
Counting the Solutions of Presburger Equationswithout Enumerating Them?Bernard Boigelot and Louis LatourInstitut Monte�ore, B28Universit�e de Li�egeB-4000 Li�ege Sart-Tilman, Belgiumfboigelot,latourg�montefiore.ulg.a.behttp://www.montefiore.ulg.a.be/~fboigelot,latourg/Abstrat. The Number Deision Diagram (NDD) has reently beenproposed as a powerful representation system for sets of integer vetors.In partiular, NDDs an be used for representing the sets of solutionsof arbitrary Presburger formulas, or the set of reahable states of somesystems using unbounded integer variables. In this paper, we address theproblem of ounting the number of distint elements in a set of vetorsrepresented as an NDD. We give an algorithm that is able to performan exat ount without enumerating expliitly the vetors, whih makesit apable of handling very large sets. As an auxiliary result, we alsodevelop an eÆient projetion method that allows to onstrut eÆientlyNDDs from quanti�ed formulas, and thus makes it possible to apply ourounting tehnique to sets spei�ed by formulas. Our algorithms havebeen implemented in the veri�ation tool LASH, and applied suessfullyto various ounting problems.1 IntrodutionPresburger arithmeti [Pre29℄, i.e., the �rst-order additive theory of integers, isa powerful formalism for solving problems that involve integer variables. Themanipulation of sets de�ned in Presburger arithmeti is entral to many kindsof appliations, inluding integer programming problems [Sh86,PR96℄, ompileroptimization tehniques [Pug92℄, temporal database queries [KSW95℄, and pro-gram analysis tools [FO97,SKR98℄.The more diret way of handling algorithmially Presburger-de�nable setsonsists of using a formula-based representation system. This approah has beensuessfully implemented in the Omega pakage [Pug92℄, whih is probably themost widely used Presburger tool at the present time. Unfortunately, formula-based representations su�er from a serious drawbak : They lak anoniity,whih implies that sets with a simple struture are in some situations repre-sented by very omplex formulas; this notably happens when these formulas are? This work was partially funded by a grant of the \Communaut�e fran�aise de Belgique| Diretion de la reherhe sienti�que | Ations de reherhe onert�ees".

2obtained as the result of lengthy sequenes of operations. Moreover, the abseneof a anonial representation hinders the eÆient implementation of usually es-sential deision proedures, suh as testing whether two sets are equal to eahother.In order to alleviate these problems, an alternative representation of Pres-burger-de�nable sets has been developed, based on �nite-state automata. TheNumber Deision Diagram (NDD) [WB95,Boi99℄ is, skethily, a �nite-state ma-hine reognizing the enodings of the integer vetors belonging to the set thatit represents. Its main advantage are that most of the usual set-theory opera-tions an be performed by simply arrying out the orresponding task on thelanguages aepted by the automata, and that a anonial representation of aset an easily be obtained by minimizing its assoiated automaton. Among itsappliations, the NDD has made it possible to develop a tool for omputingautomatially the set of reahable states of programs using unbounded integervariables [LASH℄.The problem of ounting howmany elements belong to a Presburger-de�nableset has been solved for formula-based representations [Pug94℄ of Presburger sets.Though of broad sope, this problem has interesting appliations related to veri-�ation and program analysis. First, it an be used in order to quantify preiselythe performanes of some systems. In partiular, one an estimate the ompu-tation time of ode fragments or the amount of resoures that they onsumewherever these quantities an be expressed as Presburger formulas. Furthermore,ounting the number of reahable data values at some ontrol loations makesit possible to detet quikly some inonsistenies between di�erent releases ofa program, without requiring to write down expliit properties. For instane,it an promptly alert the developer, although without any guarantee of alwaysathing suh errors, that a loal modi�ation had an unwanted inuene onsome remote part of the program. Finally, studying the evolution of the numberof reahable states with respet to the value of system parameters an also helpto detet unsuspeted errors.The main goal of this paper is to present a method for ounting the numberof elements belonging to a Presburger-de�nable set represented by an NDD.Intuitively, our approah is based on the idea that one an easily ompute thenumber of distint paths of a direted ayli graph without enumerating them.The atual algorithm is however more intriate, due to the fat that the vetorsbelonging to a set and the aepting paths of its representing NDD are not linkedto eah other by a one-to-one relationship.In order to apply our ounting tehnique to the set of solutions of a givenPresburger formula, one needs �rst to build an NDD from that formula. Thisproblem has been solved in [BC96,Boi99℄, but only in the form of a onstrutionalgorithm that is exponentially ostly in the number of variables involved in theformula. As an auxiliary ontribution of this paper, we desribe an improvedalgorithm for handling the problemati projetion operation. The resulting on-strution proedure has been implemented and suessfully applied to problemsinvolving large numbers of variables.

32 Basi NotionsWe here explain how �nite-state mahines an represent sets of integer vetors.The main idea onsists of establishing a mapping between vetors and words.Our enoding sheme for vetors is based on the lassial expression of numbersin a base r > 1, aording to whih an enoding of a positive integer z is aword ap�1ap�2 � � �a1a0 suh that eah digit ai belongs to the �nite alphabetf0; 1; : : : ; r � 1g and z =Pp�1i=0 airi. Negative numbers z have the same p-digitenoding as their r's omplement rp + z. The number p of digits is not �xed,but must be large enough for the ondition �rp�1 � z < rp�1 to hold. As aorollary, the �rst digit of the enodings is 0 for positive numbers and r � 1 fornegative ones, hene that digit is referred to as the sign digit of the enodings.In order to enode a vetor v = (v1; v2; : : : ; vn), one simply reads repeatedlyand in turn one digit from the enodings of all its omponents, under the ad-ditional restrition that these enodings must share the same length. In otherwords, an enoding of v is a word dp�1;1dp�1;2 : : :dp�1;ndp�2;1dp�2;2 : : :d0;n�1d0;nsuh that for every i 2 f1; : : : ; ng, dp�1;idp�2;i : : : d0;i is an enoding of vi. Anenoding of a vetor of dimension n has thus n sign digits | eah assoiated toone vetor omponent | the group of whih forms a sign header .Let S � Zn be a set of integer vetors. If the language L(S) ontaining allthe enodings of all the vetors in S is regular, then any �nite-state automatonaepting L(S) is a Number Deision Diagram (NDD) representing S. It is worthnotiing that, aording to this de�nition, not all automata de�ned over the al-phabet f0; 1; : : : ; r�1g are valid NDDs. Indeed, an NDD must aept only validenodings of vetors that share the same dimension, and must aept all the en-odings of the vetors that it reognizes. Note that the vetor enoding shemethat we use here is slightly di�erent from the one proposed in [BHMV94,Boi99℄,in whih the digits related to all the vetor omponents are read simultaneouslyrather than suessively. It is easy to see that both representation methods areequivalent from the theoretial point of view, the advantage of our present hoiebeing that it produes onsiderably more ompat �nite-state representations.For instane, a minimal NDD representing Zn is of size O(2n) if it reads om-ponent digits simultaneously, whih limits the pratial use of that approah tosmall values of n. On the other hand, our improved enoding sheme yields anautomaton of size O(n).It is known for a long time [Cob69,Sem77℄ that the sets that an be repre-sented by �nite-state automata in every base r > 1 are exatly those that are de-�nable in Presburger arithmeti, i.e., the �rst-order theory hZ;+;�i. One dire-tion of the proof of this result is onstrutive, and translates into a algorithm foronstruting an NDD representing an arbitrary Presburger formula [BHMV94℄.Skethily, the idea is to start from elementary NDDs orresponding to the for-mula atoms, and to ombine them by means of set operators and quanti�ers. Itis easily shown that omputing the union, intersetion, di�erene or Cartesianprodut of two sets represented by NDDs is equivalent to arrying out similaroperations on the languages aepted by the underlying automata. Quantifyingexistentially a set with respet to a vetor omponent, whih amounts to pro-

4jeting this set along this omponent, is more tedious. We disuss this problemin the next setion.At this time, one ould wonder why we did not opt for de�ning NDDs asautomata aepting only one enoding (for instane the shortest one) of eahvetor, and for enoding negative numbers as their sign followed by the enodingor their absolute value. It turns out that these alternate hoies ompliatesubstantially some elementary manipulation algorithms, suh as omputing theCartesian produt or the di�erene of two sets, as well as the onstrution of theautomata representing atomi formulas, suh as linear equations or inequations.On the other hand, our present hoies lead to simple manipulation algorithms,with the only exeptions of projetion and ounting.3 Projeting NDDsThe projetion problem an be stated in the following way. Given an NDD Arepresenting a set S � Zn, with n > 0, and a omponent number i 2 f1; : : : ; ng,the goal is to onstrut an NDD A0 representing the set9iS = f(v1; : : : ; vi�1; vi+1; : : : ; vn) j (v1; : : : ; vn) 2 Sg:For every aepting path of A, there must exist a mathing path of A0, fromthe label of whih the digits orresponding to the i-th vetor omponent areexluded. Thus, one ould be tempted to ompute A0 as the diret result ofapplying to A the transduer depited at Figure 1.
�=� �=� �=� �=� �=� �=�1 2 i i + 1 n�=�

For all transitions, � 2 f0; : : : ; r � 1g.Fig. 1. Projetion transduer.Unfortunately, this method produes an automaton Aj6=i that, even thoughit aepts valid enodings of all the elements of 9iS, is generally not an NDD.Indeed, for some vetors, the automaton may only reognize their enodings ifthey are of suÆient length, think for instane of 91f(4; 1)g. In order to buildA0 from Aj 6=i, one thus has to transform the automaton so as to make it alsoaept the shorter enodings of the vetors that it reognizes.Clearly, two enodings of the same vetor only di�er in the number of timesthat their sign header is repeated. We an thus restate the previous problem inthe following way: Given a �nite-state automaton A1 of alphabet � aeptingthe language L1, and a dimension n � 0, onstrut an automaton A2 aeptingL2 = fuiw j u 2 f0; r� 1gn ^ w 2 �� ^ i 2 N ^ (9k > 0)(k � i ^ ukw 2 L1)g.

5In [Boi99℄, this problem is solved by onsidering expliitly every potentialvalue u of the sign header, and then exploring A1 in order to know what statesan be reahed by a pre�x of the form ui, with i > 0. It is then suÆient tomake eah of these states reahable after reading a single ourrene of u, whihan be done by a simple onstrution, and to repeat the proess for other u.Although satisfatory from a theoretial point of view, this solution exhibits asystemati ost in O(2n) whih limits its pratial use to problems with a verysmall vetor dimension.The main idea behind our improved solution onsists of handling simultane-ously sign headers that annot be distinguished from eah other by the automa-ton A1, i.e., sign headers u1; u2 2 f0; r � 1gn suh that for every k > 0, readinguk1 leads to the same automaton states as reading uk2 . For simpliity, we assumeA1 to be deterministi1.Our algorithm proeeds as follows. First, it extrats from A1 a pre�x au-tomaton AP that reads only the �rst n symbols of words and assoiates onedistint end state to eah group of undistinguished sign headers. Eah end stateof AP is then mathed to all the states of A1 that an be reahed by readingthe orresponding sign headers any number of times. At every time during thisoperation one detets two sign headers that are not yet distinguished but thatlead to di�erent automaton states, one re�nes the pre�x automaton AP so asto assoiate a di�erent end state to eah header. Finally, the automaton A2 isonstruted in suh a way that following one of its aepting paths amountsto reading n symbols in AP , whih results in reahing an end state s of thisautomaton, and then following an aepting path of A1 starting from a statemathed to s.The algorithm is desribed in the full version of this paper. Its worst-asetime omplexity is not less than that of the simple solution [Boi99℄ outlined atthe beginning of this setion. However, in the ontext of state-spae explorationappliations, we observed that it sueeds most of the time, if not always, toavoid the exponential blowup experiened with the latter approah.4 Counting elements of NDDsWe now address the problem of ounting the number of vetors that belong toa set S represented by an NDD A. Our solution proeeds in two steps: First, wehek whether S is �nite or in�nite and, in the former ase, we transform A intoa deterministi automaton A0 that aepts exatly one enoding of eah vetorthat belongs to S. Seond, we ount the number of distint aepting paths inA0.4.1 Transformation stepLet A be an NDD representing the set S � Zn. If S is not empty, then thelanguage aepted by A is in�nite, hene the transition graph of this automaton1 This is not problemati in pratie, sine the ost of determinizing an automatonbuilt from an arithmeti formula is often moderate [WB00℄.

6ontains yles. In order to hek whether S is �nite or not, we thus have todetermine if these yles are followed when reading di�erent enodings of thesame vetors, or if they an be iterated in order to reognize an in�nite numberof distint vetors.Assume that A does not ontain unneessary states, i.e., that all its statesare reahable and that there is at least one aepting path starting from eahstate. We an lassify the yles of A in three ategories:{ A sign loop is a yle that an only be followed while reading the sign headerof an enoding, or a repetition of that sign header;{ An inating loop is a yle that an never be followed while reading the signheader of an enoding or one of its repetitions;{ A mixed loop is a yle that is neither a sign nor an inating loop.If A has at least one inating or mixed loop, then one an �nd an aeptingpath in whih one follows that loop while not reading a repetition of a signheader. By iterating the loop, one thus gets an in�nite number of distint vetors,whih results in S being in�nite. The problem thus redues to heking whetherA has non-sign (i.e., inating or mixed) loops2. Thanks to the following result,this hek an be arried out by inspeting the transition graph of A withoutpaying attention to the transition labels.Theorem 1. Assume that A is a deterministi and minimal (with respet tolanguage equivalene) NDD. A yle � of A is a sign loop if and only if it anonly be reahed by one path (not ontaining any ourrene of that yle).Proof. Sine A is an NDD, it an only aept words whose length is a multipleof n. The length of � is thus a multiple of n.{ If � is reahable by only one path �. Let u 2 f0; r � 1gn be the sign headerthat is read while following the n �rst transitions of the path ��, and let sand s0 be the states of A respetively reahed after reading the words u anduu (starting from the initial state).Sine A aepts all the enodings of the vetors in S, it aepts, for everyw 2 f0; 1; : : : ; r � 1g�, the word uw if and only if it aepts the word uuw.It follows that the languages aepted from the states s and s0 are identialwhih implies, sine A is minimal, that s = s0.Therefore, � an only be visited while reading the sign header u or its repe-tition, and is thus a sign loop.{ If � is reahable by at least two paths �1 and �2. Let kn, with k 2 N bethe length of �. Sine A only aepts words whose length is a multiple ofn, there are exatly k states s1; s2; : : : ; sk that are reahable in � from theinitial state of A after following a multiple of n transitions.If the words read by following � from s1 to s2, from s2 to s3, . . . , and fromsk to s1 are not all idential, then � is not a sign loop. Otherwise, let uk,with u 2 f0; 1; : : : ; r � 1gn, be the label of �.2 An example of a non-trivial instane of this problem an be obtained by building theminimal deterministi NDD representing the set f(x; y) 2 Z2 j x+ y � 0 ^ x � 0g.

7Sine A is deterministi, at least one of the bloks of n onseutive digitsread while following �1 or �2 up to reahing � di�ers from u. Thus, � anbe visited while not reading a repetition of a sign header. utProvided that A has only sign loops, it an easily be transformed into an au-tomaton A0 that aepts exatly one enoding of eah vetor in S by performinga depth-�rst searh in whih one removes, for eah deteted yle, the transitionthat gets bak to a state that has already been visited in the urrent explo-ration path. This operation does not inuene the set of vetors reognized bythe automaton, sine the deleted transitions an only be followed while readinga repeated ourrene of a sign header.An algorithm that ombines the lassi�ation of yles with the transforma-tion of A into A0 is given in the full version of this paper. Sine eah state of Ahas to be visited at most one, the time and spae osts of this algorithm { ifsuitably implemented { are linear in the number of states of A.4.2 Counting stepIf S is �nite, then the transition graph of the automaton A0 produed by thealgorithm given in the previous setion is ayli. The number of vetors in Sorresponds to the number of aepting paths originating in the initial state ofA0. For eah state s of A0, let N(s) denote the number of paths of A0 that startat s and end in an aepting state. Eah of these paths either leaves s by one ofits outgoing transitions, or has a zero length (whih requires s to be aepting).Thus, we have at eah state s N(s) = X(s;d;s0)2�N(s0) + a(s), where a(s) isequal to 1 if s is aepting, and to 0 otherwise.Thanks to this rule, the value of N(s) an easily be propagated from thestates that have no suessors to the initial state of A0, following the transitionsbakwards. The number of additions that have to be performed is linear in thenumber of states of A0.5 Example of useThe projetion and ounting algorithms presented in Setions 3 and 4 have beenimplemented in the veri�ation tool LASH [LASH℄, whose main purpose is toompute exatly the set of reahable on�gurations of a system with �nite ontroland unbounded data. Skethily, this tool handles �nite and in�nite sets of on�g-urations with the help of �nite-state representations suited for the orrespondingdata domains, and relies on meta-transitions , whih apture the repeated e�etof ontrol loops, for exploring in�nite state spaes in �nite time. A desriptionof the main tehniques implemented by LASH is given in [Boi99℄.In the ontext of this paper, we fous on systems based on unbounded integervariables, for whih the set representation system used by LASH is the NDD.

8Our present results thus allow to ount preisely the number of reahable systemon�gurations that belong to a set omputed by LASH.Let us now desribe an example of a state-spae exploration experimentfeaturing the ounting algorithm. We onsider the simple lift ontroller originallypresented in [Val89℄. This system is omposed of two proesses modeling a liftpanel and its motor atuator, ommuniating with eah other by means of sharedinteger variables. A parameter N , whose value is either �xed in the model orleft undetermined, de�nes the number of oors of the building. In the formerase, one observes that the amount of time and of memory needed by LASH inorder to ompute the set of reahable on�gurations grows only logarithmiallyin N , despite the fat that the number of elements in this set is obviously atleast O(N2). (Indeed, the behavior of the lift is ontrolled by two main variablesmodeling the urrent and the target oors, whih are able to take any pair ofvalues in f1; : : : ; Ng2.)Our simple experiment has two goals: Studying preisely the evolution ofthe number of reahable on�gurations with respet to inreasing values of N ,and evaluating the amount of aeleration indued by meta-transitions in thestate-spae exploration proess.The results are summarized in Figures 2 and 3. The former table gives,for several values of N , the size (in terms of automaton states) of the �nite-state representation of the reahable on�gurations, the exat number of theseon�gurations, and the total time needed to perform the exploration. Theseresults learly show an evolution in O(N2), as suspeted. It is worth mentioningthat, thanks to the fat that the ost of our ounting algorithm is linear inthe size of NDDs, its exeution time (inluding the lassi�ation of loops) wasnegligible with respet to that of the exploration.N NDD states Con�gurations Time (s)10 852 930 25100 1782 99300 651000 2684 9993000 10110000 3832 999930000 153100000 4770 99999300000 1961000000 5666 9999993000000 242Fig. 2. Number of reahable on�gurations w.r.t. N .The latter table shows, for N = 109, the evolution of the number of on�gu-rations reahed after the suessive steps of the exploration algorithm. Roughlyspeaking, the states are explored in a breadth-�rst fashion, starting from theinitial on�guration and following transitions as well as meta-transitions, untila �xpoint is deteted. In the present ase, the impat of meta-transitions on thenumber of reahed states is learly visible at Steps 2 and 4.

9Step NDD states Con�gurations1 638 32 1044 10000000033 1461 39999999994 2709 5000000054999999975 4596 15000000064999999956 6409 35000000044999999947 7020 64999999974999999998 7808 79999999950000000009 8655 899999999400000000010 8658 949999999350000000011 8663 9999999993000000000Fig. 3. Number of reahed on�gurations w.r.t. exploration steps.6 Conlusions and omparison with other workThe main ontribution of this paper is to provide an algorithm for ounting thenumber of elements in a set represented by an NDD. As an auxiliary result, wealso present an improved projetion algorithm that makes it possible to buildeÆiently an NDD representing the set of solutions of a Presburger formula. Ouralgorithms have been implemented in the tool LASH.The problem of ounting the number of solutions of a Presburger equationhas already been addressed in [Pug94℄, whih follows a formula-based approah.More preisely, that solution proeeds by deomposing the original formula intoan union of disjoint onvex sums, eah of them being a onjuntion of linear in-equalities. Then, all but one variable are projeted out suessively, by spliteringthe sums in suh a way that the eliminated variables have one single and oneupper bound. This eventually yields a �nite union of simple formulas, on whihthe ounting an be arried out by simple rules.The main di�erene between this solution and ours is that, ompared tothe general problem of determining whether a Presburger formula is satis�able,ounting with a formula-based method inurs a signi�ative additional ost. Onthe other hand, the automata-based ounting method has no pratial impaton the exeution time one an NDD has been onstruted. Our method is thuseÆient for all the ases in whih an NDD an be obtained quikly, whih, asit has been observed in [BC96,WB00℄, happens mainly when the oeÆients ofthe variables are small. In addition, sine automata an be determinized andminimized after eah manipulation, NDDs are espeially suited for representingthe results of omplex sequenes of operations produing simple sets, as in moststate-spae exploration appliations. The main restrition of our approah is thatit annot be generalized in a simple way to the more omplex ounting problems,suh as summing polynomials over Presburger-de�nable sets, that are addressedin [Pug94℄.

10Referenes[BC96℄ A. Boudet and H. Comon. Diophantine equations, Presburger arithmetiand �nite automata. In Proeedings of CAAP'96, number 1059 in LetureNotes in Computer Siene, pages 30{43. Springer-Verlag, 1996.[BHMV94℄ V. Bruy�ere, G. Hansel, C. Mihaux, and R. Villemaire. Logi and p-reognizable sets of integers. Bulletin of the Belgian Mathematial Soiety,1(2):191{238, Marh 1994.[Boi99℄ B. Boigelot. Symboli Methods for Exploring In�nite State Spaes. Colle-tion des publiations de la Fault�e des Sienes Appliqu�ees de l'Universit�ede Li�ege, Li�ege, Belgium, 1999.[Cob69℄ A. Cobham. On the base-dependene of sets of numbers reognizable by�nite automata. Mathematial Systems Theory, 3:186{192, 1969.[FO97℄ L. Fribourg and H. Ols�en. Proving safety properties of in�nite state systemsby ompilation into Presburger arithmeti. In Proeedings of CONCUR'97,volume 1243, pages 213{227, Warsaw, Poland, July 1997. Springer-Verlag.[KSW95℄ F. Kabanza, J.-M. Stevenne, and P. Wolper. Handling in�nite temporaldata. Journal of omputer and System Sienes, 51(1):3{17, 1995.[LASH℄ The Li�ege Automata-based Symboli Handler (LASH). Available athttp://www.montefiore.ulg.a.be/~boigelot/researh/lash/.[PR96℄ M. Padberg and M. Rijal. Loation, Sheduling, Design and Integer Pro-gramming. Kluwer Aademi Publishers, Massahusetts, 1996.[Pre29℄ M. Presburger. �Uber die Volst�andigkeit eines gewissen Systems der Arith-metik ganzer Zahlen, in welhem die Addition als einzige Operation her-vortritt. In Comptes Rendus du Premier Congr�es des Math�ematiiens desPays Slaves, pages 92{101, Warsaw, Poland, 1929.[Pug92℄ W. Pugh. The Omega Test: A fast and pratial integer programmingalgorithm for dependene analysis. Communiations of the ACM, pages102{114, August 1992.[Pug94℄ W. Pugh. Counting solutions to Presburger formulas: How and why. SIG-PLAN, 94-6/94:121{134, 1994.[Sh86℄ A. Shrijver. Theory of Linear and Integer Programming. John Wiley &sons, Chihester, 1986.[Sem77℄ A. L. Semenov. Presburgerness of prediates regular in two number systems.Siberian Mathematial Journal, 18:289{299, 1977.[SKR98℄ T. R. Shiple, J. H. Kukula, and R. K. Ranjan. A omparison of Presburgerengines for EFSM reahability. In Proeedings of the 10th Intl. Conf. onComputer-Aided Veri�ation, volume 1427 of Leture Notes in ComputerSiene, pages 280{292, Vanouver, June/July 1998. Springer-Verlag.[Val89℄ A. Valmari. State spae generation with indution. In Proeedings of theSCAI'89, pages 99{115, Tampere, Finland, June 1989.[WB95℄ P. Wolper and B. Boigelot. An automata-theoreti approah to Presburgerarithmeti onstraints. In Proeedings of Stati Analysis Symposium, vol-ume 983 of Leture Notes in Computer Siene, pages 21{32, Glasgow,September 1995. Springer-Verlag.[WB00℄ P. Wolper and B. Boigelot. On the onstrution of automata from lin-ear arithmeti onstraints. In Pro. 6th International Conferene on Toolsand Algorithms for the Constrution and Analysis of Systems, volume 1785of Leture Notes in Computer Siene, pages 1{19, Berlin, Marh 2000.Springer-Verlag.

