Interests of regional modelisation for wind power forecasting

S. DOUTRELOUP
X. FETTWEIS
M. ERPICUM

4th Belgian Geography Days,
October 22nd 2010, K.U.Leuven
B2b – Meteorology for sustainable energy production
Context:

- Climate
 - Greenhouse gases from fossil fuels:
 - Temperature of the Earth

- Energy
 - Extremely dependant on fossil fuels
 - Oil reserves
 - Price of energy

- One of the multiple solutions: Use of the Wind Energy!
Problematic of wind energy

- The wind energy is dependant on the weather conditions:
 - This implies:
 - As you know
 - if the wind speed drops: Production also drops
 - If there is no wind: There is no production
 - But, if the wind speed is too high: Production stops

Production (in kWh) of 5 wind turbines near Amel in Belgium on September 2010
Problematic of wind energy

Therefore, we must:
- forecast the wind speed
 - Minimum one day in advance
 - Every 15 minutes

to use efficiently the wind power

Who are the users of the wind forecasts?
- Managers of electric grids
 - To balance the production and consumption of electricity
- Producer / Provider of electricity
 - To negotiate the best price on the electricity market
Forecast Models

 fête

GFS (Global Forecast System):
- Global Meteorological Model
 - Available over the world
- Resolution outputs: 0.5° and 3h
- Outputs are provided by the NOAA
 - We can’t change the parameters of the model

WRF (Weather Research Forecast model):
- Regional model forced by GFS
 - Centred over Belgium (defined by the user)
- Resolution (defined by the user): 4 km and 15 min
- Original code is provided by the NCAR/NCEP
 - Open Source code
 - We can adapt the code/parameters as we wish
GFS Method

❖ GFS:
 - ~20min to obtain forecasts at +24h

Tunings to adjust the wind forecasts + Transform the wind speed into electric production

GFS outputs 0.5° and 3h

Linear interpolation every 15 min

Wind power production forecasts

● Tunings depend on:
 - Roughness roses
 - According to roughness of the terrain
 - Air density
 - Some instability parameters
WRF Method

❖ WRF:
 - ~1h to obtain forecasts at +24h

WRF outputs:
4km and 15min

WRF model:
regionalisation

GFS outputs
0.5° and 3h

Static data

Few tunings to adjust the wind forecasts
+ Transformation of the wind speed into electric production

Wind power production forecasts

❖ Tunings
- Slightly reduce the wind speed
- Not use of roughness rose
 - WRF integrates the topography roughness
Evaluation

- **Four evaluation indexes:**
 - **RMSE** (Root Mean Square Error):
 \[
 \sqrt{\frac{1}{n \sum (obs - forecast)}
 \]
 - **r^2** (coefficient of determination):
 \[
 \left(\frac{\left(n \sum (obs \times forecast) - \sum obs \sum forecast\right)^2}{\left(n \sum obs^2 - \sum obs^2\right) \times \left(n \sum forecast^2 - \sum forecast^2\right)}\right)
 \]
 - **PC** (Percentage)
 \[
 \sum (1 - ABS\left(\frac{obs - forecast}{obs}\right))
 \]
 - **PC60** (Conditioned Percentage)
 \[
 \text{If}\ (obs \geq 60\% \text{ max prod}) \text{ then } \sum (1 - ABS\left(\frac{obs - forecast}{obs}\right))
 \]
WRF has better forecasts
- Except for PC

- WRF has better forecasts when the production is high
 - Indicated by the PC60
 - The high production events are more important

* These results may not be significantly different
Results

- Seasonally
 - January to February
	GFS	WRF
RMSE	1695	1662*
R^2	0.65	0.66*
PC	2860	3001
PC60	528 *	524
 - March to May
	GFS	WRF
RMSE	1629	1593*
R^2	0.49	0.53
PC	4003	3597
PC60	458	534
 - June to September
	GFS	WRF
RMSE	1490	1340
R^2	0.46	0.51
PC	4811	4609
PC60	259	323

* : These results may not be significantly different
Results

Examples

Example of GFS and WRF forecasts (kWh) compared to observations (kWh) for May
Examples

- Production peaks are better forecasted with WRF than with GFS

Example of GFS and WRF forecasts (kWh) compared to observations (kWh) for May
Examples

- Some remarkable periods are not modelled neither by WRF nor by GFS
 - The pass of a cold front or a convective zone
Results

Examples

- Wrong forecasts

![Graph showing GFS and WRF forecasts compared to observations for May]

- Halt of one or more wind turbines
Conclusions

- **Interests of using WRF:**
 - Outputs are available in a resolution of 4km and 15 min
 - Decrease the errors created by the spatial and temporal interpolation
 - Production peaks are successfully forecasted
 - High production events are more important for the users of these forecasts
 - Influences of the topography are integrated in the WRF calculation
 - Roughness rose is not needed
 - Configurable as we wish
 - We are not dependent on another meteorological organism

- **Disadvantage of WRF**
 - Forced by GFS
 - If the GFS forecasts are wrong → the WRF forecasts will also be wrong
Thanks for your attention