◦ within the range of the periods studied. The
non-adiabatic results presented here are highly sensitive to the
characteristics of the superficial convective zone, parametrized
by using the mixing length parameter α. In particular, we have
shown that there are two regions in which the phase lag orig-
inates. A first phase lag takes place in the partial ionization
zone of HeII, where the κ mechanism drives the oscillations.
This phase lag is very sensitive to the evolution phase. A sec-
ond one occurs in the convective envelope (partial ionization
zone of HI and HeI) and is sensitive mainly to α. Though to a
lesser extent, this phase lag is also sensitive to the evolutionary
phase because of the κ driving mechanism and the size of the
convection zone change.

In this paper it is shown that theoretical photomet-
ric amplitude ratios and phase differences are very sensi-
tive to non-adiabatic calculations. The treatment and loca-
tion of the outer boundary conditions, here referred to as
“with” and “without” atmosphere, have been shown to give
significantly different theoretical predictions. Consequently,
our improved non-adiabatic treatment of the atmosphere will
probably enable more accurate photometric mode identifica-
tions. Our results confirm the recent theoretical results of
Daszyńska-Daszkiewicz et al. (2003) which show that phases
and amplitudes in different colours are affected by the choice
of the α parameter, although the authors calculated the model
atmospheres in the Eddington approximation. By determining
the best fit between theory and observations, it may thus be
possible to constrain the MLT parameter α.
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Appendix A: Stellar interior equations and inner
boundary conditions

These equations have been developed following Unno et al.
(1989). Eigenfunctions 1

gr

(
p′
ρ
+ Φ′

)
and δScp

have been replaced

by δPg

Pg
and δTT to adapt the equations to the atmospheric ones.

This was done to make the transition in the connecting layer
as smooth as possible. Having introduced these modifications,
the nonadiabatic nondimensional equations for the stellar inte-
rior are

x
dy1

dx
=

( l (l + 1)
c1ω2

− 3
)
y1

+

( l (l + 1)
c1ω2

− Vg − ∇ad V υT

)
β

V
y2 +

l (l + 1)
c1ω2

y3

+

4
3

aT 4

PV

( l (l + 1)
c1ω2

− Vg − ∇ad V υT

)
+ υT

 y5 (A.1)

x
dy2

dx
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c1ω
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)(
1 − 4

3
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V ∇

(
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(
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(
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x
dy3

dx
=

(
1 − U

)
y3 + y4 (A.3)

x
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= U

(
A∗ + Vg

)
y1 + U β

( 1
Γ1
+ υT∇ad

)
y2 + l (l + 1) y3

−U y4 + U

4
3

aT 4

P

( 1
Γ1
+ υT∇ad

)
− υT

 y5 (A.4)
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where x = r/R, and R is the photometric radius. The rest of the
variables follow the definitions given in Unno et al. (1989):

Vg =
V
Γ1
= − 1
Γ1

d ln P
d ln r

=
gr
c2

U =
d ln Mr

d ln r
=

4πρr3

Mr

c =
(
Γ1P
ρ

)1/2
c1 =

x3

Mr/M
ω2 =

σ2R3

GM
(A.7)

β =
Pg

P
∇ad =

(
∂ ln T
∂ ln P

)
S
∇ = d ln T

d ln P
A∗ =

rN2

g

υT = −
( ∂ ln ρ
∂ ln T

)
P

c3 =
4πr3ρεN
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4πr3ρTcp
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GM
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(
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)
S
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(
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∂S

)
P

(A.8)

N is the Brunt-Väisälä frequency and, M the total mass of the
star, κ, is the opacity and, εN, is the energy generation rate.

The interior boundary conditions are common to both pul-
sational treatments, given that the stellar interior is solved using
the same equations. In our formalism, these conditions are:

1. The mechanical boundary condition

(
c1ω

2 − l
)
y1 − l β

V
y2 − l y3 − l

4
3

aT 4

PV
y5 = 0. (A.9)

2. The potential boundary condition

l y3 − y4 = 0. (A.10)

3. The thermodynamical boundary condition

−∇ad β y2 +

(
1 − 4

3
aT 4

P
∇ad

)
y5 = 0. (A.11)
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