
Model Checking in Practice: An Analysis of theACCESS.busTM Protocol using SPINBernard Boigelot1? and Patrice Godefroid2??1 Universit�e de Li�egeInstitut Monte�ore, B28B-4000 Li�ege Sart-Tilman, Belgiumboigelot@montefiore.ulg.ac.be2 AT&T Bell Laboratories1000 E. Warrenville RoadNaperville, IL 60566, U.S.A.god@research.att.comAbstract. This paper presents a case study of the use of model checkingfor analyzing an industrial protocol, the ACCESS.busTM protocol. Ouranalysis of this protocol was carried out using SPIN, an automated veri�-cation system which includes an implementation of model-checking algo-rithms. A model of the protocol was developed, and properties expressedby linear-time temporal-logic formulas were checked on this model. Thisanalysis revealed subtle aws in the design of the protocol. Developerswho worked on implementations of ACCESS.busTM were unaware ofthese aws at a very late stage of their development process. We alsopresent suggestions for solving the detected problems.1 IntroductionState-space exploration techniques are increasingly being used for debuggingand proving correct �nite-state concurrent reactive systems (cf. [Rud87, Liu89,HK90, Hol91, DDHY92, FGM+92]). These techniques consist of exploring aglobal state graph, called the state space, representing the combined behavior ofall concurrent components in the system. This is done by recursively exploringall successor states of all states encountered during the exploration, starting froma given initial state, by executing all enabled transitions in each state. Many dif-ferent types of properties of a system can be checked by exploring its state space:deadlocks, dead code, unspeci�ed receptions, bu�er overruns, etc. Moreover, therange of properties that state-space exploration techniques can verify has beensubstantially broadened during the last decade thanks to the development of? \Aspirant" (Research Assistant) for the National Fund for Scienti�c Research(Belgium). The work of this author was done in part while visiting AT&T BellLaboratories.?? This work was carried out in part while this author was with the University of Li�ege.

model-checking methods for various temporal logics (e.g., [CES86, LP85, QS81,VW86]).In this paper, we present an application of model checking for the analysisof the ACCESS.busTMprotocol. The ACCESS.busTM protocol is a serial com-munication protocol aimed at providing a simple, uniform, and inexpensive wayto connect peripheral devices (such as keyboards, mice, modems, monitors, andprinters) to a host computer. It has been developed and standardized by anindustrial consortium of computer and peripheral manufacturers, referred to asthe ACCESS.busTM Industry Group [ACC94]. At the time of this writing, im-plementations of the ACCESS.busTM protocol already exist, and are expectedto be commercialized soon.Our analysis of the correctness of the ACCESS.busTMprotocol was performedusing the automated protocol veri�cation system SPIN [Hol91]. SPIN checksproperties of communication protocols, modeled in the Promela language, byexploring their state space. Promela is a nondeterministic guarded-commandlanguage for modeling systems of concurrent processes that can interact viashared variables and message channels. Interaction via message channels canbe either synchronous (i.e., by rendez-vous) or asynchronous (bu�ered) witharbitrary (user-speci�ed) bu�er capacities, and arbitrary numbers of messageparameters. Given a concurrent system modeled by a Promela program, SPINcan check for deadlocks, dead code, violations of user-speci�ed assertions, andtemporal properties expressed by linear-time temporal-logic formulas. When aviolation of a property is detected, SPIN reports a scenario, i.e., a sequence oftransitions, violating this property.Our analysis of the ACCESS.busTMprotocol pointed out several ambiguitiesin the standardized document specifying the protocol. Moreover, it revealed sub-tle and potentially harmful aws in the design of the protocol itself. Developerswho worked on implementations of ACCESS.busTM were still unaware of theseaws at a very late stage of their development process.This paper is organized as follows. In the next section, we present an overviewof the ACCESS.busTM protocol. Next, we describe our model for this protocol,and discuss our assumptions. In Section 4, we specify two basic properties thatthe protocol has to satisfy. Then, we turn to the veri�cation of these properties.For both of these properties, SPIN reported scenarios violating the property.These scenarios are presented in Sections 5 and 6. By analyzing these scenarios,causes of errors have been identi�ed, and suggestions for solving the detectedproblems are presented.2 ACCESS.busTM ProtocolThe ACCESS.busTM protocol is a serial communication protocol. Its purpose isto provide a simple, uniform and inexpensive way to connect peripheral devicesto a host computer. The analysis presented in this paper is based on release 2.2of the protocol speci�cations [ACC94].

An important feature of ACCESS.busTM is that it supports dynamic recon-�guration, which means that devices can be connected to the bus while thesystem is operating, and can become operational without the system being re-booted. The overall structure of ACCESS.busTM is illustrated in Figure 1. Theprotocol is composed of a hardware layer based on the I2C protocol developedby Philips, and of two software layers referred to as \Base Protocol" and \DeviceDrivers". Device Drivers are controlled by user applications running on the host.
Device DriversBase ProtocolI2C (Hardware)

User applications
Fig. 1. Structure of ACCESS.busTM.The I2C protocol is a serial protocol that is used for interconnecting IC'sinside electronic appliances such as TV's and VCR's. It uses a bus composed oftwo wires, serial data (SDA) and serial clock (SCL), which connects the hostand the devices together. Each component (i.e., device or host) has an 8-bit I2Caddress which is not necessarily unique and may change over time. When a com-ponent is plugged in, its address becomes the default I2C address. Information istransmitted on the I2C bus by means of messages composed of an address partand a data part. Since the bus is synchronous, there is no propagation delay. AnyI2C component may try to send a message at any time over the bus. Although asame message can be sent simultaneously by several components, an arbitrationmechanism ensures that two di�erent messages are never sent at the same time.This mechanism is deterministic: whenever two or more components attempt tosimultaneously send di�erent messages over the I2C layer, the conict is resolvedin favor of the same message. A transmitted message is received by a componentif and only if the address of the component matches the address part of themessage, and the component is not simultaneously transmitting the same mes-sage over the bus. A message can thus be lost if its recipient is simultaneouslytransmitting the same message, or if there is no recipient. Each time a messageis sent over the I2C layer, its sender receives a Positive Acknowledgment fromthe I2C layer if the message is received by another component, and a NegativeAcknowledgment otherwise.The Base Protocol aims at ensuring that every device will always be recog-

Message Types PurposeReset() Force a device to its power-up state and to the defaultI2C address. This message is sent by the host on power-upto all the I2C addresses. A device also sends this messageto its address right after being assigned a new address.Attention() Inform the host that a device has �nished its power-up/reset test and needs to be con�gured.Identi�cationRequest() Ask a device for its identi�cation string, which is a se-quence of bytes describing the hardware composing thedevice. This message is issued by the host after receptionof an Attention message from a device.Identi�cationReply(Id) Reply to Identi�cationRequest with the identi�cationstring Id of the device.AssignAddress(Id, Addr) Ask all the devices with a matching identi�cation stringId to turn their address into Addr.PresenceCheck() Check if a device is present on the bus at a speci�c ad-dress (speci�ed in the address part of the message). Thismessage is sent by the host at regular intervals of time inorder to detect new and missing devices.CapabilitiesRequest(O�set) Ask a device to send a fragment (speci�ed byO�set) of itscapabilities string, which is a sequence of bytes describingthe functional characteristics of the device.CapabilitiesReply(O�set, Data) Reply to CapabilitiesRequest with a fragment of the ca-pabilities string of the device.EnableApplicationReport() Enable or disable a device to send application reports,that is, device-dependent functional information, to thehost.ApplicationReport(Data) Send device-dependent functional information.Fig. 2. Base Protocol Message Types.

nized by the host within a �nite amount of time after being plugged in, that itwill be assigned a unique I2C address, and that its Device Drivers will be able tosend and receive device-dependent functional data (such as mouse moves). TheBase Protocol de�nes a set of message types that can be sent over the I2C layer.These message types are listed in Figure 2. When a device is plugged in, it sendsan Attention message to the host, which should reply with an Identi�cation-Request message, which should itself be replied to with an Identi�cationReplymessage from the device. Then, the host should send an AssignAddress messagecontaining a new I2C address for the device. When processing this message, thedevice updates its address, and sends a Reset message to this address.3 Design of the ModelOur analysis of ACCESS.busTM focused on the power-up/reset and identi�cationphases, that is, the part of the Base Protocol dealing with Reset, Attention, Iden-ti�cationRequest, Identi�cationReply, AssignAddress and PresenceCheck mes-sages. We made the following assumptions in order to resolve ambiguities inthe speci�cation document.3{ At the Base Protocol layer, every message received from the I2C layer isstored in a bounded �fo bu�er while waiting to be processed. If the bu�er isfull, new incoming messages are lost.{ The processing of a Reset message by a Base Protocol entity empties itsassociated �fo bu�er.Moreover, the following features of ACCESS.busTM were not modeled:{ the deterministic nature of the I2C arbitration mechanism,{ the timing constraints de�ned in the speci�cation document, and{ the possible corruption of messages sent over the I2C bus.Consequently, if a message is sent over the I2C layer at the same time by one ormore components, it is always correctly received exactly once by every compo-nent with a matching address that does not belong to the set of the senders.The overall structure of the model is shown in Figure 3. Each component ismodeled by two processes: a microcontroller and an Upper Base Protocol (UBP).The I2C bus is modeled by shared variables, since message broadcasting is nota basic communication primitive in Promela. A set of semaphores is used tocontrol the access to the bus.Each microcontroller continually listens to the bus, grabs messages destinedto its corresponding UBP, and appends them to a bounded �fo bu�er, whichis a basic Promela data type. Each UBP takes messages from its associated�fo bu�er, and processes them according to the protocol rules (cf. Figure 2).It can send messages directly (without queuing) over the I2C layer. Moreover,it can nondeterministically switch between two modes, plugged and unplugged,3 These assumptions match those made by the developers we had contacts with.

�controller I2C: �fo bu�er: shared variables
�controller �controllerUBP UBP UBPDevice #1 Device #2 Host

Fig. 3. Structure of the model.in order to simulate repeated pluggings and unpluggings of the correspondingcomponent.Initially, all devices are assumed to be unplugged. To keep the state spaceof the Promela model as small as possible, the maximum size of each �fo bu�erwas set to two elements, and the number of devices was limited to two. Thecomplete Promela model contains about 200 lines of code.4 PropertiesThe speci�cation document [ACC94] does not contain a precise and complete de-scription of the service provided by the Base Protocol to the Device Drivers. Twobasic properties that have to be satis�ed by the Base Protocol were extractedfrom the document.Property 1. A device di is said to be operational when it has an I2C addressaddr(di) di�erent from the default I2C address, and it has sent a Resetmessage to the address addr(di). At any time, all devices that are operationalmust have di�erent I2C addresses.This property can be formalized by using linear-time propositional temporallogic [MP92]. Linear-time temporal logic can be used for specifying propertiesof in�nite sequences of states. Propositions in the logic correspond to booleanconditions on variables and process states of the program. Formulas are con-structed over propositions using the classical boolean connectives (:, _, : : :)and the temporal operators 2 (always), 3 (eventually), and (next). Formulasare interpreted on in�nite sequences s0s1s2 : : : of states: given a particular in�-nite sequence of states, the formula is either satis�ed or falsi�ed by this sequence.Informally, one has:

{ 2 p holds in state si if p holds in si and in all successor states of si in thesequence on which the formula is interpreted;{ 3 p holds in si if p holds in some successor state of si or in si itself;{ p holds in si if p holds in the next state of the sequence.We refer the reader to [MP92, Eme90] for a detailed presentation of the syntaxand the semantics of linear-time temporal logic.For a pair of devices d1 and d2, Property 1 can be formalized by the followinglinear-time temporal-logic formula:2((oper(d1) ^ oper(d2))) (addr(d1) 6= addr(d2)));where oper(di) is true if device di is operational, and (addr(d1) 6= addr(d2))is true if devices d1 and d2 have di�erent I2C addresses () denotes logicalimplication).The second property of the Base Protocol we consider is the following.Property 2. Whenever a device is plugged in, it will eventually become oper-ational, provided that it remains plugged.This property can be formalized by the following linear-time temporal-logic for-mula: 2(plugged(d1)) 3(oper(d1) _ :plugged(d1)));where plugged(d1) is true if device d1 is plugged.Given the �nite state space AG of a system and a linear-time temporal-logic formula f , checking that all in�nite sequences of states de�ned by tran-sitions in AG satisfy f is known as the model-checking problem. Various tech-niques have been proposed for solving this problem [LP85, VW86, CVWY90,GH93, GPVW95]. SPIN includes an implementation of the algorithms presentedin [GH93] and [GPVW95], which are based on a depth-�rst search in the statespace of the system (see [GH93] for details). When SPIN detects a sequenceof states that violates the property to be checked, it stops its search, and ex-hibits this scenario (formed by all states and transitions currently stored in thedepth-�rst-search \stack") to the user.Let us now turn to the results obtained by SPIN with the Promela modeldescribed in the previous section and the two properties de�ned above.5 Veri�cation of Property 15.1 First FlawAfter a few seconds of computation, SPIN detected that the �rst property wasnot satis�ed.Figure 4 depicts a �rst sequence of transitions leading to a state where twodevices are operational while having been assigned the same I2C address. In thisdiagram, a thin vertical time line is associated with each plugged component.Time increases from the top to the bottom of the time lines. The sending of a

Dev #1 Host Dev #2Attention AttentionIdent. Request Ident. RequestIdent. Reply Ident. ReplyReset ResetAssign Address(a) Assign Address(a)
Fig. 4. First aw.message through the I2C layer is represented by an horizontal arrow drawn fromthe time line of the sender to the time line of the receiver. (Indeed, there is nodelay between the sending and the reception of a message.) The head and thetail of the arrow correspond to the exact moment when the message starts tobe transmitted on the I2C bus. If a message is lost (i.e., is not received by anycomponent), the corresponding arrow does not reach any time line. A messageis lost when its recipient does not exist, when its recipient is sending the samemessage over the bus, or when the �fo bu�er of the recipient is full. Thick verticallines represent the delay between the moment when the message is appended tothe input bu�er of its recipient and the moment when the message is actuallyprocessed by its recipient.In the scenario of Figure 4, two devices with the same identi�cation stringare plugged in at the same time. If both devices send and receive simultaneouslyall the messages shown in Figure 4, it is impossible for the host to distinguishthem. Moreover, the self-addressed Reset message is not received by any deviceif they both send this message at the same time.This problem is a direct consequence of the properties of I2C, and is notsurprising. However, it is worth noticing that having two devices sending thesame message at exactly the same time is not an unlikely event. Two devicesthat wait for sending a message will synchronize on the message frame currentlybeing transmitted on the I2C bus, and will both start trying to transmit theirmessage at the exact end of this frame.5.2 Second FlawA more complex sequence of events violating Property 1 is given in Figure 5. Asin the previous scenario, two devices are plugged in and have the same identi�ca-tion string. The �rst device �nishes its internal initialization process, and sendsan Attention to the host at time t0. At time t1, the host assigns the address a tothis device by sending an AssignAddress message, which is stored in the input

t1
t2t3t4

Dev #1 Host Dev #2t0 AttentionIdent. RequestIdent. Reply AttentionIdent. RequestIdent. Reply
Reset ResetReset Assign Address(b)

Assign Address(a)
Assign Address(b)

Fig. 5. Second aw.�fo bu�er of the device. Then the second device sends an Attention to the host,and enters its identi�cation phase. When the host assigns the address b to thesecond device at time t2, the AssignAddress message is also received by the �rstdevice, since its address is still the default address at that time, because therequest to change its address to a is still waiting in its bu�er and has not beenprocessed yet. When the �rst device �nally processes its incoming messages, itchanges its address to a at time t3, sends a self addressed Reset, and sets itsaddress to b at time t4. The self addressed Reset messages are then sent simulta-neously by both devices, and are thus lost, allowing the two devices to becomeoperational with the same address b.This scenario reveals another problem in the protocol: here, the erroneoussituation results not only from losing two Reset messages, but also from delayingan AssignAddress in a �fo bu�er.5.3 Third FlawWhen observing the �rst two aws, one could wonder if Property 1 is violatedonly when two devices may share the same identi�cation string. SPIN can easilyshow that this is not the case. A scenario resulting in the assignment of the same

t0
t1

AttentionDev #1 Host Dev #2Ident. RequestIdent. ReplyAssign Address(a) AttentionIdent. RequestIdent. ReplyPres. Check Assign Address(a)Reset Resett2t3
Fig. 6. Third aw.address to two devices with di�erent identi�cation strings is given in Figure 6.As in the previous scenario, the �rst device starts its identi�cation phase at timet0, and the processing of the AssignAddress message received from the host attime t1 is delayed until time t2. In the meantime, the second device sends anAttention to the host, and proceeds with its identi�cation phase. On reception ofan Identi�cationReply from the second device, the host issues a PresenceCheckaimed at checking if the �rst device is still plugged. The �rst device does notreceive this PresenceCheck message, since it is still using the default bus address.Therefore, the host receives a Negative Acknowledgment from the I2C layer. Itconcludes that the �rst device is not present anymore, and that address a isavailable. It then assigns address a to the second device at time t3. Again, if theself-addressed Reset messages are sent simultaneously by the two devices, theyare lost, and both devices become operational with the same address a, thusviolating the �rst property.5.4 SuggestionsThe three scenarios presented in Figures 4, 5, and 6 reveal the existence of threecauses of errors for Property 1 in the Base Protocol:

{ a Reset message is lost,{ two devices share the same identi�cation number, and{ the processing of an AssignAddress is delayed.For eliminating these causes of errors, we suggest the following modi�cationsto the Base Protocol.In order to avoid losing Reset messages, these messages should not be ap-pended to the input bu�ers of their recipients, but should rather be processedimmediately upon reception, for instance by issuing hardware interrupts to no-tify immediately the corresponding UBP of the arrival of such a message. Insuch a way, Reset messages will not be lost when the input bu�ers of their re-cipients are full. Moreover, the loss of a Reset message due to the fact that it issimultaneously sent by two (or more) components can be avoided by adding aunique �rmware number of the sender to each Reset message frame. If this radi-cal solution is too expensive to be implemented, adding a random number (e.g.,the value of an internal clock) to each Reset message frame will strongly reducethe probability of losing a Reset message because of simultaneous transmissionsof it. This probability can be further reduced by waiting for a random amountof time before trying to send a Reset message.Concerning the second cause, preventing identical identi�cation strings canbe done by using a unique �rmware number in the identi�cation string of eachdevice.Finally, the problems resulting from delaying an AssignAddress message canbe avoided by the two following modi�cations. First, AssignAddress messagesshould be processed immediately upon reception, for instance by using hard-ware interrupts as indicated above. Second, whenever a component receives anAssignAddress message requesting a modi�cation of its current I2C address, its�fo bu�er should be emptied.Once we have modi�ed our Promela model by following the above sugges-tions, SPIN proved in about 30 minutes of computation on a SPARC20 worksta-tion with 256 Megabytes of RAM that Property 1 was satis�ed by all possibleexecutions of the model. Note that the correctness proof of our model does notguarantee that the modi�cations suggested above are su�cient for avoiding thereported problems in practice.It is worth noticing that the timing constraints de�ned in the speci�cationdocument do not prevent any of the three scenarios discussed in this sectionfrom occurring. Indeed, each of these scenarios can easily be annotated withtimestamps satisfying these timing constraints.6 Veri�cation of Property 26.1 Fourth FlawSPIN quickly found scenarios violating Property 2 as well. Indeed, two or moredevices can hold the I2C bus for an unbounded amount of time, and thus preventother components from sending messages. The timing constraints described in

the protocol speci�cation help to prevent such situations, but it is easy to showthat these constraints are not su�cient to completely solve the problem. More-over, the deterministic nature of the I2C arbitration mechanism (which we didnot model) does not help to solve this problem. Indeed, if two devices alterna-tively send ApplicationReport messages over the bus, it can be deduced from thearbitration rules that, if their addresses have high-priority values (i.e., 02 and03), it is impossible for a third device with an address of lower priority (i.e., FE)to be granted the bus at any time. In this scenario, the third device will neverbe able to send an Attention message to the host to signal its presence in thesystem, and hence will never become operational.6.2 SuggestionsThe probability of occurrence of such scenarios can be reduced by modifying thestructure of the message frames in order to give a higher priority to protocolmessages, as opposed to application reports, with respect to the I2C arbitrationmechanism. One could use for this purpose the least signi�cant bit of the �rstbyte of the frame (0 for protocol message frames, 1 for application reports). Theprotocol speci�cation also includes an optional Device Bandwidth Managementsystem, which could help avoiding the problem.7 ConclusionsWe have presented the main stages and the results of an analysis of an in-dustrial protocol, the ACCESS.busTM protocol. The analysis of this protocolwas performed using SPIN, an automated protocol veri�cation system includingstate-space exploration and model-checking algorithms. Our analysis revealedsubtle aws in the design of this protocol, which were not found by simulatingor testing the existing prototype implementations. We have also presented sug-gestions for solving the detected problems. During this work, SPIN repeatedlyproved to be a powerful and e�cient veri�cation tool.Model checking is an e�ective and simple method for verifying that a con-current reactive system satis�es a temporal logic formula. It makes it possible toreason about programs without having the burden of carrying out correctnessproofs by hand. Indeed, model checking is fully automatic: no intervention ofthe user is required. This is a crucial feature for a veri�cation technique to beused in industry, since products are often (read always) developed under timepressure, and therefore veri�cation steps that would be too time consuming arelikely to be skipped.Although model checking is fully automatic, applying model checking forthe analysis of communication protocols is not yet a systematic activity. Theability of quickly modeling a system at the \right" level of abstraction requirestraining, experience, and some knowledge of how model-checkers work: oversim-plifying the model of the system should be avoided in order to be able to detect

potential problems in the actual system, while abstracting enough irrelevant de-tails is needed in order to keep automatic veri�cation computationally tractable.Moreover, ingenuity and tenacity are often necessary for expressing interestingproperties (i.e., those that might reveal signi�cant errors) and for �ltering er-ror traces when looking for plausible scenarios (i.e, those that may occur in arealistic environment). In summary, veri�cation is and remains a discipline initself, even with the help of powerful veri�cation tools such as model-checkers.Therefore, we believe that the most promising and pragmatic way for introduc-ing formal veri�cation in existing development processes is by forming groups of\validation engineers" who are specially trained for this task.Another analysis of the Base Protocol can be found in [Hoo95]. It was carriedout by using an assertional method with the help of the interactive proof checkerincluded in the veri�cation system PVS [ORS92]. Hooman proved manually thatthe Base Protocol satis�es Property 1 and 2 provided that all the devices have adi�erent identi�cation string, that messages between base-protocol componentsare not bu�ered, and that whenever a component wants to transmit a messageover the I2C layer, this message is transmitted within a bounded amount oftime. If one of these (strong) assumptions is not satis�ed, no information aboutthe correctness of the protocol is provided. In contrast, our analysis was basedon a more detailed model, i.e., on weaker assumptions, and produced counter-examples violating Property 1 and 2. This enabled us to precisely identify thecauses of these errors, and to suggest implementable solutions for these problems.Finally, all counter-examples mentioned above and the proof of correctness ofour modi�ed model were produced automatically by SPIN.8 AcknowledgmentsWe wish to thank Didier Pirottin, who contributed to the results presented in thispaper. We are also grateful to Ron Koymans (Philips Research) for challengingus to analyze the ACCESS.busTM protocol and for fruitful discussions, and toMark Staskauskas for helpful comments on a preliminary version of this paper.References[ACC94] ACCESS.bus Industry Group. Access.bus speci�cations, version 2.2. 370Altair Way, Suite 215, Sunnyvale, California 94086, USA, 1994.[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�cation of�nite-state concurrent systems using temporal logic speci�cations. ACMTransactions on Programming Languages and Systems, 8(2):244{263, Jan-uary 1986.[CVWY90] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory e�-cient algorithms for the veri�cation of temporal properties. In Proc. 2ndWorkshop on Computer Aided Veri�cation, volume 531 of Lecture Notes inComputer Science, pages 233{242, Rutgers, June 1990.

[DDHY92] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol veri�ca-tion as a hardware design aid. In 1992 IEEE International Conferenceon Computer Design: VLSI in Computers and Processors, pages 522{525,Cambridge, MA, October 1992. IEEE Computer Society.[Eme90] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science. Elsevier/MIT Press, Amster-dam/Cambridge, 1990.[FGM+92] J.C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, andJ. Sifakis. A toolbox for the veri�cation of LOTOS programs. In Proc.of the 14th International Conference on Software Engineering ICSE'14,Melbourne, Australia, May 1992. ACM.[GH93] P. Godefroid and G. J. Holzmann. On the veri�cation of temporal prop-erties. In Proc. 13th IFIP WG 6.1 International Symposium on ProtocolSpeci�cation, Testing, and Veri�cation, pages 109{124, Li�ege, May 1993.North-Holland.[GPVW95] R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-y automaticveri�cation of linear temporal logic. In Protocol Speci�cation Testing andVeri�cation, pages 3{18, Warsaw, Poland, 1995. Chapman & Hall.[HK90] Z. Har'El and R. P. Kurshan. Software for analytical development of com-munication protocols. AT&T Technical Journal, 1990.[Hol91] G. J. Holzmann. Design and Validation of Computer Protocols. PrenticeHall, 1991.[Hoo95] J. Hooman. Verifying part of the ACCESS.bus protocol using PVS. Toappear in the Proceedings of Foundations of Software Technology and The-oretical Computer Science, December 1995.[Liu89] M.T. Liu. Protocol engineering. Advances in Computing, 29:79{195, 1989.[LP85] O. Lichtenstein and A. Pnueli. Checking that �nite state concurrent pro-grams satisfy their linear speci�cation. In Proceedings of the Twelfth ACMSymposium on Principles of Programming Languages, pages 97{107, NewOrleans, January 1985.[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and ConcurrentSystems: Speci�cation. Springer-Verlag, 1992.[ORS92] S. Owre, J. Rushby, and N. Shankar. PVS: A prototype veri�cation system.In Proc. 11th Conference on Automated Deduction, volume 607 of LectureNotes in Arti�cial Intelligence, pages 748{752. Springer-Verlag, 1992.[QS81] J.P. Quielle and J. Sifakis. Speci�cation and veri�cation of concurrent sys-tems in CESAR. In Proc. 5th Int'l Symp. on Programming, volume 137 ofLecture Notes in Computer Science, pages 337{351. Springer-Verlag, 1981.[Rud87] H. Rudin. Network protocols and tools to help produce them. AnnualReview of Computer Science, 2:291{316, 1987.[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automaticprogram veri�cation. In Proceedings of the First Symposium on Logic inComputer Science, pages 322{331, Cambridge, June 1986.
This article was processed using the LaTEX macro package with LLNCS style

