
Counting the Solutions of Presburger Equationswithout Enumerating Them?Bernard Boigelot and Louis LatourInstitut Monte�ore, B28Universit�e de Li�egeB-4000 Li�ege Sart-Tilman, Belgiumfboigelot,latourg�montefiore.ulg.a
.behttp://www.montefiore.ulg.a
.be/~fboigelot,latourg/Abstra
t. The Number De
ision Diagram (NDD) has re
ently beenproposed as a powerful representation system for sets of integer ve
tors.In parti
ular, NDDs 
an be used for representing the sets of solutionsof arbitrary Presburger formulas, or the set of rea
hable states of somesystems using unbounded integer variables. In this paper, we address theproblem of 
ounting the number of distin
t elements in a set of ve
torsrepresented as an NDD. We give an algorithm that is able to performan exa
t 
ount without enumerating expli
itly the ve
tors, whi
h makesit 
apable of handling very large sets. As an auxiliary result, we alsodevelop an eÆ
ient proje
tion method that allows to 
onstru
t eÆ
ientlyNDDs from quanti�ed formulas, and thus makes it possible to apply our
ounting te
hnique to sets spe
i�ed by formulas. Our algorithms havebeen implemented in the veri�
ation tool LASH, and applied su

essfullyto various 
ounting problems.1 Introdu
tionPresburger arithmeti
 [Pre29℄, i.e., the �rst-order additive theory of integers, isa powerful formalism for solving problems that involve integer variables. Themanipulation of sets de�ned in Presburger arithmeti
 is 
entral to many kindsof appli
ations, in
luding integer programming problems [S
h86,PR96℄, 
ompileroptimization te
hniques [Pug92℄, temporal database queries [KSW95℄, and pro-gram analysis tools [FO97,SKR98℄.The more dire
t way of handling algorithmi
ally Presburger-de�nable sets
onsists of using a formula-based representation system. This approa
h has beensu

essfully implemented in the Omega pa
kage [Pug92℄, whi
h is probably themost widely used Presburger tool at the present time. Unfortunately, formula-based representations su�er from a serious drawba
k : They la
k 
anoni
ity,whi
h implies that sets with a simple stru
ture are in some situations repre-sented by very 
omplex formulas; this notably happens when these formulas are? This work was partially funded by a grant of the \Communaut�e fran�
aise de Belgique| Dire
tion de la re
her
he s
ienti�que | A
tions de re
her
he 
on
ert�ees".



2obtained as the result of lengthy sequen
es of operations. Moreover, the absen
eof a 
anoni
al representation hinders the eÆ
ient implementation of usually es-sential de
ision pro
edures, su
h as testing whether two sets are equal to ea
hother.In order to alleviate these problems, an alternative representation of Pres-burger-de�nable sets has been developed, based on �nite-state automata. TheNumber De
ision Diagram (NDD) [WB95,Boi99℄ is, sket
hily, a �nite-state ma-
hine re
ognizing the en
odings of the integer ve
tors belonging to the set thatit represents. Its main advantage are that most of the usual set-theory opera-tions 
an be performed by simply 
arrying out the 
orresponding task on thelanguages a

epted by the automata, and that a 
anoni
al representation of aset 
an easily be obtained by minimizing its asso
iated automaton. Among itsappli
ations, the NDD has made it possible to develop a tool for 
omputingautomati
ally the set of rea
hable states of programs using unbounded integervariables [LASH℄.The problem of 
ounting howmany elements belong to a Presburger-de�nableset has been solved for formula-based representations [Pug94℄ of Presburger sets.Though of broad s
ope, this problem has interesting appli
ations related to veri-�
ation and program analysis. First, it 
an be used in order to quantify pre
iselythe performan
es of some systems. In parti
ular, one 
an estimate the 
ompu-tation time of 
ode fragments or the amount of resour
es that they 
onsumewherever these quantities 
an be expressed as Presburger formulas. Furthermore,
ounting the number of rea
hable data values at some 
ontrol lo
ations makesit possible to dete
t qui
kly some in
onsisten
ies between di�erent releases ofa program, without requiring to write down expli
it properties. For instan
e,it 
an promptly alert the developer, although without any guarantee of always
at
hing su
h errors, that a lo
al modi�
ation had an unwanted in
uen
e onsome remote part of the program. Finally, studying the evolution of the numberof rea
hable states with respe
t to the value of system parameters 
an also helpto dete
t unsuspe
ted errors.The main goal of this paper is to present a method for 
ounting the numberof elements belonging to a Presburger-de�nable set represented by an NDD.Intuitively, our approa
h is based on the idea that one 
an easily 
ompute thenumber of distin
t paths of a dire
ted a
y
li
 graph without enumerating them.The a
tual algorithm is however more intri
ate, due to the fa
t that the ve
torsbelonging to a set and the a

epting paths of its representing NDD are not linkedto ea
h other by a one-to-one relationship.In order to apply our 
ounting te
hnique to the set of solutions of a givenPresburger formula, one needs �rst to build an NDD from that formula. Thisproblem has been solved in [BC96,Boi99℄, but only in the form of a 
onstru
tionalgorithm that is exponentially 
ostly in the number of variables involved in theformula. As an auxiliary 
ontribution of this paper, we des
ribe an improvedalgorithm for handling the problemati
 proje
tion operation. The resulting 
on-stru
tion pro
edure has been implemented and su

essfully applied to problemsinvolving large numbers of variables.



32 Basi
 NotionsWe here explain how �nite-state ma
hines 
an represent sets of integer ve
tors.The main idea 
onsists of establishing a mapping between ve
tors and words.Our en
oding s
heme for ve
tors is based on the 
lassi
al expression of numbersin a base r > 1, a

ording to whi
h an en
oding of a positive integer z is aword ap�1ap�2 � � �a1a0 su
h that ea
h digit ai belongs to the �nite alphabetf0; 1; : : : ; r � 1g and z =Pp�1i=0 airi. Negative numbers z have the same p-digiten
oding as their r's 
omplement rp + z. The number p of digits is not �xed,but must be large enough for the 
ondition �rp�1 � z < rp�1 to hold. As a
orollary, the �rst digit of the en
odings is 0 for positive numbers and r � 1 fornegative ones, hen
e that digit is referred to as the sign digit of the en
odings.In order to en
ode a ve
tor v = (v1; v2; : : : ; vn), one simply reads repeatedlyand in turn one digit from the en
odings of all its 
omponents, under the ad-ditional restri
tion that these en
odings must share the same length. In otherwords, an en
oding of v is a word dp�1;1dp�1;2 : : :dp�1;ndp�2;1dp�2;2 : : :d0;n�1d0;nsu
h that for every i 2 f1; : : : ; ng, dp�1;idp�2;i : : : d0;i is an en
oding of vi. Anen
oding of a ve
tor of dimension n has thus n sign digits | ea
h asso
iated toone ve
tor 
omponent | the group of whi
h forms a sign header .Let S � Zn be a set of integer ve
tors. If the language L(S) 
ontaining allthe en
odings of all the ve
tors in S is regular, then any �nite-state automatona

epting L(S) is a Number De
ision Diagram (NDD) representing S. It is worthnoti
ing that, a

ording to this de�nition, not all automata de�ned over the al-phabet f0; 1; : : : ; r�1g are valid NDDs. Indeed, an NDD must a

ept only validen
odings of ve
tors that share the same dimension, and must a

ept all the en-
odings of the ve
tors that it re
ognizes. Note that the ve
tor en
oding s
hemethat we use here is slightly di�erent from the one proposed in [BHMV94,Boi99℄,in whi
h the digits related to all the ve
tor 
omponents are read simultaneouslyrather than su

essively. It is easy to see that both representation methods areequivalent from the theoreti
al point of view, the advantage of our present 
hoi
ebeing that it produ
es 
onsiderably more 
ompa
t �nite-state representations.For instan
e, a minimal NDD representing Zn is of size O(2n) if it reads 
om-ponent digits simultaneously, whi
h limits the pra
ti
al use of that approa
h tosmall values of n. On the other hand, our improved en
oding s
heme yields anautomaton of size O(n).It is known for a long time [Cob69,Sem77℄ that the sets that 
an be repre-sented by �nite-state automata in every base r > 1 are exa
tly those that are de-�nable in Presburger arithmeti
, i.e., the �rst-order theory hZ;+;�i. One dire
-tion of the proof of this result is 
onstru
tive, and translates into a algorithm for
onstru
ting an NDD representing an arbitrary Presburger formula [BHMV94℄.Sket
hily, the idea is to start from elementary NDDs 
orresponding to the for-mula atoms, and to 
ombine them by means of set operators and quanti�ers. Itis easily shown that 
omputing the union, interse
tion, di�eren
e or Cartesianprodu
t of two sets represented by NDDs is equivalent to 
arrying out similaroperations on the languages a

epted by the underlying automata. Quantifyingexistentially a set with respe
t to a ve
tor 
omponent, whi
h amounts to pro-



4je
ting this set along this 
omponent, is more tedious. We dis
uss this problemin the next se
tion.At this time, one 
ould wonder why we did not opt for de�ning NDDs asautomata a

epting only one en
oding (for instan
e the shortest one) of ea
hve
tor, and for en
oding negative numbers as their sign followed by the en
odingor their absolute value. It turns out that these alternate 
hoi
es 
ompli
atesubstantially some elementary manipulation algorithms, su
h as 
omputing theCartesian produ
t or the di�eren
e of two sets, as well as the 
onstru
tion of theautomata representing atomi
 formulas, su
h as linear equations or inequations.On the other hand, our present 
hoi
es lead to simple manipulation algorithms,with the only ex
eptions of proje
tion and 
ounting.3 Proje
ting NDDsThe proje
tion problem 
an be stated in the following way. Given an NDD Arepresenting a set S � Zn, with n > 0, and a 
omponent number i 2 f1; : : : ; ng,the goal is to 
onstru
t an NDD A0 representing the set9iS = f(v1; : : : ; vi�1; vi+1; : : : ; vn) j (v1; : : : ; vn) 2 Sg:For every a

epting path of A, there must exist a mat
hing path of A0, fromthe label of whi
h the digits 
orresponding to the i-th ve
tor 
omponent areex
luded. Thus, one 
ould be tempted to 
ompute A0 as the dire
t result ofapplying to A the transdu
er depi
ted at Figure 1.
�=� �=� �=� �=� �=� �=�1 2 i i + 1 n�=�

For all transitions, � 2 f0; : : : ; r � 1g.Fig. 1. Proje
tion transdu
er.Unfortunately, this method produ
es an automaton Aj6=i that, even thoughit a

epts valid en
odings of all the elements of 9iS, is generally not an NDD.Indeed, for some ve
tors, the automaton may only re
ognize their en
odings ifthey are of suÆ
ient length, think for instan
e of 91f(4; 1)g. In order to buildA0 from Aj 6=i, one thus has to transform the automaton so as to make it alsoa

ept the shorter en
odings of the ve
tors that it re
ognizes.Clearly, two en
odings of the same ve
tor only di�er in the number of timesthat their sign header is repeated. We 
an thus restate the previous problem inthe following way: Given a �nite-state automaton A1 of alphabet � a

eptingthe language L1, and a dimension n � 0, 
onstru
t an automaton A2 a

eptingL2 = fuiw j u 2 f0; r� 1gn ^ w 2 �� ^ i 2 N ^ (9k > 0)(k � i ^ ukw 2 L1)g.



5In [Boi99℄, this problem is solved by 
onsidering expli
itly every potentialvalue u of the sign header, and then exploring A1 in order to know what states
an be rea
hed by a pre�x of the form ui, with i > 0. It is then suÆ
ient tomake ea
h of these states rea
hable after reading a single o

urren
e of u, whi
h
an be done by a simple 
onstru
tion, and to repeat the pro
ess for other u.Although satisfa
tory from a theoreti
al point of view, this solution exhibits asystemati
 
ost in O(2n) whi
h limits its pra
ti
al use to problems with a verysmall ve
tor dimension.The main idea behind our improved solution 
onsists of handling simultane-ously sign headers that 
annot be distinguished from ea
h other by the automa-ton A1, i.e., sign headers u1; u2 2 f0; r � 1gn su
h that for every k > 0, readinguk1 leads to the same automaton states as reading uk2 . For simpli
ity, we assumeA1 to be deterministi
1.Our algorithm pro
eeds as follows. First, it extra
ts from A1 a pre�x au-tomaton AP that reads only the �rst n symbols of words and asso
iates onedistin
t end state to ea
h group of undistinguished sign headers. Ea
h end stateof AP is then mat
hed to all the states of A1 that 
an be rea
hed by readingthe 
orresponding sign headers any number of times. At every time during thisoperation one dete
ts two sign headers that are not yet distinguished but thatlead to di�erent automaton states, one re�nes the pre�x automaton AP so asto asso
iate a di�erent end state to ea
h header. Finally, the automaton A2 is
onstru
ted in su
h a way that following one of its a

epting paths amountsto reading n symbols in AP , whi
h results in rea
hing an end state s of thisautomaton, and then following an a

epting path of A1 starting from a statemat
hed to s.The algorithm is des
ribed in the full version of this paper. Its worst-
asetime 
omplexity is not less than that of the simple solution [Boi99℄ outlined atthe beginning of this se
tion. However, in the 
ontext of state-spa
e explorationappli
ations, we observed that it su

eeds most of the time, if not always, toavoid the exponential blowup experien
ed with the latter approa
h.4 Counting elements of NDDsWe now address the problem of 
ounting the number of ve
tors that belong toa set S represented by an NDD A. Our solution pro
eeds in two steps: First, we
he
k whether S is �nite or in�nite and, in the former 
ase, we transform A intoa deterministi
 automaton A0 that a

epts exa
tly one en
oding of ea
h ve
torthat belongs to S. Se
ond, we 
ount the number of distin
t a

epting paths inA0.4.1 Transformation stepLet A be an NDD representing the set S � Zn. If S is not empty, then thelanguage a

epted by A is in�nite, hen
e the transition graph of this automaton1 This is not problemati
 in pra
ti
e, sin
e the 
ost of determinizing an automatonbuilt from an arithmeti
 formula is often moderate [WB00℄.



6
ontains 
y
les. In order to 
he
k whether S is �nite or not, we thus have todetermine if these 
y
les are followed when reading di�erent en
odings of thesame ve
tors, or if they 
an be iterated in order to re
ognize an in�nite numberof distin
t ve
tors.Assume that A does not 
ontain unne
essary states, i.e., that all its statesare rea
hable and that there is at least one a

epting path starting from ea
hstate. We 
an 
lassify the 
y
les of A in three 
ategories:{ A sign loop is a 
y
le that 
an only be followed while reading the sign headerof an en
oding, or a repetition of that sign header;{ An in
ating loop is a 
y
le that 
an never be followed while reading the signheader of an en
oding or one of its repetitions;{ A mixed loop is a 
y
le that is neither a sign nor an in
ating loop.If A has at least one in
ating or mixed loop, then one 
an �nd an a

eptingpath in whi
h one follows that loop while not reading a repetition of a signheader. By iterating the loop, one thus gets an in�nite number of distin
t ve
tors,whi
h results in S being in�nite. The problem thus redu
es to 
he
king whetherA has non-sign (i.e., in
ating or mixed) loops2. Thanks to the following result,this 
he
k 
an be 
arried out by inspe
ting the transition graph of A withoutpaying attention to the transition labels.Theorem 1. Assume that A is a deterministi
 and minimal (with respe
t tolanguage equivalen
e) NDD. A 
y
le � of A is a sign loop if and only if it 
anonly be rea
hed by one path (not 
ontaining any o

urren
e of that 
y
le).Proof. Sin
e A is an NDD, it 
an only a

ept words whose length is a multipleof n. The length of � is thus a multiple of n.{ If � is rea
hable by only one path �. Let u 2 f0; r � 1gn be the sign headerthat is read while following the n �rst transitions of the path ��, and let sand s0 be the states of A respe
tively rea
hed after reading the words u anduu (starting from the initial state).Sin
e A a

epts all the en
odings of the ve
tors in S, it a

epts, for everyw 2 f0; 1; : : : ; r � 1g�, the word uw if and only if it a

epts the word uuw.It follows that the languages a

epted from the states s and s0 are identi
alwhi
h implies, sin
e A is minimal, that s = s0.Therefore, � 
an only be visited while reading the sign header u or its repe-tition, and is thus a sign loop.{ If � is rea
hable by at least two paths �1 and �2. Let kn, with k 2 N bethe length of �. Sin
e A only a

epts words whose length is a multiple ofn, there are exa
tly k states s1; s2; : : : ; sk that are rea
hable in � from theinitial state of A after following a multiple of n transitions.If the words read by following � from s1 to s2, from s2 to s3, . . . , and fromsk to s1 are not all identi
al, then � is not a sign loop. Otherwise, let uk,with u 2 f0; 1; : : : ; r � 1gn, be the label of �.2 An example of a non-trivial instan
e of this problem 
an be obtained by building theminimal deterministi
 NDD representing the set f(x; y) 2 Z2 j x+ y � 0 ^ x � 0g.



7Sin
e A is deterministi
, at least one of the blo
ks of n 
onse
utive digitsread while following �1 or �2 up to rea
hing � di�ers from u. Thus, � 
anbe visited while not reading a repetition of a sign header. utProvided that A has only sign loops, it 
an easily be transformed into an au-tomaton A0 that a

epts exa
tly one en
oding of ea
h ve
tor in S by performinga depth-�rst sear
h in whi
h one removes, for ea
h dete
ted 
y
le, the transitionthat gets ba
k to a state that has already been visited in the 
urrent explo-ration path. This operation does not in
uen
e the set of ve
tors re
ognized bythe automaton, sin
e the deleted transitions 
an only be followed while readinga repeated o

urren
e of a sign header.An algorithm that 
ombines the 
lassi�
ation of 
y
les with the transforma-tion of A into A0 is given in the full version of this paper. Sin
e ea
h state of Ahas to be visited at most on
e, the time and spa
e 
osts of this algorithm { ifsuitably implemented { are linear in the number of states of A.4.2 Counting stepIf S is �nite, then the transition graph of the automaton A0 produ
ed by thealgorithm given in the previous se
tion is a
y
li
. The number of ve
tors in S
orresponds to the number of a

epting paths originating in the initial state ofA0. For ea
h state s of A0, let N(s) denote the number of paths of A0 that startat s and end in an a

epting state. Ea
h of these paths either leaves s by one ofits outgoing transitions, or has a zero length (whi
h requires s to be a

epting).Thus, we have at ea
h state s N(s) = X(s;d;s0)2�N(s0) + a

(s), where a

(s) isequal to 1 if s is a

epting, and to 0 otherwise.Thanks to this rule, the value of N(s) 
an easily be propagated from thestates that have no su

essors to the initial state of A0, following the transitionsba
kwards. The number of additions that have to be performed is linear in thenumber of states of A0.5 Example of useThe proje
tion and 
ounting algorithms presented in Se
tions 3 and 4 have beenimplemented in the veri�
ation tool LASH [LASH℄, whose main purpose is to
ompute exa
tly the set of rea
hable 
on�gurations of a system with �nite 
ontroland unbounded data. Sket
hily, this tool handles �nite and in�nite sets of 
on�g-urations with the help of �nite-state representations suited for the 
orrespondingdata domains, and relies on meta-transitions , whi
h 
apture the repeated e�e
tof 
ontrol loops, for exploring in�nite state spa
es in �nite time. A des
riptionof the main te
hniques implemented by LASH is given in [Boi99℄.In the 
ontext of this paper, we fo
us on systems based on unbounded integervariables, for whi
h the set representation system used by LASH is the NDD.



8Our present results thus allow to 
ount pre
isely the number of rea
hable system
on�gurations that belong to a set 
omputed by LASH.Let us now des
ribe an example of a state-spa
e exploration experimentfeaturing the 
ounting algorithm. We 
onsider the simple lift 
ontroller originallypresented in [Val89℄. This system is 
omposed of two pro
esses modeling a liftpanel and its motor a
tuator, 
ommuni
ating with ea
h other by means of sharedinteger variables. A parameter N , whose value is either �xed in the model orleft undetermined, de�nes the number of 
oors of the building. In the former
ase, one observes that the amount of time and of memory needed by LASH inorder to 
ompute the set of rea
hable 
on�gurations grows only logarithmi
allyin N , despite the fa
t that the number of elements in this set is obviously atleast O(N2). (Indeed, the behavior of the lift is 
ontrolled by two main variablesmodeling the 
urrent and the target 
oors, whi
h are able to take any pair ofvalues in f1; : : : ; Ng2.)Our simple experiment has two goals: Studying pre
isely the evolution ofthe number of rea
hable 
on�gurations with respe
t to in
reasing values of N ,and evaluating the amount of a

eleration indu
ed by meta-transitions in thestate-spa
e exploration pro
ess.The results are summarized in Figures 2 and 3. The former table gives,for several values of N , the size (in terms of automaton states) of the �nite-state representation of the rea
hable 
on�gurations, the exa
t number of these
on�gurations, and the total time needed to perform the exploration. Theseresults 
learly show an evolution in O(N2), as suspe
ted. It is worth mentioningthat, thanks to the fa
t that the 
ost of our 
ounting algorithm is linear inthe size of NDDs, its exe
ution time (in
luding the 
lassi�
ation of loops) wasnegligible with respe
t to that of the exploration.N NDD states Con�gurations Time (s)10 852 930 25100 1782 99300 651000 2684 9993000 10110000 3832 999930000 153100000 4770 99999300000 1961000000 5666 9999993000000 242Fig. 2. Number of rea
hable 
on�gurations w.r.t. N .The latter table shows, for N = 109, the evolution of the number of 
on�gu-rations rea
hed after the su

essive steps of the exploration algorithm. Roughlyspeaking, the states are explored in a breadth-�rst fashion, starting from theinitial 
on�guration and following transitions as well as meta-transitions, untila �xpoint is dete
ted. In the present 
ase, the impa
t of meta-transitions on thenumber of rea
hed states is 
learly visible at Steps 2 and 4.



9Step NDD states Con�gurations1 638 32 1044 10000000033 1461 39999999994 2709 5000000054999999975 4596 15000000064999999956 6409 35000000044999999947 7020 64999999974999999998 7808 79999999950000000009 8655 899999999400000000010 8658 949999999350000000011 8663 9999999993000000000Fig. 3. Number of rea
hed 
on�gurations w.r.t. exploration steps.6 Con
lusions and 
omparison with other workThe main 
ontribution of this paper is to provide an algorithm for 
ounting thenumber of elements in a set represented by an NDD. As an auxiliary result, wealso present an improved proje
tion algorithm that makes it possible to buildeÆ
iently an NDD representing the set of solutions of a Presburger formula. Ouralgorithms have been implemented in the tool LASH.The problem of 
ounting the number of solutions of a Presburger equationhas already been addressed in [Pug94℄, whi
h follows a formula-based approa
h.More pre
isely, that solution pro
eeds by de
omposing the original formula intoan union of disjoint 
onvex sums, ea
h of them being a 
onjun
tion of linear in-equalities. Then, all but one variable are proje
ted out su

essively, by spliteringthe sums in su
h a way that the eliminated variables have one single and oneupper bound. This eventually yields a �nite union of simple formulas, on whi
hthe 
ounting 
an be 
arried out by simple rules.The main di�eren
e between this solution and ours is that, 
ompared tothe general problem of determining whether a Presburger formula is satis�able,
ounting with a formula-based method in
urs a signi�
ative additional 
ost. Onthe other hand, the automata-based 
ounting method has no pra
ti
al impa
ton the exe
ution time on
e an NDD has been 
onstru
ted. Our method is thuseÆ
ient for all the 
ases in whi
h an NDD 
an be obtained qui
kly, whi
h, asit has been observed in [BC96,WB00℄, happens mainly when the 
oeÆ
ients ofthe variables are small. In addition, sin
e automata 
an be determinized andminimized after ea
h manipulation, NDDs are espe
ially suited for representingthe results of 
omplex sequen
es of operations produ
ing simple sets, as in moststate-spa
e exploration appli
ations. The main restri
tion of our approa
h is thatit 
annot be generalized in a simple way to the more 
omplex 
ounting problems,su
h as summing polynomials over Presburger-de�nable sets, that are addressedin [Pug94℄.



10Referen
es[BC96℄ A. Boudet and H. Comon. Diophantine equations, Presburger arithmeti
and �nite automata. In Pro
eedings of CAAP'96, number 1059 in Le
tureNotes in Computer S
ien
e, pages 30{43. Springer-Verlag, 1996.[BHMV94℄ V. Bruy�ere, G. Hansel, C. Mi
haux, and R. Villemaire. Logi
 and p-re
ognizable sets of integers. Bulletin of the Belgian Mathemati
al So
iety,1(2):191{238, Mar
h 1994.[Boi99℄ B. Boigelot. Symboli
 Methods for Exploring In�nite State Spa
es. Colle
-tion des publi
ations de la Fa
ult�e des S
ien
es Appliqu�ees de l'Universit�ede Li�ege, Li�ege, Belgium, 1999.[Cob69℄ A. Cobham. On the base-dependen
e of sets of numbers re
ognizable by�nite automata. Mathemati
al Systems Theory, 3:186{192, 1969.[FO97℄ L. Fribourg and H. Ols�en. Proving safety properties of in�nite state systemsby 
ompilation into Presburger arithmeti
. In Pro
eedings of CONCUR'97,volume 1243, pages 213{227, Warsaw, Poland, July 1997. Springer-Verlag.[KSW95℄ F. Kabanza, J.-M. Stevenne, and P. Wolper. Handling in�nite temporaldata. Journal of 
omputer and System S
ien
es, 51(1):3{17, 1995.[LASH℄ The Li�ege Automata-based Symboli
 Handler (LASH). Available athttp://www.montefiore.ulg.a
.be/~boigelot/resear
h/lash/.[PR96℄ M. Padberg and M. Rijal. Lo
ation, S
heduling, Design and Integer Pro-gramming. Kluwer A
ademi
 Publishers, Massa
husetts, 1996.[Pre29℄ M. Presburger. �Uber die Volst�andigkeit eines gewissen Systems der Arith-metik ganzer Zahlen, in wel
hem die Addition als einzige Operation her-vortritt. In Comptes Rendus du Premier Congr�es des Math�emati
iens desPays Slaves, pages 92{101, Warsaw, Poland, 1929.[Pug92℄ W. Pugh. The Omega Test: A fast and pra
ti
al integer programmingalgorithm for dependen
e analysis. Communi
ations of the ACM, pages102{114, August 1992.[Pug94℄ W. Pugh. Counting solutions to Presburger formulas: How and why. SIG-PLAN, 94-6/94:121{134, 1994.[S
h86℄ A. S
hrijver. Theory of Linear and Integer Programming. John Wiley &sons, Chi
hester, 1986.[Sem77℄ A. L. Semenov. Presburgerness of predi
ates regular in two number systems.Siberian Mathemati
al Journal, 18:289{299, 1977.[SKR98℄ T. R. Shiple, J. H. Kukula, and R. K. Ranjan. A 
omparison of Presburgerengines for EFSM rea
hability. In Pro
eedings of the 10th Intl. Conf. onComputer-Aided Veri�
ation, volume 1427 of Le
ture Notes in ComputerS
ien
e, pages 280{292, Van
ouver, June/July 1998. Springer-Verlag.[Val89℄ A. Valmari. State spa
e generation with indu
tion. In Pro
eedings of theSCAI'89, pages 99{115, Tampere, Finland, June 1989.[WB95℄ P. Wolper and B. Boigelot. An automata-theoreti
 approa
h to Presburgerarithmeti
 
onstraints. In Pro
eedings of Stati
 Analysis Symposium, vol-ume 983 of Le
ture Notes in Computer S
ien
e, pages 21{32, Glasgow,September 1995. Springer-Verlag.[WB00℄ P. Wolper and B. Boigelot. On the 
onstru
tion of automata from lin-ear arithmeti
 
onstraints. In Pro
. 6th International Conferen
e on Toolsand Algorithms for the Constru
tion and Analysis of Systems, volume 1785of Le
ture Notes in Computer S
ien
e, pages 1{19, Berlin, Mar
h 2000.Springer-Verlag.


