
Formal Methods in System Design, , ?{?? (1997)c 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.
Symbolic Veri�cation of CommunicationProtocols with In�nite State Spaces using QDDsBERNARD BOIGELOT* AND PATRICE GODEFROID**Abstract. We study the veri�cation of properties of communication protocols modeled by a�nite set of �nite-state machines that communicate by exchanging messages via unbounded FIFOqueues. It is well-known that most interesting veri�cation problems, such as deadlock detection,are undecidable for this class of systems. However, in practice, these veri�cation problems mayvery well turn out to be decidable for a subclass containing most \real" protocols.Motivated by this optimistic (and, we claim, realistic) observation, we present an algorithm thatmay construct a �nite and exact representation of the state space of a communication protocol,even if this state space is in�nite. Our algorithm performs a loop-�rst search in the state spaceof the protocol being analyzed. A loop-�rst search is a search technique that attempts to explore�rst the results of successive executions of loops in the protocol description (code). A new datastructure named Queue-content Decision Diagram (QDD) is introduced for representing (possiblyin�nite) sets of queue-contents. Operations for manipulating QDDs during a loop-�rst search arepresented.A loop-�rst search using QDDs has been implemented, and experiments on several communi-cation protocols with in�nite state spaces have been performed. For these examples, our toolcompleted its search, and produced a �nite symbolic representation for these in�nite state spaces.1. IntroductionState-space exploration is one of the most successful strategies for analyzing andverifying properties of �nite-state concurrent reactive systems. It proceeds by ex-ploring a global state graph representing the combined behavior of all concurrentcomponents in the system. This is done by recursively exploring all successor statesof all states encountered during the exploration, starting from a given initial state,by executing all enabled transitions in each state. The state graph that is exploredis called the state space of the system. Many di�erent types of properties of a sys-tem can be checked by exploring its state space: deadlocks, dead code, violationsof user-speci�ed assertions, etc. Moreover, the range of properties that state-spaceexploration techniques can verify has been substantially broadened during the lastdecade thanks to the development of model-checking methods for various temporallogics (e.g., [9, 19, 22, 27]).Veri�cation by state-space exploration has been studied by many researchers(cf. [17, 23]). The simplicity of the strategy lends itself to easy, and thus e�cient,implementations. Moreover, veri�cation by state-space exploration is fully auto-matic: no intervention of the designer is required. The main limit of state-space* \Aspirant" (Research Assistant) for the National Fund for Scienti�c Research (Belgium). Thework of this author was done in part while visiting Bell Laboratories.Correspondence to: Universit�e de Li�ege, Institut Monte�ore, B28, 4000 Li�ege Sart-Tilman, Bel-gium. Email: boigelot@monte�ore.ulg.ac.be.** Lucent Technologies { Bell Laboratories, 1000 E. Warrenville Road, Naperville, IL 60566,U.S.A. Email: god@bell-labs.com.

2exploration veri�cation techniques is the often excessive size of the state space.Obviously, this state-explosion problem is even more critical when the state spacebeing explored is in�nite.In contrast with the last observation, we show in this paper that veri�cationby state-space exploration is also possible for systems with in�nite state spaces.Speci�cally, we consider communication protocols modeled by a �nite set of �nite-state machines that communicate by exchanging messages via unbounded FIFOqueues. We present a state-space exploration algorithm for constructing a �nite andexact representation of the state space of such a communication protocol, even if itsstate space is in�nite. From this symbolic representation, it is then straightforwardto verify many properties of the protocol, such as the absence of deadlocks, whetheror not the number of messages stored in a queue is bounded, and the reachabilityof local and global states.Of course, given an arbitrary protocol, our algorithmmay not terminate its search.Indeed, it is well-known that unbounded queues can be used to simulate the tapeof a Turing machine, and hence that most interesting veri�cation problems areundecidable for this class of systems [8]. However, in practice, these veri�cationproblems may very well turn out to be decidable for a subclass containing most\real" protocols. To support this claim, properties of several communication pro-tocols with in�nite state spaces have been veri�ed successfully with the algorithmintroduced in this paper.In the next section, we formally de�ne communication protocols. Our algorithmperforms a loop-�rst search in the state space of the protocol being analyzed. Aloop-�rst search is a search technique that attempts to explore �rst the resultsof successive executions of loops in the protocol description (code). This searchtechnique is presented in Section 3. A new data structure, the Queue-contentDecision Diagram (QDD), is introduced in Section 4 for representing (possiblyin�nite) sets of queue-contents. Operations for manipulating QDDs during a loop-�rst search are presented in Section 5. A loop-�rst search using QDDs has beenimplemented, and experiments on several communication protocols with in�nitestate spaces are reported in Section 6. This paper ends with a comparison betweenour contributions and related work.2. Communicating Finite-State MachinesConsider a protocol modeled by a �nite set M of �nite-state machines that com-municate with each other by sending and receiving messages via a �nite set Q ofunbounded FIFO queues, modeling communication channels. Let Mi denote theset of messages that can be stored in queue qi, 1 � i � jQj. For notational con-venience, let us assume that the sets Mi are pairwise disjoint. Let Ci denote the�nite set of states of machine Mi, 1 � i � jMj.Formally, a protocol P is a tuple (C; c0; A;Q;M; T) where C = C1 � � � � � CjMjis a �nite set of control states, c0 2 C is an initial control state, A is a �nite set ofactions, Q is a �nite set of unbounded FIFO queues, M = [jQji=1Mi is a �nite set ofmessages, and T is a �nite set of transitions, each of which is a triple of the form

3(c1; op; c2) where c1 and c2 are control states, and op is a label of one of the formsqi!w, where qi 2 Q and w 2 M�i , qi?w, where qi 2 Q and w 2 M�i , or a, wherea 2 A.A transition of the form (c1; qi!w; c2) represents a change of the control statefrom c1 to c2 while appending the messages composing w to the end of queue qi.A transition of the form (c1; qi?w; c2) represents a change of the control state fromc1 to c2 while removing the messages composing w from the head of queue qi.A global state of a protocol is composed of a control state and a queue-content.A queue-content associates with each queue qi a sequence of messages from Mi.Formally, a global state , or simply a state, of a protocol is an element of the set C1�� � ��CjMj�M�1 �� � ��M�jQj. A global state = (c(1); c(2); : : : ; c(jMj); w(1); w(2);: : : ; w(jQj)) assigns to each �nite-state machine Mi a \local" (control) state c(i) 2Ci, and associates with each queue qj a sequence of messages w(j) 2 M�j whichrepresents the content of qj in the global state . The initial global state of thesystem is 0 = (c0(1); c0(2); : : : ; c0(jMj); "; : : : ; "), i.e., we assume that all queuesare initially empty.A global transition relation ! is a set of triples (; a; 0), where and 0 areglobal states, and a 2 A [f�g. Let a! 0 denote (; a; 0) 2 !. Relation ! isde�ned as follows:� if (c1; qi!w; c2) 2 T , then (c1(1); c1(2); : : : ; c1(jMj); w0(1); w0(2); : : : ; w0(jQj)) �!(c2(1); c2(2); : : : ; c2(jMj); w00(1); w00(2); : : : ; w00(jQj)) where w00(i) = w0(i)w andw00(j) = w0(j); j 6= i (the control state changes from c1 to c2 and w is appendedto the end of queue qi);� if (c1; qi?w; c2) 2 T , then (c1(1); c1(2); : : : ; c1(jMj); w0(1); w0(2); : : : ; w0(jQj)) �!(c2(1); c2(2); : : : ; c2(jMj); w00(1); w00(2); : : : ; w00(jQj)) where w0(i) = ww00(i) andw00(j) = w0(j); j 6= i (the control state changes from c1 to c2 and w is removedfrom the head of queue qi);� if (c1; a; c2) 2 T , then (c1(1); c1(2); : : : ; c1(jMj); w0(1); w0(2); : : : ; w0(jQj)) a!(c2(1); c2(2); : : : ; c2(jMj); w00(1); w00(2); : : : ; w00(jQj)) with w00(i) = w0(i), for all1 � i � jQj (the control state changes from c1 to c2 while the action a isperformed).A global state 0 is said to be reachable from another global state if there existsa sequence of global transitions (i�1; ai; i), 1 � i � n, such that = 0 a1!1 � � � n�1 an! n = 0. The global state space of a system is the (possibly in�nite)set of all states that are reachable from the initial global state 0.Example: As an example of communication protocol, consider the well-knownAlternating-Bit Protocol [6]. This protocol can be modeled by two �nite-statemachines Sender and Receiver that communicate via two unbounded FIFO queuesStoR (used to transmit messages from the Sender to the Receiver) and RtoS (usedto transmit acknowledgments from the Receiver to the Sender).Precisely, the Alternating-Bit Protocol is modeled by the protocol (C; c0; A;Q;M;T) where C = CSender � CReceiver , where CSender = f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g

4
2 3

4

5

678

9

10

1 1

2

3 4

5

6

78

RtoS?ack0

RtoS?ack1 StoR!msg0

timeout

StoR!msg0

SndStoR!msg1

Snd StoR!msg0

RtoS?ack1

StoR!msg1 RtoS?ack0

timeout

StoR!msg1

StoR?msg0

StoR?msg1 RtoS!ack1

RtoS!ack0

RcvRcv

StoR?msg1RtoS!ack1

StoR?msg0RtoS!ack0

SENDER RECEIVERFigure 1. Alternating-Bit Protocoland CReceiver = f1; 2; 3; 4; 5; 6; 7; 8g; c0 = (1; 1); A = fSnd;Rcv; timeoutg; Q =fStoR;RtoSg; M = MStoR [MRtoS , where MStoR = fmsg0;msg1g and MRtoS =fack0; ack1g; and T contains the transitions ((s1; r1); op; (s2; r2)) where either r1 =r2 and (s1; op; s2) is a transition in the Sender machine of Figure 1, or s1 = s2 and(r1; op; r2) is a transition in the Receiver machine of Figure 1. The action Snd mod-els a request to the Sender, coming from a higher-level application, to transmit datato the Receiver side. The actual data that are transmitted are not modeled, onlymessage numbers msg0 and msg1 are transmitted over the queues. Similarly, theaction Rcv models the transmission of data received by the Receiver to a higher-levelapplication. The actions labeled by timeout model the expiration of timeouts.3. Loop-First SearchAll state-space exploration techniques are based on a common principle: theyspread the reachability information along the transitions of the system to be ana-lyzed. The exploration process starts with the initial global state of the system, andtries at every step to enlarge its current set of reachable states by propagating thesestates through transitions. The process terminates when a stable set is reached.In order to use the above state-space exploration paradigm for verifying propertiesof systems with in�nite state spaces, two basic problems need to be solved: oneneeds a representation for in�nite sets of states, as well as a search technique thatcan explore an in�nite number of states in a �nite amount of time.

5In the context of the veri�cation of communication protocols as de�ned in theprevious section, our solution to the �rst problem is to represent the control partexplicitly and the queue-contents \symbolically". Speci�cally, we will use specialdata structures for representing (possibly in�nite) sets of queue-contents associatedwith reachable control states.To solve the second problem, we will use these data structures for simultaneouslyexploring (possibly in�nite) sets of global states rather than individual global states.This may make it possible to reach a stable representation of the set of reachableglobal states, even if this set is in�nite. In order to simultaneously generate setsof reachable states from a single reachable state, meta-transitions [7] can be used.Given a loop that appears in the protocol description and a control state c in thatloop, a meta-transition is a transition that generates all global states that can bereached after repeated executions of the body of the loop. By de�nition, all theseglobal states have the same control state c.The classical enumerative state-space exploration algorithm can then be rewrittenin such a way that it works with sets of global states, i.e., pairs of the form hcontrolstate, data structurei, rather than with individual states. Initially, the searchstarts from an initial global state. At each step during the search, whenever meta-transitions are executable, they are explored �rst, which is a heuristic aimed atgenerating many reachable states as quickly as possible. This is why we call such asearch a loop-�rst search. The search terminates if the representation of the set ofreachable states stabilizes. This happens when, for every control state, every newdeducible queue-content is included in the current set of queue-contents associatedwith that control state. At this moment, the �nal set of pairs hcontrol state, datastructurei represents exactly the state space of the protocol being analyzed.In order to apply the veri�cation method described above, we need to de�ne a datastructure for representing (possibly in�nite) sets of queue-contents, and algorithmsfor manipulating these data structures. Speci�cally, whenever a transition or ameta-transition is executed from a pair hcontrol state, data structurei during a loop-�rst search, the new pair hcontrol state, data structurei obtained after the executionof this (meta-)transition has to be determined. Therefore, from any given such datastructure, one needs to be able to compute a new data structure representing thee�ect of sending messages to a queue (qi!w) and receiving messages from a queue(qi?w), as well as the result of executing frequent types of meta-transitions, suchas repeatedly sending messages on a queue ((qi!w)�), repeatedly receiving messagesfrom a queue ((qi?w)�), and repeatedly receiving the sequence of messages w1 froma queue qi followed by sending another sequence of messages w2 on another queueqj , i 6= j, ((qi?w1; qj !w2)�). Finally, basic operations on sets are also needed, suchas checking if a set of queue-contents is included in another set, and computing theunion of two sets of queue-contents.4. Queue-content Decision DiagramsQueue-content Decision Diagrams (QDDs) are data structures that satisfy all theconstraints listed in the previous section. A QDD is a special type of �nite-state

6automaton on �nite words. A �nite-state automaton on �nite words is a tupleA = (�; S;�; s0; F), where � is an alphabet (�nite set of symbols), S is a �nite setof states, � � S� (�[f"g)�S is a transition relation (" denotes the empty word),s0 2 S is the initial state, and F � S is a set of accepting states. A transition(s; a; s0) is said to be labeled by a. A �nite sequence (word) w = a1a2 : : : an ofsymbols in � is accepted by the automaton A if there exists a sequence of states� = s0 : : : sn such that 81 � i � n : (si�1; ai; si) 2 �, and sn 2 F . The set ofwords accepted by A is called the language accepted by A, and is denoted by L(A).Let us de�ne the projection wjMi of a word w on a set Mi as the subsequence of wobtained by removing all symbols in w that are not in Mi. An automaton is saidto be deterministic if it does not contain any transition labeled by the empty word,and if for each state, all the outgoing transitions are labeled by di�erent symbols.Precisely, QDDs are de�ned as follows.De�nition 1. A QDD A for a protocol P is a deterministic �nite-state automaton(M;S;�; s0; F) on �nite words such that8w 2 L(A) : w = wjM1wjM2 : : : wjMn :A QDD is associated with each control state reached during a loop-�rst search,and represents a set of possible queue-contents for this control state. Each wordw accepted by a QDD de�nes one queue-content wjMi for each queue qi in theprotocol.By De�nition 1, a total order < is implicitly de�ned on the set Q of all queuesqi in the protocol such that, for all QDDs for this protocol, transitions labeledby messages in Mi always appear before transitions labeled by messages in Mj ifi < j. Therefore, for all QDDs for a protocol, a given queue-content can only berepresented by one unique word. In other words, De�nition 1 implicitly de�nes a\canonical" representation for each possible queue-content. Note that this does notimply that QDDs are canonical representations for sets of queue-contents.5. Operations on QDDsStandard algorithms on �nite-state automata on �nite words can be used for check-ing if the language accepted by a QDD is included in the language accepted byanother QDD, for computing the union of QDDs, etc. (e.g., see [18]). In what fol-lows, A1 [A2 will denote an automaton that accepts the language L(A1) [L(A2),while DETERMINIZE(A) will denote a deterministic automaton that accepts thelanguage L(A). We will write \Add (s; w; s0) to �" to mean that transitions(si�1; ai; si), 1 � i � n, such that w = a1a2 : : : an, s0 = s, sn = s0, and si; 1 � i < n,are new (fresh) states, are added to �.We now describe how to perform the other basic operations on QDDs listed inSection 3.Let A be the QDD associated with a given control state c. Let L(A) denotethe language accepted by A, and let Lop(A) denote the language that has to be

7SEND(queue id i, word w, QDD (M;S;�; s0; F)) fFor all states s 2 S such that9w0 2 ([ij=1Mj)� : s0 w0) s,do the following operations:� Add a new state s0 to S;� For all transitions t = (s;m; s00) 2 � such that m 2Mj ; j > i:Replace t by (s0;m; s00);� For all transitions t = (s00;m; s) 2 � such that m 2Mj ; j > i:Replace t by (s00;m; s0);� Add (s; w; s0) to �;� If s 2 F , add s0 to F , and remove s from F ;Return DETERMINIZE((M;S;�; s0; F)).gRECEIVE(queue id i, word w, QDD (M;S;�; s0; F)) fFor all states s 2 S such that9w0 2 ([i�1j=1Mj)� : s0 w0) s,do the following operations:� Add a new state s0 to S;� For all transitions t = (s;m; s00) 2 � such that m 2Mj ; j � i:Replace t by (s0;m; s00);� For all transitions t = (s00;m; s) 2 � such that m 2Mj ; j � i:Replace t by (s00;m; s0);� For all states s00 2 S such that s0 w) s00:Add a transition (s; "; s00) to �;� If s 2 F , add s0 to F , and remove s from F ;Return DETERMINIZE((M;S;�; s0; F)).gFigure 2. qi!w and qi?wassociated with the control state c0 reached after the execution of a transition(c; op; c0) from the control state c, with op 2 fqi!w; qi?wg. We have the following:� Lqi!w(A) = fw00j9w0 2 L(A) : w00jMi = w0jMiw ^ 8j 6= i : w00jMj = w0jMjg;� Lqi?w(A) = fw00j9w0 2 L(A) : w0jMi = ww00jMi ^ 8j 6= i : w00jMj = w0jMjg:Algorithms for computing a QDD A0 that accepts all possible queue-contentsobtained after the execution of a transition of the form qi!w or qi?w on a QDD

8A = (M;S;�; s0; F) are given in Figure 2. The correctness of these algorithms isestablished by the following two theorems.Theorem 1 Let A be a QDD, let A0 denote the automaton returned by SEND(i,w, A), and let L(A0) denote the language accepted by A0. Then A0 is a QDD suchthat L(A0) = Lqi!w(A).Proof: See Appendix.Theorem 2 Let A be a QDD, let A0 denote the automaton returned by RECEIVE(i,w, A), and let L(A0) denote the language accepted by A0. Then A0 is a QDD suchthat L(A0) = Lqi?w(A).Proof: See Appendix.We now consider the meta-transitions discussed in Section 3. The operation(qi!w)� denotes the union of all possible queue-contents obtained after sending ksequences of messages w 2 M�i to the queue qi of the system, for all k � 0. Theoperation (qi?w)� denotes the union of all possible queue-contents obtained afterreceiving k sequences of messages w 2 M�i from the queue qi of the system, forall k � 0. The operation (qi?w1; qj !w2)� denotes the union of all possible queue-contents obtained after receiving k sequences of messages w1 2M�i from the queueqi and sending k sequences of messages w2 2M�j to the queue qj , for all k � 0, andfor i 6= j.Let A be the QDD associated with a given control state c. Let L(A) denotethe language accepted by A, and let Lop(A) denote the language that has to beassociated with the control state c reached after the execution of a meta-transition(c; op; c) with op 2 f(qi!w)�; (qi?w)�; (qi?w1; qj !w2)�g. We have the following:� L(qi!w)�(A) = fw00j9w0 2 L(A); k � 0 : w00jMi = w0jMiwk ^ 8j 6= i : w00jMj =w0jMjg;� L(qi?w)�(A) = fw00j9w0 2 L(A); k � 0 : w0jMi = wkw00jMi ^ 8j 6= i : w00jMj =w0jMjg;� L(qi?w1;qj !w2)�(A) = fw00j9w0 2 L(A); k � 0 : w0jMi = wk1w00jMi ^ w00jMj =w0jMjwk2 ^ 8l 62 fi; jg : w00jMl = w0jMlg:Algorithms for computing a QDD A0 that accepts all possible queue-contentsobtained after the execution of a meta-transition of the form (qi!w)�, (qi?w)�, or(qi?w1; qj !w2)� on a QDD A = (M;S;�; s0; F) are given in Figures 3 and 4. Thecorrectness of these algorithms is established by the following theorems.Theorem 3 Let A be a QDD, let A0 denote the automaton returned by SEND-STAR(i, w, A), and let L(A0) denote the language accepted by A0. Then A0 is aQDD such that L(A0) = L(qi!w)�(A).Proof: See Appendix.

9
SEND-STAR(queue id i, word w, QDD (M;S;�; s0; F)) fFor all states s 2 S such that9w0 2 ([ij=1Mj)� : s0 w0) s,do the following operations:� Add two new states s0 and s00 to S;� For all transitions t = (s;m; s000) 2 � such that m 2Mj ; j > i:Replace t by (s00;m; s000);� For all transitions t = (s000;m; s) 2 � such that m 2Mj ; j > i:Replace t by (s000;m; s00);� Add (s; "; s0), (s0; "; s00) and (s0; w; s0) to �;� If s 2 F , add s00 to F ;Return DETERMINIZE((M;S;�; s0; F)).gRECEIVE-STAR(queue id i, word w, QDD (M;S;�; s0; F)) fFor all states s 2 S such that9w0 2 ([i�1j=1Mj)� : s0 w0) s,do the following operations:� Add a new state s0 to S;� For all transitions t = (s;m; s00) 2 � such that m 2Mj ; j � i:Replace t by (s0;m; s00);� For all transitions t = (s00;m; s) 2 � such that m 2Mj ; j � i:Replace t by (s00;m; s0);� For all states s00 2 S such that 9w0 2 fwg� : s0 w0) s00:Add a transition (s; "; s00) to �;� If s 2 F , add s0 to F ;Return DETERMINIZE((M;S;�; s0; F)).gFigure 3. (qi!w)� and (qi?w)�

10

RECEIVE-SEND-STAR(queue id i, word w1, queue id j, word w2, QDD (M;S;�; s0; F)) fLet n be the greatest integer such that9s1; : : : sn+1 2 S : s1 w1) s2 w1) � � � w1) sn+1;with 81 � k < l � n + 1 : sk 6= sl;Let A0 denote the QDD (M;S;�; s0; F);For all k, 1 � k � n+ 1, compute Ak = SEND(j; w2, RECEIVE(i; w1; Ak�1));If L(An+1) = ;:� Return DETERMINIZE([nk=0Ak);If L(An+1) 6= ;:� Let p = 1;� While L(An+1) 6= L(RECEIVE(i; wp1 ; An+1)):p := p+ 1;� For all k, 2 � k � p, compute An+k = SEND(j; w2, RECEIVE(i;w1; An+k�1));� Compute An+p+1 =SEND-STAR(j;wp2 ; DETERMINIZE([n+pk=n+1Ak));� Return DETERMINIZE([n+p+1k=0 Ak).gFigure 4. (qi?w1; qj !w2)�

11Theorem 4 Let A be a QDD, let A0 denote the automaton returned by RECEIVE-STAR(i, w, A), and let L(A0) denote the language accepted by A0. Then A0 is aQDD such that L(A0) = L(qi?w)�(A).Proof: See Appendix.Lemma 1 Let n and An+1 be as de�ned in the algorithm RECEIVE-SEND-STAR(i;w1; j; w2; A), with i 6= j. If the language accepted by An+1 is not empty, then thereexists p such that 0 < p � (n+ 1)!, and L(An+1) = L(RECEIVE(i; wp1 ; An+1)).Proof: See Appendix.Theorem 5 Let A be a QDD, let A0 denote the automaton returned by RECEIVE-SEND-STAR(i, w1, j, w2, A), , with i 6= j, and let L(A0) denote the languageaccepted by A0. Then A0 is a QDD such that L(A0) = L(qi?w1;qj !w2)�(A).Proof: See Appendix.It is worth noticing that, as a corollary of the last theorem, we have that thelanguage L(qi?w1;qj !w2)�(A) is regular.6. Experimental ResultsConsider again the Alternating-Bit protocol of Example . Meta-transitions areadded to the protocol description for loops that match either (qi!w)�, (qi?w)�, or(qi?w1; qj !w2)�. Precisely, the meta-transitions (3; (RtoS?ack1;StoR!msg0)�; 3),(3; (StoR!msg0)�; 3), (8; (RtoS?ack0;StoR!msg1)�; 8) and (8; (StoR!msg1)�; 8) areadded to the set of transitions of Sender, and the meta-transitions (1; (StoR?msg1;RtoS!ack1)�; 1) and (5; (StoR?msg0;RtoS!ack0)�; 5) are added to the set of tran-sitions of Receiver.We have implemented (in C) a \QDD-package" containing an implementation ofthe algorithms for manipulating QDDs described in the previous section, and wehave combined it with a loop-�rst search. Starting with the control state (1; 1) andthe QDD (M; fs0g; fg; s0; fs0g), which corresponds to the queue-content " for bothqueues StoR and RtoS, the execution of the loop-�rst search for the Alternating-Bitprotocol terminates after 5.9 seconds of computation on a SPARC10 workstation.The number of (meta-)transitions executed is 331. The largest QDD constructedduring the search contains 21 states, and 52 control states are reachable from theinitial state.Many properties can be checked on the symbolic representation of the state spaceof the protocol obtained at the end of the search. For instance, it is then straight-forward to prove that the protocol does not contain any deadlocks, that there arereachable control states where the number of messages in a queue is unbounded,that messages are always delivered in the correct order, etc.Our tool has also been tested on several variants of the Alternating-Bit protocol,where the transitions labeled by \timeout" are removed from the protocol descrip-

12tion, where the Sender/Receiver have various number of control states, etc. Aninteresting variant is the case where queues may lose messages (to model unreli-able transmission media). In order to handle this case, it is su�cient to de�ne oneadditional algorithm SEND-LOSSY(i, w, A), that merely returns A[SEND(i, w,A). We also performed experiments on several simple sliding-window protocols [26],with various window sizes. For all these examples with in�nite state spaces (morethan 20 in total), our tool was able to successfully terminate its search within afew minutes of computation. This shows that, at least for this particular thoughimportant class of examples, our veri�cation method is very useful and robust.7. Comparison with Other Work and ConclusionsAlthough most veri�cation problems are undecidable for arbitrary protocols mod-eled by communicating �nite-state machines, decision procedures have been ob-tained for the veri�cation of speci�c properties for limited sub-classes [2, 3, 10, 11,12, 13, 15, 16, 24, 25]. These sub-classes do not cover, e.g., the Alternating-BitProtocol and the properties discussed in the previous section, which were easilyveri�ed using a loop-�rst search and QDDs.Clearly, a necessary, but not su�cient, condition for the termination of our al-gorithm is that, for all reachable control states of the protocol, the language ofqueue-contents associated with that control state can be represented by a QDD.The class of protocols characterized by the above necessary condition is equivalentto the class of protocols for which, for each reachable control state of the protocol,the set of possible queue-contents can be described by a recognizable expression(i.e., a �nite union of Cartesian products of regular expressions). Indeed, it can beshown that any recognizable language can be represented by a QDD, and that anyset of queue-contents represented by a QDD is a recognizable language.In [20], it is pointed out that several veri�cation problems are decidable for theabove class of protocols. However, no method is given for constructing a recogniz-able expression representing all possible queue-contents for each control state of theprotocol. Actually, from [11], it is easy to show that an algorithm for constructingsuch recognizable expressions, for any protocol in the class de�ned above, cannotexist. In contrast, our contribution is to provide a practical algorithm which is ableto compute such a representation for protocols in the above class, although not forall of them { this is impossible anyway.In this paper, we have presented algorithms on QDDs for computing the e�ectof executing three frequent types of meta-transitions. These algorithms were su�-cient for analyzing the protocols considered in the previous section. However, it ispossible to design algorithms on QDDs for other types of meta-transitions as well.Interesting future work is to characterize precisely the set of meta-transitions thatpreserve recognizability and to provide a generic algorithm for computing the e�ectof the execution of any meta-transition in this class. These topics will be addressedin a forthcoming paper.In [21], a veri�cation method based on data-ow analysis is used to generate \owequations" from the description of a set of communicating �nite-state machines. By

13computing approximations of solutions for these equations, it is possible to showthat the original system is free of certain types of errors. In contrast, our algorithmis able to produce an exact representation of the state space of the protocol beinganalyzed. This enables us not only to prove the absence of errors, but also todetect errors and to exhibit to the user sequences of transitions that lead to errors.Note that, obviously, approximations could also be used in our framework, e.g., forsimplifying QDDs when they become too complex, or when the search does notseem to stop. For the examples we have considered so far, no approximations werenecessary.The idea of representing states partly explicitly (control part) and partly symbol-ically (data part) already appeared in [1] for the veri�cation of real-time systems,where dense-time domains are represented by polyhedra. This idea also appearedin [7], where the values of integer variables are represented by periodic vector sets.These symbolic representations are quite di�erent from QDDs.For digital hardware veri�cation [4], the most commonly used symbolic repre-sentation is certainly the Binary Decision Diagram (BDD) [5], which representsa boolean function (with a �nite domain) as a directed acyclic graph. In [14],it is shown how QDDs can be combined with BDDs to improve the e�ciency ofclassical BDD-based symbolic model-checking methods for verifying properties ofcommunication protocols with large �nite state spaces.AcknowledgmentsWe wish to thank Michael Merritt and Mark Staskauskas for helpful comments ona preliminary version of this paper.References1. R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Information andComputation, 104(1):2{34, May 1993.2. P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. In Proceedingsof the 8th IEEE Symposium on Logic in Computer Science, 1993.3. P. A. Abdulla and B. Jonsson. Undecidable veri�cation problems for programs with unreliablechannels. In Proc. ICALP-94, volume 820 of Lecture Notes in Computer Science, pages 316{327. Springer-Verlag, 1994.4. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model check-ing: 1020 states and beyond. In Proceedings of the 5th Symposium on Logic in ComputerScience, pages 428{439, Philadelphia, June 1990.5. R.E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACMComputing Surveys, 24(3):293{318, 1992.6. K. Bartlett, R. Scantlebury, and P. Wilkinson. A note on reliable full-duplex transmissionsover half-duplex lines. Communications of the ACM, 2(5):260{261, 1969.7. B. Boigelot and P. Wolper. Symbolic veri�cation with periodic sets. In Proc. 6th Conferenceon Computer Aided Veri�cation, volume 818 of Lecture Notes in Computer Science, pages55{67, Stanford, June 1994. Springer-Verlag.8. D. Brand and P. Za�ropulo. On communicating �nite-state machines. Journal of the ACM,2(5):323{342, 1983.9. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�cation of �nite-state concurrentsystems using temporal logic speci�cations. ACM Transactions on Programming Languagesand Systems, 8(2):244{263, January 1986.

1410. A. Choquet and A. Finkel. Simulation of linear FIFO nets having a structured set of terminalmarkings. In Proc. 8th European Workshop on Application and Theory of Petri Nets, pages95{112, Saragoza, 1987.11. G. C�ec�e, A. Finkel, and S. Purushothaman. Unreliable channels are easier to verify thanperfect channels. Information and Computation, 124(3):20{31, 1996.12. A. Finkel. A new class of analyzable cfsms with unbounded FIFO channels. In Proc. 8thIFIP WG 6.1 International Symposium on Protocol Speci�cation, Testing, and Veri�cation,pages 1{12, Atlantic City, 1988. North-Holland.13. M. G. Gouda, E. M. Gurari, T. H. Lai, and L. E. Rosier. On deadlock detection in systemsof communicating �nite-state machines. Computers and Arti�cial Intelligence, 6(3):209{228,1987.14. P. Godefroid and D. E. Long. Symbolic Protocol Veri�cation with Queue BDDs. In Pro-ceedings of the 11th IEEE Symposium on Logic in Computer Science, New Brunswick, July1996.15. T. J�eron. Testing for unboundedness of FIFO channels. In Proc. STACS-91: Symposium onTheoretical Aspects of Computer Science, volume 480 of Lecture Notes in Computer Science,pages 322{333, Hamburg, 1991. Springer-Verlag.16. R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer and SystemSciences, 3(2):147{195, 1969.17. M.T. Liu. Protocol engineering. Advances in Computing, 29:79{195, 1989.18. H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation. PrenticeHall, 1981.19. O. Lichtenstein and A. Pnueli. Checking that �nite state concurrent programs satisfy theirlinear speci�cation. In Proceedings of the Twelfth ACM Symposium on Principles of Pro-gramming Languages, pages 97{107, New Orleans, January 1985.20. J. K. Pachl. Protocol description and analysis based on a state transition model with channelexpressions. In Proc. 7th IFIP WG 6.1 International Symposium on Protocol Speci�cation,Testing, and Veri�cation. North-Holland, 1987.21. W. Peng and S. Purushothaman. Data ow analysis of communicating �nite state machines.ACM Transactions on Programming Languages and Systems, 13(3):399{442, 1991.22. J.P. Quielle and J. Sifakis. Speci�cation and veri�cation of concurrent systems in CESAR. InProc. 5th Int'l Symp. on Programming, volume 137 of Lecture Notes in Computer Science,pages 337{351. Springer-Verlag, 1981.23. H. Rudin. Network protocols and tools to help produce them. Annual Review of ComputerScience, 2:291{316, 1987.24. L. E. Royer and H. C. Yen. Boundedness, empty channel detection and synchronization forcommunicating �nite automata. Theoretical Computer Science, 44:69{105, 1986.25. A. P. Sistla and L. D. Zuck. Automatic temporal veri�cation of bu�er systems. In Proc.3rd Workshop on Computer Aided Veri�cation, volume 575 of Lecture Notes in ComputerScience, pages 93{103, Aalborg, July 1991. Springer-Verlag.26. A. Tanenbaum. Computer Neworks. Prentice Hall, 1989.27. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program veri�ca-tion. In Proceedings of the First Symposium on Logic in Computer Science, pages 322{331,Cambridge, June 1986.

15AppendixCorrectness ProofsTheorem 3 Let A be a QDD, let A0 denote the automaton returned by SEND(i,w, A), and let L(A0) denote the language accepted by A0. Then A0 is a QDD suchthat L(A0) = Lqi!w(A).Proof:� Let us prove �rst that Lqi!w(A) � L(A0). Let u be a word in L(A). Hence,there exists a path � = s0 m0! s1 m1! � � � mn�1! sn in A accepting u. Sinceu = ujM1 � � �ujMN , � contains exactly one state sl such that 8k < l : mk 2[ij=1Mj and 8k � l : mk 2 [Nj=i+1Mj . Therefore, sl is a state \s" thatsatis�es the condition in line 3 of the algorithm, and the algorithm replaces thetransition (sl;ml; sl+1) (if any) by (s0;ml; sl+1), where the state s0 is a new stateadded by the algorithm. Moreover, the algorithm also adds (sl; w; s0) to the setof transitions of A. Since all sequences of transitions labeled by a symbol in[Nj=i+1Mj are preserved in A0 (a new state s0 is associated to every intermediatestate s that satis�es the condition in line 3, and all the incoming (outgoing)transitions to (resp. from) s labeled by a symbol in [Nj=i+1Mj are mapped totransitions of same label to (resp. from) s0), before being determinized, theresulting automaton contains the path �0 = s0 m0! � � � ml�1! sl w! s0 ml! s0l+1 ml+1!� � � mn�1! s0n. In the case where ml�1 is the last transition of �, sl is accepting inA, and is replaced by s0 in the set of accepting states of A0. In any case, the path�0 is accepting, and the automaton A0 accepts ujM1 � � �ujMiwujMi+1 � � �ujMN .� Now, we show that L(A0) � Lqi!w(A). Let u be a word in L(A0), and let A00 bethe automaton obtained before the determinization operation giving A0. Sincethe automata A0 and A00 accept the same language, u 2 L(A00) and there existsa path � of A00 accepting u. Let us show that � is of the form �1(s; w; s0)�2,where �1 is composed only of transitions labeled by a symbol in [ij=1Mj while�2 is composed only of transitions labeled by a symbol in [Nj=i+1Mj .Since �1 leads from s0 to s and is composed of transitions labeled by a symbolin [ij=1Mj , state s satis�es the condition on line 3 of the algorithm, and hencecannot be accepting in A00. Moreover, there exists a transition (s; w; s0) in A00added by the algorithm (at line 10). Since the algorithm does not perform anymodi�cation on transitions labeled by a symbol in [ij=1Mj , all the transitions of�1 are transitions in A. Since all sequences of transitions labeled by a symbol in[Nj=i+1Mj are preserved in A0 (a new state s0 is associated to every intermediatestate s that satis�es the condition in line 3, and all the incoming (outgoing)transitions to (resp. from) s labeled by a symbol in [Nj=i+1Mj are mapped totransitions of same label to (resp. from) s0), there exists in A a path �02 from scorresponding to the same sequence of transitions as in �2. Since the last stateof �2 is accepting in A00, the last state of �02 is accepting in A. Thus, the wordv such that 8k 6= i : vjMk = ujMk and vjMiw = ujMi , is accepted by A.

16
Theorem 4 Let A be a QDD, let A0 denote the automaton returned by RECEIVE(i,w, A), and let L(A0) denote the language accepted by A0. Then A0 is a QDD suchthat L(A0) = Lqi?w(A).Proof:� Let us prove �rst that Lqi?w(A) � L(A0). Let u = u1wu2 be a word in L(A),with u1 (resp. u2) only composed of symbols in [i�1j=1Mj (resp. [Nj=iMj). Thereexists a path � = s0 m0! s1 m1! � � � mn�1! sn in A accepting u. Since u =ujM1 � � �ujMN , � contains exactly one state sl such that 8k < l : mk 2 [i�1j=1Mjand 8k � l : mk 2 [Nj=iMj . Therefore, sl is a state \s" that satis�es thecondition in line 3 of the algorithm, and the algorithm replaces the transition(sl;ml; sl+1) by (s0;ml; sl+1), where the state s0 is a new state added by thealgorithm. Moreover, it follows from the de�nition of u that � contains exactlyone state sp such that sl w) sp. The state sp satis�es the condition at line 10 ofthe algorithm, hence the algorithm adds (s; "; sp) to the set of transitions of A.Since all sequences of transitions labeled by a symbol in [Nj=iMj are preservedin A0 (a new state s0 is associated to every intermediate state s that satis�es thecondition in line 3, and all the incoming (outgoing) transitions to (resp. from)s labeled by a symbol in [Nj=iMj are mapped to transitions of same label to(resp. from) s0), before being determinized, the resulting automaton containsthe path �0 = s0 m0! � � � ml�1! sl "! sp mp! s0p+1 � � � mn�1! s0n. Since the path �0 isaccepting, the automaton A0 accepts the word u1u2.� Now, we show that L(A0) � Lqi?w(A). Let u be a word in L(A0), and let A00 bethe automaton obtained before the determinization operation giving A0. Sincethe automata A0 and A00 accept the same language, u 2 L(A00) and there existsa path � of A00 accepting u. Let us show that � is of the form �1�2, where�1 is composed only of transitions labeled by a symbol in [i�1j=1Mj while �2 iscomposed only of transitions labeled by a symbol in [Nj=iMj .Since �1 leads from s0 to s and is composed of transitions labeled by a symbolin [i�1j=1Mj , state s satis�es the condition on line 3 of the algorithm, and hencecannot be accepting in A00. Moreover, the only outgoing transition from s notlabeled by a symbol in [i�1j=1Mj can only be a transition (s; "; s00) added bythe algorithm (at line 11), with s w) s00 in A. Since the algorithm does notperform any modi�cation on transitions labeled by a symbol in [i�1j=1Mj , all thetransitions of �1 are transitions in A. Since all sequences of transitions labeledby a symbol in [Nj=iMj are preserved in A0 (a new state s0 is associated to everyintermediate state s that satis�es the condition in line 3, and all the incoming(outgoing) transitions to (resp. from) s labeled by a symbol in [Nj=iMj aremapped to transitions of same label to (resp. from) s0), there exists in A a path�02 from s00 corresponding to the same sequence of transitions as in �2. Since the

17last state of �2 is accepting in A00, the last state of �02 is accepting in A. Thus,the word v such that 8k 6= i : vjMk = ujMk and vjMi = wujMi , is accepted byA.Theorem 5 Let A be a QDD, let A0 denote the automaton returned by SEND-STAR(i, w, A), and let L(A0) denote the language accepted by A0. Then A0 is aQDD such that L(A0) = L(qi!w)�(A).Proof:� Let us prove �rst that L(qi!w)�(A) � L(A0). Let u be a word in L(A). Hence,there exists a path � = s0 m0! s1 m1! � � � mn�1! sn in A accepting u. Since u =ujM1 � � �ujMN , � contains exactly one state sl such that 8k < l : mk 2 [ij=1Mjand 8k � l : mk 2 [Nj=i+1Mj . Therefore, sl is a state \s" that satis�es thecondition in line 3 of the algorithm, and the algorithm replaces the transition(sl;ml; sl+1) (if any) by by (s00;ml; sl+1), where the state s00 is a new stateadded by the algorithm. Moreover, the algorithm also creates another newstate s0 and adds the transitions (sl; "; s0), (s0; "; s00) and (s0; w; s0) to the setof transitions of A. Since all sequences of transitions labeled by a symbol in[Nj=i+1Mj are preserved in A0 (a new state s00 is associated to every intermediatestate s that satis�es the condition in line 3, and all the incoming (outgoing)transitions to (resp. from) s labeled by a symbol in [Nj=i+1Mj are mappedto transitions of same label to (resp. from) s00), before being determinized,the resulting automaton contains the path �0 = s0 m0! � � � ml�1! sl "! s0 "!s00 ml! s0l+1 ml+1! � � � mn�1! s0n. In the case where ml�1 is the last transition of�, sl is accepting in A, and is replaced by s00 in the set of accepting states ofA0. In any case, the path �0 is accepting. Let k � 0 be an arbitrary integer.Since the set of transitions of A0 contains the transition (s0; w; s0), the path�0k = s0 m0! � � � ml�1! sl "! s0 wk! s0 "! s00 ml! s0l+1 ml+1! � � � mn�1! s0n is also anaccepting path of A0. It follows that for any k � 0, the automaton A0 acceptsujM1 � � �ujMiwkujMi+1 � � �ujMN .� Now, we show that L(A0) � L(qi!w)�(A). Let u be a word in L(A0), and letA00 be the automaton obtained before the determinization operation giving A0.Since the automata A0 and A00 accept the same language, u 2 L(A00) andthere exists a path � of A00 accepting u. Let us show that � is of the form�1 or �1(s; "; s0)(s0; w; s0)k(s0; "; s00)�2, where �1 is composed only of transitionslabeled by a symbol in [ij=1Mj , �2 is composed only of transitions labeled bya symbol in [Nj=i+1Mj , and k � 0.Since �1 leads from s0 to s and is composed of transitions labeled by a symbolin [ij=1Mj , state s satis�es the condition on line 3 of the algorithm. Moreover,there exist transitions (s; "; s0), (s0; w; s0) and (s0; "; s00) added by the algorithm

18 (at line 10). Since the algorithm does not perform any modi�cation on transi-tions labeled by a symbol in [ij=1Mj , all the transitions of �1 are transitionsin A. Moreover, if �1 is an accepting path in A00, then it is also an acceptingpath in A. Hence, if � = �1, then u 2 L(A). Let us assume now that � 6= �1.Since all sequences of transitions labeled by a symbol in [Nj=i+1Mj are preservedin A0 (a new state s00 is associated to every intermediate state s that satis�esthe condition in line 3, and all the incoming (outgoing) transitions to (resp.from) s labeled by a symbol in [Nj=i+1Mj are mapped to transitions of samelabel to (resp. from) s00), there exists in A a path �02 from s corresponding tothe same sequence of transitions as in �2. Since the last state of �2 is accept-ing in A00, the last state of �02 is accepting in A. Thus, the word v such that8j 6= i : vjMj = ujMj and vjMiwk = ujMi , is accepted by A.Theorem 6 Let A be a QDD, let A0 denote the automaton returned by RECEIVE-STAR(i, w, A), and let L(A0) denote the language accepted by A0. Then A0 is aQDD such that L(A0) = L(qi?w)�(A).Proof:� Let us prove �rst that L(qi?w)�(A) � L(A0). Let u = u1wku2 be a word inL(A), with u1 (resp. u2) only composed of symbols in [i�1j=1Mj (resp. [Nj=iMj),and k � 0. There exists a path � = s0 m0! s1 m1! � � � mn�1! sn in A accepting u.Since u = ujM1 � � �ujMN , � contains exactly one state sl such that 8k < l : mk 2[i�1j=1Mj and 8k � l : mk 2 [Nj=iMj . Therefore, sl is a state \s" that satis�es thecondition in line 3 of the algorithm, and the algorithm replaces the transition(sl;ml; sl+1) by (s0;ml; sl+1), where the state s0 is a new state added by thealgorithm. Moreover, it follows from the de�nition of u that � contains exactlyone state sp such that sl wk) sp. The state sp satis�es the condition at line 10 ofthe algorithm, hence the algorithm adds (s; "; sp) to the set of transitions of A.Since all sequences of transitions labeled by a symbol in [Nj=iMj are preservedin A0 (a new state s0 is associated to every intermediate state s that satis�es thecondition in line 3, and all the incoming (outgoing) transitions to (resp. from)s labeled by a symbol in [Nj=iMj are mapped to transitions of same label to(resp. from) s0), before being determinized, the resulting automaton containsthe path �0 = s0 m0! � � � ml�1! sl "! sp mp! s0p+1 � � � mn�1! s0n. Since the path �0 isaccepting, the automaton A0 accepts the word u1u2.� Now, we show that L(A0) � Lqi?w(A). Let u be a word in L(A0), and let A00 bethe automaton obtained before the determinization operation giving A0. Sincethe automata A0 and A00 accept the same language, u 2 L(A00) and there existsa path � of A00 accepting u. Let us show that � is of the form �1 or �1�2, where�1 is composed only of transitions labeled by a symbol in [i�1j=1Mj while �2 iscomposed only of transitions labeled by a symbol in [Nj=iMj .

19Since �1 leads from s0 to s and is composed of transitions labeled by a symbol in[i�1j=1Mj , state s satis�es the condition on line 3 of the algorithm. Moreover, theonly outgoing transition from s not labeled by a symbol in [i�1j=1Mj can only bea transition (s; "; s00) added by the algorithm (at line 11), with s wk) s00 in A, andk � 0. Since the algorithm does not perform any modi�cation on transitionslabeled by a symbol in [i�1j=1Mj , all the transitions of �1 are transitions in A.Moreover, if �1 is an accepting path in A00, then it is also an accepting pathin A. Hence, if � = �1, then u 2 L(A). Let us assume now that � 6= �1.Since all sequences of transitions labeled by a symbol in [Nj=iMj are preservedin A0 (a new state s0 is associated to every intermediate state s that satis�esthe condition in line 3, and all the incoming (outgoing) transitions to (resp.from) s labeled by a symbol in [Nj=iMj are mapped to transitions of same labelto (resp. from) s0), there exists in A a path �02 from s00 corresponding to thesame sequence of transitions as in �2. Since the last state of �2 is acceptingin A00, the last state of �02 is accepting in A. Thus, the word v such that8j 6= i : vjMj = ujMj and vjMi = wkujMi , is accepted by A.Lemma 2 Let n and An+1 be as de�ned by the algorithm computing the value ofRECEIVE-SEND-STAR(i; w1; j; w2; A). If the language accepted by An+1 is notempty, then there exists p > 0 such that An+1 and RECEIVE(i; wp1 ; An+1) acceptthe same language.Proof:� First, we prove that L(An+1) � L(RECEIVE(i; wp1 ; An+1)) for some p > 0.Let w be a word in L(An+1). For any such word, there exists w0 2 L(A) suchthat w0jMi = wn+11 (wjMi), wjMj = (w0jMj)wn+12 , and 8k 62 fi; jg : wjMk =w0jMk . Let s0; s1; : : : ; sx be the path of A accepting w0. It contains a subpathsy; sy+1; : : : ; sy+n+1 such that sy w1) sy+1 w1) � � � w1) sy+n+1 and s0 w00) sy, withw00 = w0jM1 � � �w0jMi�1 . By de�nition of n, this subpath contains a loop, i.e.,there exists z and l such that y � z � y + n + 1, 1 � n � n+ 1, and sz wl1) sz.We thus have 8k � 0 : w0jM1 � � �w0jMi�1wkl1 w0jMi � � �w0jMN 2 L(A). Choosingk = (n+1)!=l, we obtain w0jM1 � � �w0jMi�1w(n+1)!1 w0jMi � � �w0jMN 2 L(A), whichimplies wjM1 � � �wjMi�1w(n+1)!1 wjMi � � �wjMN 2 L(An+1). By taking p = (n+1)!and applying this result to all the wordsw in L(An+1), it follows that L(An+1) �L(RECEIVE(i; wp1; An+1)).� Now, we show that L(RECEIVE(i; wp1; An+1)) � L(An+1) for the same p =(n + 1)!. Let w 2 L(RECEIVE(i; wp1; An+1)). There exists w0 2 L(A) suchthat w0jMi = wp+n+11 wjMi , wjMj = w0jMjwn+12 , and 8k 62 fi; jg : wjMk =w0jMk . Let s0; s1; : : : ; sx be the path of A0 accepting w0. By de�nition of n,this path contains a subpath sy; sy+1; : : : ; sz such that s0 w00) sy, with w00 =

20 w0jM1 � � �w0jMi�1 , that begins with k occurrences of a loop accepting wl1, wherek and l are such that k:l � p and l � n+1. By removing exactly p=l occurrencesof this loop from the path s0; s1; : : : ; sx, we obtain a path of A accepting theword w000 such that w000jMi = wn+11 wjMi , wjMj = w000jMjwn+12 , and 8k 62 fi; jg :wjMk = w000jMk . Therefore, w 2 L(An+1).Theorem 7 If A is a QDD and A0 is returned by RECEIVE-SEND-STAR(i; w1; j;w2; A), with i 6= j, then A0 is a QDD such that L(A0) = (qi?w1; qj !w2)�(L(A)).Proof: Let n, p, fAkg be as de�ned by the algorithm computing RECEIVE-SEND-STAR. We have:(qi?w1; qj !w2)�(L(A))= 1[k=0(qi?w1; qj !w2)k(L(A))= n[k=0(qi?w1; qj !w2)k(L(A)) [1[k=n+1(qi?w1; qj !w2)k(L(A))= n[k=0L(Ak) [1[k=0(qi?w1; qj !w2)k(L(An+1)):� If L(An+1) = ;: We have (qi?w1; qj !w2)�(L(A)) = n[k=0L(Ak) = L(A0).� If L(An+1) 6= ;: As i 6= j, the operations qi?m1 and qj !m2 commute. Hence,we have:1[k=0(qi?w1; qj !w2)k(L(An+1))= 1[i=0 p�1[j=0(qi?w1; qj !w2)pi+j(L(An+1))= 1[i=0 p�1[j=0(qj !w2)pi(qi?w1; qj !w2)j(qi?w1)pi(L(An+1)):By de�nition of p, (qi?w1)pi(L(An+1)) = L(An+1). Thus, we have:1[k=0(qi?w1; qj !w2)k(L(An+1))= 1[i=0 p�1[j=0(qj !w2)pi(qi?w1; qj !w2)j(L(An+1))

21= 1[i=0(qj !w2)pi0@p�1[j=0(qi?w1; qj !w2)j(L(An+1))1A= (qj !wp2)�0@p�1[j=0L(An+j+1)1A= L(An+p+1):Therefore, (qi?w1; qj !w2)�(L(A)) = n[k=0L(Ak) [L(An+p+1). Sincen+p[k=n+1L(Ak) � L(An+p+1);we �nally have(qi?w1; qj !w2)�(L(A)) = n+p+1[k=0 L(Ak)= L(A0):

