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Summary. The chapter presents an expository survey of ongoing research by the
author on a system theory for oscillators. Oscillators are regarded as open systems
that can be interconnected to robustly stabilize ensemble phenomena characterized
by a certain level of synchrony. The first part of the chapter provides examples of
design (stabilization) problems in which synchrony plays an important role. The sec-
ond part of the chapter shows that dissipativity theory provides an interconnection
theory for oscillators.

1 Introduction

Oscillators are dynamical systems that exhibit stable limit cycle oscillations.
The emphasis in this chapter is on oscillators as open systems, that is, as
systems that can be interconnected to other systems. Synchrony refers to the
tendency of interconnected oscillators to produce ensemble phenomena, that
is, to phase lock as if an invisible conductor was orchestrating them. The
emphasis in this chapter is on synchrony as a design principle, that is, on the
use of synchrony to achieve stable oscillations in interconnected systems.

The manifestations of synchrony are numerous both in nature and in engi-
neered devices. The interested reader will find several compelling illustrations
in the stimulating recent essay by Strogatz [30]. As narrated in this essay
and elsewhere, the accidental discovery by Huygens that two clocks in the
same room tend to synchronize was soon regarded as the discovery of an un-
desirable phenomenon, revealing the sensitivity of clocks to external small
perturbations at a time where the challenge was to engineer robust devices
that could travel the ocean and provide a precise measure of longitude. Today,
the growing interest for synchrony in engineering applications is precisely due
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to the robustness of collective phenomena, making an ensemble phenomenon
insensitive to individual failures. In this sense, synchrony is a system concept.

In order to become a design principle, synchrony requires an interconnec-
tion theory for oscillators. Detailed models of oscillators abound in the liter-
ature, most frequently in the form of a set of nonlinear differential equations
whose solutions robustly converge to a limit cycle oscillation. Local stabil-
ity analysis is possible by means of Floquet theory, but global convergence
analysis is usually restricted to second-order models and uses phase plane
techniques. When analyzing collective phenomena in possibly large ensembles
of interconnected oscillators, the dynamical model for each oscillator is usu-
ally further simplified, such as in phase models [35] where the state variable
of each oscillator is a single phase variable on the circle.

The objective of this chapter is twofold: first, to motivate the use of syn-
chrony as a design principle and the need for an interconnection theory of
oscillators; second, to propose an external characterization of oscillators based
on dissipativity theory and to examine its implications for the stability and
synchrony analysis of interconnected oscillators.

In the first part of the chapter, we describe two stabilization problems
in which synchrony plays an important role. Section 2 studies the stabiliza-
tion of a bounce juggler, illustrative of rhythmic control tasks encountered in
multileg robotics. We show how the stabilization of period two orbits (which
mimics the shower pattern of a juggler) is best understood as achieving a
phase-locking property for two impact oscillators. A distinctive feature of the
proposed control is that it uses no feedback (sensorless control), even though
the orbit is exponentially unstable in the unactuated system. The phase-locked
property of the impact oscillators is induced by suitable oscillatory forcing of
their input.

Section 3 describes a collective stabilization problem for N particles that
move at unit speed in the plane with steering control. (Relative) equilibria of
the model correspond to parallel or circular motions of the group. The orienta-
tion of each particle is a phase variable on the circle. Treating the orientation
variables of the particles as phase variables of oscillators, parallel motion cor-
responds to synchronization whereas circular motion can be understood as a
form of desynchronization. The synchrony measure is here the velocity of the
center of mass of the group. It is maximal in parallel motions and minimal
in circular motions. It coincides with a usual measure of synchrony in phase
models of oscillators [31].

The two examples illustrate the role of synchrony as a design principle.
Their ad hoc treatment also underlines the lack of interconnection theory for
oscillators. In Section 4, we further illustrate with models from neurodynamics
the persistent gap between physical models of oscillators and abstract models
used to study their interconnections. This prompts us to introduce in Section
5 an external characterization of oscillators that fits their description by phys-
ical state space models but at the same time has implications for the stability
and synchrony analysis of their interconnections. Following the dissipativity
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approach introduced by Willems [33], the external characterization is in the
form of a dissipation inequality, with a new supply rate enabling a limit cycle
behavior for the solutions of the isolated oscillator. We examine the impli-
cations of this dissipativity characterization for (i) (global) stability analysis
of an isolated oscillator, (ii) (global) analysis of interconnections of N identi-
cal oscillators, and (iii) (global) synchrony analysis of interconnections of N
identical oscillators. The theory covers two basic oscillation mechanisms, il-
lustrated in the simplest way by van der Pol model and by Fitzhugh–Nagumo
model, respectively.

This chapter should be regarded as an expository survey of ongoing re-
search. The simplest examples are employed to illustrate the concepts and we
refer the reader to more technical papers for the general treatment and for
complete statements of the results.

2 Sensorless stabilization of rhythmic tasks

Synchrony plays an essential role in the robust coordination of rhythmic tasks.
Neuroscientists have long identified the role of central pattern generators in
living organisms as autonomous neural clocks that provide the rhythmic sig-
nals necessary to coordinate multileg locomotion such as walking, hopping, or
swimming. We describe here a manifestation of synchrony as a design princi-
ple in a very contrived but illuminating example: the stabilization of periodic
orbits in the bounce juggler model illustrated in Figure 1.
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Fig. 1. A bounce juggler model.

This toy stabilization problem captures several important issues of impact
control problems and is the subject of ongoing research [23, 3, 20, 21]. Here
we only describe the problem in its simplest configuration and underline the
phase-locking properties of the stabilized system.

The bounce juggler model describes the dynamics of a point mass (ball) in
the plane under the action of a constant gravitational field. The ball undergoes
elastic collisions with two intersecting edges, an idealization of the juggler’s
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two arms. The two edges form a fixed angle θ with the direction of gravity. In
a coordinate system aligned with the edges, the (nondimensional) equations
of motion write

ẍ1 = −1, x1 ≥ 0
ẍ2 = −1, x2 ≥ 0. (1)

A collision occurs when either x1 or x2 becomes zero, in which case Newton’s
rule is applied, that is, the normal velocity is reversed and the tangential ve-
locity is conserved. The solution of (1) is then continued (restarted) with this
new initial condition until a new collision occurs. The system is conservative
(energy is conserved both during the frictionless flight of the ball and through
the elastic collisions), and, except for the collision times, the two degrees of
freedom of the system are decoupled. In spite of this apparent simplicity, this
Hamiltonian system with collisions exhibits very rich dynamics [13, 36]. In
particular, for θ > 45 deg, the system possesses an infinite family of periodic
orbits, each of which is exponentially unstable. In recent work [20, 21], we
have shown that period one and period two orbits can be stabilized by proper
oscillatory actuation of the wedge. This sensorless stabilization phenomenon
is rather surprising because an exponentially unstable periodic orbit of the un-
actuated wedge becomes exponentially stable in the actuated wedge in spite
of any feedback measurement. The analysis in [20, 21] shows that the phe-
nomenon persists over a broad range of angles θ and, when the collisions are
nonelastic, over a broad range of coefficients of restitution. Recent experimen-
tal validation of this sensorless stabilization suggests that the phenomenon is
also quite robust.

The essence of the just-described sensorless stabilization phenomenon is
best understood by considering the model in the special configuration illus-
trated in Figure 2, that is, for the particular angle θ = 45 deg (orthogonal
wedge), and when the actuation of each edge is restricted to the direction
orthogonal to the edge.

A sin(ωt + φ) A sin ωt

π
4
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x2
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g

Fig. 2. A cartoon of the orthogonal wedge with orthogonal actuation of the two
edges, leading to decoupled closed-loop dynamics.
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In this special configuration, the dynamics of the vibrating wedge write

ẍ1 = −1, x1 ≥ A sin(ωt)
ẍ2 = −1, x2 ≥ A sin(ωt+ φ), (2)

where A and ω are the amplitude and the vibrating frequency of each edge
and where φ is the phase shift between the vibration of the two edges.

sync anti-sync

phase-locked

Fig. 3. The equivalence between period two orbits of the orthogonal wedge and two
phase-locked impact oscillators (bouncing balls).

Because the two edges vibrate orthogonally to each other, the collision
rules reduce to the very simple expression:

t : x1(t) = A sinωt⇒ ẋ1(t+) = −e ẋ1(t−)
t : x2(t) = A sin(ωt+ φ) ⇒ ẋ2(t+) = −e ẋ2(t−), 0 < e < 1, (3)

which means that the two degree-of-freedom dynamics of the bounce juggler
decouple into two one degree-of-freedom dynamics. The dynamics of each one
degree-of-freedom subsystem are the bouncing ball dynamics first studied by
Holmes [6]. It is well known that the bouncing ball dynamics exhibit a stable
period one orbit in a suitable parameter range of A (or ω), within which the
period between two successive collisions locks with a multiple of the forcing
period T = 2π

ω . In the same parameter range, the orthogonally vibrating
bounce juggler exhibits a stable period two orbit. The additional parameter φ
determines the phase shift between the collisions with each edge, as illustrated
in Figure 3.

The period two orbit of the orthogonally vibrating bounce juggler is thus
equivalent to the period one motion of two phase-locked bouncing balls or
impact oscillators. Because of the coupling, this transparent description of
the dynamics is lost when the edges are not orthogonal to each other and
when the actuation of the wedge is an oscillatory motion around the fixed
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vertex instead of an axial vibration of each edge separately. The analysis in
[20, 21] nevertheless shows that the exponential stabilization of period two
orbits persists over a broad range of parameters, even in this generalized
situation.

Stable and unstable periodic orbits have been recently described in models
of insect locomotion [7]. These models provide practical and relevant examples
of Hamiltonian systems in which the different degrees of freedom are coupled
only through collisions. Our current work investigates whether periodic forcing
of some parameters can act as a (sensorless) stabilization mechanism in these
models similarly to the bounce juggler example described in this chapter.
To the best of our knowledge, the stability analysis in all reported examples
in the literature is based on (tedious) calculations of Poincare maps that
can be determined analytically only in overly simplified situations. A general
interconnection theory for such rhythmic oscillators is lacking at the present
time.

3 Collective stabilization

Another illustration of synchrony as a design principle is the task of stabilizing
a large collection of identical control systems (agents) around a collective mo-
tion. This problem has received considerable attention over the last years (see,
e.g., [11] and the references therein) and includes numerous engineering appli-
cations in unmanned sensor platforms. For example, autonomous underwater
vehicles (AUVs) are used to collect oceanographic measurements in network
formations that maximize the information intake, see, e.g., [15]. In ongoing
work [25, 17, 26], we study a continuous-time kinematic model of N identical,
self-propelled particles subject to planar steering controls, first considered in
[9, 10]. In complex notation, this model is given by

ṙk = eiθk (4)
θ̇k = uk, (5)

where rk ∈ R
2 and θk ∈ S1 are the position and heading of the kth particle.

Unless otherwise indicated, k = 1, . . . , N . The steering control law is denoted
by uk. If we define the relative position and orientation variables, rjk = rj−rk
and θjk = θj−θk, then the control, uk, can be decomposed into relative spacing
and alignment terms, i.e.,

uk = uspac
k (rjk, θjk) + ualign

k (θjk). (6)

The alignment control is a function of the relative orientation, θjk, whereas the
spacing control is function of both the relative position rjk, and orientation
θjk.

The particle model is a specialization of the Frenet-Serret equations in
SE(2), the group of planar rigid motions, restricted to a constant velocity,
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see, e.g., [22]. The Lie group structure of the state space has important impli-
cations. If the control law (6) depends only on the relative orientations and
positions of the particles, then the system is invariant under the action of the
group SE(2) (i.e., there is a planar rotation and translation symmetry). Un-
der this assumption, the configuration space of the particles can be described
on a reduced shape space. Justh and Krishnaprasad [9] show that fixed points
in the shape space, which correspond to relative equilibria, occur for

u1 = u2 = . . . = uN . (7)

In particular, the relative equilibrium with u1 = u2 = . . . = uN = 0
results in parallel trajectories of the group; the relative equilibrium with
u1 = u2 = . . . = uN �= 0 results in all the vehicles orbiting the same point at
the same (constant) radius. The control problem is to design a feedback (6)
that stabilizes a particular relative equilibrium of the model, that necessarily
correspond either to a parallel motion or a circular motion for the group.

A key parameter for the stabilization of the group is the velocity of the
center of mass

v = |Ṙ| = | 1
N

∑
k

ṙk| = | 1
N

N∑
k=1

eiθk |. (8)

The velocity v is maximal (v = 1) for parallel motion whereas it is minimal
(v = 0) for circular motion around the (fixed) center of mass. This suggests
to control the potential

U =
N

2
v2 =

1
2N

N∑
k=1

N∑
j=1

cos θkj .

Gradient dynamics with respect to U yield

θ̇k = K
∂U

∂θk
= −K

N

N∑
j=1

sin(θk − θj). (9)

The only critical points of U are its minima, corresponding to v = 0, that
is, motions around a fixed center of mass, and its maxima, corresponding to
v = 1, that is, parallel motion.

The parameter v thus provides a good measure of synchrony for the group.
Its interpretation in connection with the literature of phase models of coupled
oscillators will be discussed in the next section. It prompts us to choose the
orientation control

ualign
k (θjk) = K

∂U

∂θk
. (10)

When K is positive, the orientation control (10) stabilizes parallel motions of
the group. The spacing control acts as an additive correction to control the
shape of the group formation, e.g., the relative distance between particles.
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When K is negative, the orientation control (10) stabilizes group motions
around a fixed center of mass. The spacing control acts as an additive cor-
rection to control the shape of the group formation, e.g., the distance to the
center of mass in order to stabilize a circular motion.

The reader is referred to [25, 17] for further details on how to stabilize
particular relative equilibria. We provide one illustration below to show that
the design of the spacing control becomes somewhat decentralized once the
group parameter v has been stabilized. In [10], (a variant of) the following
control law is proposed to stabilize circular motion of particle k around a
fixed beacon R0:

uk = −f(ρk) <
r̃k
ρk
, ieiθk > − <

r̃k
ρk
, eiθk >, (11)

with r̃k = rk − R0 and ρk =‖ r̃k ‖. The second term of the control law (11)
stabilizes circular motions: it vanishes when the velocity vector is orthogonal
to the relative position vector. The function f(·) in (11) provides attraction
to the beacon when the distance ρk exceeds the equilibrium distance d0 and
repulsion otherwise. (The choice f(ρk) = 1− (d0/ρk)2 is proposed in [10].)

The control law (11) is a single particle control law: uk only depends on
the state (rk, θk) of particle k. But stabilization of the center of mass by means
of the orientation control (10) suggests that the beacon control law (11) may
serve as a spacing control law if the beacon R0 is replaced by the center of
mass R = 1

N

∑N
k=1 rk in the definition of r̃k. One then obtains a composite

control law

uk =
1
N

N∑
j=1

(
−K sin(θk − θj)− f(ρk) <

rkj

ρk
, ieiθk > − <

rkj

ρk
, eiθk >

)
(12)

to stabilize circular motions of the group on a unique circle centered at the
(fixed) center of mass. Convergence analysis is provided in [25] for large nega-
tive values of the parameter K, based on a time-scale separation between the
fast convergence of the group center of mass and the slow(er) convergence of
each particle relative to the center of mass.

In ongoing work, we have obtained a Lyapunov analysis showing almost
global convergence for any value of K < 0 for a variant of the control law
(12); we are also studying extensions of this basic design to more specific
collective motions such as the splay state formation, which is a circular relative
equilibrium characterized by N particles equally spaced on the circle [26].
Central to all these designs is the decoupling between a prescribed level of
synchrony for the group (achieved by the orientation control) and the relative
spacing of individual particles relative to the center of mass (achieved by a
decentralized spacing control).
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4 Oscillators, accumulators (storages), and phasors

Models of oscillators abound in physics and biology. In this section we briefly
review common ways of simplifying these models when it comes to studying
their stability properties or the stability properties of their interconnections.
We illustrate our point with models from neurodynamics, which have been
studied extensively in the literature and appear with many variants depend-
ing on the context. For the sake of illustration, we briefly review a biophysical
model of the action potential, its two-dimensional simplification used for sta-
bility analysis, and two distinct one-dimensional simplifications used for inter-
connection analysis. The situation is exemplative of most dynamical models
of oscillators in physics and biology (see, for instance, [4] for several models
of biochemical oscillators).

Nerve cells (neurons) fire, that is, a current stimulus above threshold at
their input triggers a succession of short electric pulses (action potentials)
at their output. Even though action potentials do not persist forever, they
are conveniently modeled as a sustained limit cycle oscillation of the elec-
tric potential across the cell membrane. The physical basis for this oscillatory
mechanism is provided by the celebrated model of Hodgkin and Huxley [5].
The membrane is modeled as a capacitive circuit and the membrane poten-
tial depends on several ionic currents (mainly sodium and potassium) flowing
through the membrane. Ion channels regulate the flow of each ion across the
membrane. A central feature of the model is that ion channels are voltage
dependent. The voltage dependence is such that sodium and potassium cur-
rents vary out of phase, creating a sustained switch between positive potential
(when sodium channels are open and potassium channels are closed) and neg-
ative potential (in the opposite situation). The original model, not recalled
here, consists of a state space model of dimension 4: one variable to describe
the membrane potential, and three additional variables to describe the volt-
age dependent opening of the ion channels. More detailed models of action
potentials take into account the effect of further ionic currents, increasing the
dimension of the model up to 10 or 15 state variables.

The Hodgkin–Huxley model and its many variants exhibit sustained oscil-
lations in numerical simulations, in good (quantitative) agreement with exper-
imental data. Rigorous stability analysis of the limit cycle is usually restricted
to two-dimensional simplifications of the model, such as the Fitzhugh–Nagumo
model

V̇ = kV − V 3 +R

τṘ = −R− V, (13)

which qualitatively describes the limit cycle oscillation of the potential V
with a single adaptation variable R to model the voltage dependence of the
ion channels. We will come back on this example in the next section.

In order to study the dynamical behavior of large networks of intercon-
nected neurons, the dynamics of each neuron are usually further simplified.
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Two important models extensively studied in the literature are the models of
Hopfield [8] and Kuramoto [12].

In Hopfield model, the dynamics of neuron k are described by a single
variable xk and the first-order equation

τ ẋk = −xk + S(uk), (14)

where S(·) is monotone and usually has a finite range (classical descriptions
of this static nonlinearity include the sigmoid function [in computer science]
or the Michaelis–Menton function [in reaction networks]). The state xk has no
correspondence with the physical variables of the Hodgkin–Huxley model but
models an average activity of the neuron (it is often thought of as the averaging
firing rate of the neuron). Hopfield studied the dynamics of N interconnected
neurons with the interconnection determined by the linear coupling

uk =
N∑

k=1

Γkjxj .

The matrix Γ thus determines the network topology and affects the dynamical
behavior of the network. Hopfield showed that symmetric network topologies
Γ = ΓT result in gradient dynamics, in which case all solutions converge to
critical points of a scalar potential. Hopfield models abound in neuroscience
and have been used to describe the dynamics of a number of computational
tasks (see, for instance, [34] for several illustrations in vision). In these exam-
ples, the oscillatory behavior of the neuron is unimportant. The state xk only
models the storage capacity of the neuron.

Storage models of oscillators neglect the phase variable of periodic so-
lutions. As a consequence, they are inadequate for synchrony analysis. In
contrast, phase models of oscillators disregard the dynamical behavior of the
oscillator away from its limit cycle solution. The dynamics of neuron k are
described by a single phase variable θk and the first-order equation

θ̇k = ωk + uk, (15)

which is a state space equation on the circle S1. In the absence of input, the
phase variable travels on the circle at uniform speed ωk. Kuramoto studied the
dynamics of N interconnected phasors with the interconnection determined
by the all-to-all coupling

uk = −K
N

N∑
k=1

sin(θk − θj), K > 0.

If all the oscillators are identical (ωk = ω for all k), the dynamics of the
interconnected system are

θ̇k = ω − K

N

N∑
k=1

sin(θk − θj).
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In a coordinate frame rotating at uniform speed ω, these are the gradient
dynamics (9) discussed in Section 3 and the synchronized state is a stable
equilibrium. The convergence analysis is much more involved when the oscil-
lators are not identical (see [31] for a recent review), but a stable phase-locked
equilibrium exists if the coupling is large enough. The centroid 1

N

∑N
j=1 e

iθj

of the oscillators plays an important role in the analysis of the Kuramoto
model as a measure of synchrony. It coincides with the linear momentum of
the group of particles in Section 3.

Several authors have studied how to reduce general models of oscillators
to phase models of the type (15) in the limit of weak coupling, that is, when
the coupling between the oscillators does not affect the convergence of each
oscillator to a limit cycle solution. For more details, we refer the reader to the
recent paper [2] and to references therein.

5 A dissipativity theory for oscillators

Dissipativity theory, introduced by Willems [33], is an interconnection theory
for open systems described by state space models:{

ẋ = f(x) + g(x)u, x ∈ R
n, u ∈ R

m

y = h(x), y ∈ R
m.

(16)

We assume that the vector fields f and g and the function h are smooth, and
that the origin x = 0 is an equilibrium point of the zero-input system, that
is, f(0) = 0.

Lyapunov stability of the equilibrium x = 0 of the closed system ẋ = f(x)
is often characterized by a dissipation inequality V̇ ≤ 0 where the scalar
Lyapunov function V (x) > 0 has a strict minimum at x = 0. Dissipativity
generalizes this concept to the open system (16): the system is dissipative if
it satisfies a dissipation inequality

Ṡ ≤ w(u, y), (17)

where the scalar storage function S(x) ≥ 0 is analogous to the Lyapunov
function of a closed system (with the physical interpretation of an internal
energy). The scalar function w(u, y) is called the supply rate. The dissipation
inequality expresses that the rate of change of the internal energy (storage) of
the system is bounded by the supply rate, that is, the rate at which the system
can exchange energy with the external world through its external variables.

Dissipativity theory is fundamental to the stability analysis of interconnec-
tions. We here restrict the discussion to passivity theory, which is dissipativity
theory for

w(u, y) = uT y − d(y), d(y) ≥ 0, (18)

a supply rate that prevails in physical models. The usual terminology is passiv-
ity when d(y) = 0 and strict (output) passivity when d(y) > 0 for y �= 0. The
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(negative) feedback interconnection of two systems (16), labeled 1 and 2, re-
spectively, defined by the interconnection rule u1 = u−y2, u2 = y1 = y, yields
a new system (16) with external variables (u, y). The fundamental passivity
theorem says that if both system 1 and system 2 are passive, then their feed-
back interconnection is also passive. Indeed, the storage function S = S1 +S2
satisfies the dissipation inequality Ṡ ≤ uT

1 y1 + uT
2 y2 − d1(y1) − d2(y2) ≤

uT y − d1(y). Moreover, the zero equilibrium of the (closed) system obtained
by setting u = 0 is asymptotically stable modulo a detectability condition.
The consequences of this basic theorem are far-reaching and have made dis-
sipativity theory the central tool in nonlinear control theory for the stability
analysis (and design) of equilibria; see [24, 32, 16] for illustrations.

In ongoing work [27, 29], we aim to show that dissipativity theory also pro-
vides an interconnection theory for oscillators. The main idea is very straight-
forward: we characterize an oscillator by a dissipation inequality with a supply
rate

w(u, y) = uT y + ak(y)− d(y), ak(y) ≥ 0, d(y) ≥ 0. (19)

The supply rate (19) differs from the (strictly) passive supply rate (18) by the
activation term ak(y). The passive oscillator is viewed as a system that pas-
sively exchanges its energy with the environment but that contains an active
internal element. The competition between the internal elements that dissi-
pate the storage and the active element that restores the storage is viewed as
the basic oscillation mechanism. A necessary condition for sustained oscilla-
tions is that the system restores energy at low energy, that is, ak(y)−d(y) > 0
when |y| is small, and that the system dissipates energy at high energy, that
is, ak(y)− d(y) < 0 when |y| is large.

A convenient way to obtain dissipativity with the supply rate (19) is to
consider the feedback interconnection of a passive system with the static non-
linearity illustrated in Figure 4: φk(y) = −ky + φ(y) where φ(·) is a smooth
sector nonlinearity in the sector (0,∞), which satisfies φ′(0) = φ′′(0) = 0,
φ′′′(0) := κ > 0 and lim|s|→∞

φ(s)
s = +∞ (“stiffening” nonlinearity). The

storage S of the passive system Σ satisfies

Ṡ ≤ ky2 − yφ(y) + uy, (20)

which corresponds to ak(y) = ky2 and d(y) = yφ(y) in (19).
The parameter k regulates the level of activation near the equilibrium

x = 0. When k ≤ 0, the feedback system is strictly passive, and under a suit-
able detectability condition, the equilibrium is globally asymptotically stable.
Stability of the equilibrium is lost at a critical value k∗ ≥ 0.

Stability

Two distinct bifurcation scenarios provide a stable oscillation mechanism for
the feedback system in Figure 4. The first one corresponds to a supercritical
Hopf bifurcation: two complex conjugate eigenvalues cross the imaginary axis
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−k

−

passive
u y
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Fig. 4. Block diagram of a family of systems satisfying the dissipation inequality
(20).

at k = k∗, giving rise to a stable limit cycle surrounding the unstable equilib-
rium x = 0 for k > k∗. The normal form of this bifurcation is obtained when
the passive system Σ in the loop is a harmonic oscillator, characterized by
the transfer function H(s) = s

s2+ω2 . The dynamics of the feedback system are
then

d2y

dt2
+ ω2y +

d

dt
(ky − φ(y)) = u̇. (21)

Equation (21) is the model of a van der Pol oscillator when φ(y) = y3: the cir-
cuit interpretation is that the sustained exchange of energy between a capac-
itor and an inductor is regulated by a static element (a tunnel-diode circuit)
that dissipates energy when the current is high and restores energy when the
current is low.

A second bifurcation scenario in the feedback system in Figure 4 is a
supercritical pitchfork bifurcation: the stable equilibrium x = 0 becomes a
saddle beyond the bifurcation value k = k∗ and two new stable equilibria
appear for k > k∗. The normal form of this bifurcation is obtained when the
passive system Σ in the loop is an integrator, characterized by the transfer
function H(s) = 1

s . The dynamics of the feedback system are then

ẏ = ky − φ(y) + u. (22)

When the input u = 0, the equilibrium y = 0 is stable for k ≤ 0 and unstable
for k > 0. Two other equilibria exist for k > 0 and create a bistable behavior:
the positive (respectively, negative) equilibrium attracts all solutions with
positive (respectively, negative) initial condition. For every k > 0, the bistable
behavior persists over a range of (constant) inputs R, causing hysteresis in
the static response of the system, as shown in Figure 5.

This hysteresis is turned into a relaxation oscillation when the input slowly
adapts to follow the hysteresis loop, resulting in the closed-loop dynamics

ẏ = ky − φ(y) +R

τṘ = −R− y. (23)

Equation (23) is the Fitzhugh–Nagumo model recalled in the previous section.
The same adaptation in the model of Figure 4 is illustrated in Figure 6.
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R

y

Fig. 5. The hysteresis associated to the bistable system (22) with constant input
u = R.

−−

y

R 1
τs+1

Σ

φk(·)

Fig. 6. Converting the pitchfork scenario into a relaxation oscillator with a slow
adaptation mechanism (τ � 0). The case Σ = 1

s
corresponds to the Fitzhugh–

Nagumo oscillator.

Oscillations resulting from slow adaptation in a bistable system seem to
constitute a prevalent mechanism in models of biological oscillators (see, for
instance, [4] for several illustrations).

The main result in [27] provides higher-dimensional generalization of the
two above examples by showing that the dissipativity characterization of the
feedback system forces one of the two bifurcation scenarios. The results are
local in the parameter space (they hold for values of the parameter in the
vicinity of the bifurcation), but they are global in the state space, that is,
convergence to the stable limit cycle is proven for all initial conditions that do
not belong to the stable manifold of the (unstable) equilibrium at the origin.

Interconnections

Dissipativity theory not only provides a stability theory for oscillators that
admit the representation in Figure 4 but also an interconnection theory. As a
direct consequence of passivity theory, any passive interconnection of dissipa-
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tive systems with the supply rate (19) provides a new dissipative system with
a supply rate of the same form.

For the sake of illustration, we only consider the interconnection of two
identical passive oscillators, each characterized by a dissipation inequality

Ṡi ≤ ky2
i − φ(yi)yi + uiyi, i = 1, 2.

We consider the interconnections in Figure 7 and assume linear coupling

u = −Γy + v,

using the vector notation u = (u1, u2)T , y = (y1, y2)T , and v = (v1, v2)T .

O2O1

+1

+1

O2O1

−1

−1

Fig. 7. Positive and negative feedback interconnection of two oscillators.

The interconnections in Figure 7 correspond to a symmetric matrix Γ =
ΓT given by

Γ =
[

0 ±1
±1 0

]
,

with −yTΓy ≤ yT y for the two considered situations. The interconnection
therefore satisfies the following dissipation inequality with storage S = S1+S2:

Ṡ ≤ (k + 1)yT y − Φ(y)T y + vT y,

which is dissipativity with the supply rate (19) for the system with input
v = (v1, v2)T and output y = (y1, y2)T . (We also use the notation Φ(y) =
(φ(y1), φ(y2))T .) The bifurcation for the feedback interconnection of the two
oscillators is the same as for each individual oscillator; only the bifurcation
value k = k∗ is shifted by one for the interconnection. The general case of
symmetric interconnections is treated in detail in [29]. The main observation
is that any symmetric coupling u = −Γy + v can be written as u = −(Γ +
λI)y + λy + v with Γ ′ = Γ + λI a nonnegative symmetric matrix. The sum
of the storages therefore satisfies

Ṡ ≤ (k + λ)yT y − Φ(y)T y + vT y,

which is dissipativity with the supply rate (19) for the system with input v
and output y.



138 R. Sepulchre

Synchronization

Dissipativity theory also provides a synchrony analysis for networks of os-
cillators. Synchrony is a convergence property for the difference between the
solutions of different systems. Convergence properties for the difference be-
tween solutions of a closed system are characterized by notions of incremental
stability [1, 14, 18]. For open systems, the corresponding notion is incremental
dissipativity. Consider two different solutions x1(t) and x2(t) of the system
(16) with inputs and outputs (u1(t), y1(t)) and (u2(t), y2(t)), respectively. De-
note the incremental variables by δx = x1−x2, δu = u1−u2, and δy = y1−y2.
The system is incrementally dissipative if it satisfies a dissipation inequality

˙δS ≤ w(δu, δy) (24)

for the incremental scalar storage function δS(δx) ≥ 0.
Consider two copies of the same system (16) with the difference coupling

ui = −K(yi − yj), i, j = 1, 2,

which corresponds to the interconnection matrix

Γ = K

[
−1 1
1 −1

]
.

Incremental dissipativity of the system (16) with the supply rate

w(δu, δy) = kδy2 − δyφ(δy) + δuδy (25)

implies output synchronization for the interconnected system: substituting
δu = −2Kδy in the inequality (24) yields

˙δS ≤ (k − 2K)δy2 − δyφ(δy),

which implies asymptotic convergence of δy to zero, that is, output synchro-
nization, when 2K > k. State synchronization follows from output synchro-
nization modulo a detectability condition.

In [29], we show that the implications of incremental dissipativity for syn-
chronization extend to the interconnection of N identical systems with net-
work topologies that include SN symmetry (all-to-all topology), DN sym-
metry (bidirectional ring topology), and ZN symmetry (unidirectional ring
topology). These results are closely related to other recent synchronization
results in the literature [28, 19, 1], all based on incremental stability notions.

Synchronization of passive oscillators

We have shown that the Lure-type system in Figure 4 satisfies a dissipation
inequality with the supply rate (19). We conclude this section by showing that
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the same system is also incrementally dissipative with a supply rate of the form
(25) when the passive system Σ is linear and when the static nonlinearity φ
is monotone.

For linear systems, dissipativity is equivalent to incremental dissipativity,
that is, S(x) satisfies the dissipation inequality Ṡ ≤ w(u, y) if and only if the
incremental storage δS = S(δx) satisfies the incremental dissipation inequality
δ̇S ≤ w(δu, δy).

The static nonlinearity y = φ(u) is passive if and only if φ(s)s ≥ 0 for
all s. It is also incrementally passive if it satisfies the additional monotonicity
property (φ(s1)− φ(s2))(s1 − s2) = δφ(s)δs ≥ 0 for all δs = s1 − s2.

If the passive system in Figure 4 is linear, it has a quadratic storage S(x) =
xTPx and the feedback system satisfies the dissipation inequality

Ṡ ≤ ky2 − yφ(y) + uy.

The incremental storage is δS = δxTPδx, which satisfies the incremental
dissipation inequality

δ̇S ≤ kδy2 − δyδφ(y) + δuδy.

If φ(·) is monotone, then δyδφ(y) ≥ δyψ(δy) ≥ 0 for some static nonlinearity
ψ(·) and the feedback system satisfies the incremental dissipation inequality

δ̇S ≤ kδy2 − δyψ(δy) + δuδy.

Combining the global convergence result to a stable limit cycle for one sys-
tem with the synchronization results for a network of interconnected identical
systems, one obtains global convergence results to a synchrone oscillation for
passive oscillators that admit the feedback representation in Figure 4.

6 Conclusion

Oscillators are important building blocks of dynamical systems. When suit-
ably interconnected, they robustly produce ensemble phenomena with syn-
chrony properties not encountered in equilibrium systems. The chapter has
described two stabilization problems that illustrate the role of synchrony as a
design principle: a rhythmic control task and the design of group motions for
moving particles in a plane.

A system theory for oscillators requires an interconnection theory. The
external characterization of oscillators adopted in this chapter follows the
fundamental characterization of open systems by a dissipation inequality and
proposes a supply rate that enables limit cycle oscillations in the isolated
system. The proposed dissipation inequality has implications for the stabil-
ity properties of the oscillator, both in isolation and when interconnected to
other oscillators. In its incremental form, the same dissipation inequality has
implications for the synchrony properties of networks of identical oscillators.
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30. Strogatz S (2003) Sync: the emerging science of spontaneous order. Hyperion
31. Strogatz SH (2000) From Kuramoto to Crawford: exploring the onset of syn-

chronization in populations of coupled oscillators. Physica D 143:1–20
32. van der Schaft AJ (2000) L2-gain and passivity techniques in nonlinear control.

Springer-Verlag, London
33. Willems JC (1972) Dissipative dynamical systems. Arch. Rational Mechanics

and Analysis 45:321–393
34. Wilson H (1999) Spikes, decisions, and actions. Oxford University Press, Ox-

ford, UK
35. Winfree A (2000) The geometry of biological time, second edition. Springer-

Verlag, London
36. Wojtkowski MP (1998) Hamiltonian systems with linear potential and elastic

constraints. Communications in Mathematical Physics 194:47–60


